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Foreword

As I review the material presented in the fourth edition of Bioinformatics I am moved in two
ways, related to both the past and the future.

Looking to the past, I am moved by the amazing evolution that has occurred in our field
since the first edition of this book appeared in 1998. Twenty-one years is a long, long time in
any scientific field, but especially so in the agile field of bioinformatics. To use the well-trodden
metaphor of the “biology moonshot,” the launchpad at the beginning of the twenty-first cen-
tury was the determination of the human genome. Discovery is not the right word for what
transpired – we knew it was there and what was needed. Synergy is perhaps a better word;
synergy of technological development, experiment, computation, and policy. A truly collabo-
rative effort to continuously share, in a reusable way, the collective efforts of many scientists.
Bioinformatics was born from this synergy and has continued to grow and flourish based on
these principles.

That growth is reflected in both the scope and depth of what is covered in these pages. These
attributes are a reflection of the increased complexity of the biological systems that we study
(moving from “simple” model organisms to the human condition) and the scales at which
those studies take place. As a community we have professed multiscale modeling without
much to show for it, but it would seem to be finally here. We now have the ability to connect the
dots from molecular interactions, through the pathways to which those molecules belong to
the cells they affect, to the interactions between those cells through to the effects they have on
individuals within a population. Tools and methodologies that were novel in earlier editions
of this book are now routine or obsolete, and newer, faster, and more accurate procedures are
now with us. This will continue, and as such this book provides a valuable snapshot of the
scope and depth of the field as it exists today.

Looking to the future, this book provides a foundation for what is to come. For me this is
a field more aptly referred to (and perhaps a new subtitle for the next edition) as Biomedi-
cal Data Science. Sitting as I do now, as Dean of a School of Data Science which collaborates
openly across all disciplines, I see rapid change akin to what happened to birth bioinformat-
ics 20 or more years ago. It will not take 20 years for other disciplines to catch up; I predict it
will take 2! The accomplishments outlined in this book can help define what other disciplines
will accomplish with their own data in the years to come. Statistical methods, cloud comput-
ing, data analytics, notably deep learning, the management of large data, visualization, ethics
policy, and the law surrounding data are generic. Bioinformatics has so much to offer, yet it
will also be influenced by other fields in a way that has not happened before. Forty-five years
in academia tells me that there is nothing to compare across campuses to what is happening
today. This is both an opportunity and a threat. The editors and authors of this edition should
be complimented for setting the stage for what is to come.

Philip E. Bourne, University of Virginia
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Preface

In putting together this textbook, we hope that students from a range of fields – including
biology, computer science, engineering, physics, mathematics, and statistics – benefit by hav-
ing a convenient starting point for learning most of the core concepts and many useful practical
skills in the field of bioinformatics, also known as computational biology.

Students interested in bioinformatics often ask about how should they acquire training in
such an interdisciplinary field as this one. In an ideal world, students would become experts
in all the fields mentioned above, but this is actually not necessary and realistically too much
to ask. All that is required is to combine their scientific interests with a foundation in biology
and any single quantitative field of their choosing. While the most common combination is
to mix biology with computer science, incredible discoveries have been made through finding
creative intersections with any number of quantitative fields. Indeed, many of these quantita-
tive fields typically overlap a great deal, especially given their foundational use of mathematics
and computer programming. These natural relationships between fields provide the founda-
tion for integrating diverse expertise and insights, especially when in the context of performing
bioinformatic analyses.

While bioinformatics is often considered an independent subfield of biology, it is likely that
the next generation of biologists will not consider bioinformatics as being separate and will
instead consider gaining bioinformatics and data science skills as naturally as they learn how to
use a pipette. They will learn how to program a computer, likely starting in elementary school.
Other data science knowledge areas, such as math, statistics, machine learning, data process-
ing, and data visualization will also be part of any core curriculum. Indeed, the children of one
of the editors recently learned how to construct bar plots and other data charts in kindergarten!
The same editor is teaching programming in R (an important data science programming
language) to all incoming biology graduate students at his university starting this year.

As bioinformatics and data science become more naturally integrated in biology, it is worth
noting that these fields actively espouse a culture of open science. This culture is motivated by
thinking about why we do science in the first place. We may be curious or like problem solving.
We could also be motivated by the benefits to humanity that scientific advances bring, such
as tangible health and economic benefits. Whatever the motivating factor, it is clear that the
most efficient way to solve hard problems is to work together as a team, in a complementary
fashion and without duplication of effort. The only way to make sure this works effectively
is to efficiently share knowledge and coordinate work across disciplines and research groups.
Presenting scientific results in a reproducible way, such as freely sharing the code and data
underlying the results, is also critical. Fortunately, there are an increasing number of resources
that can help facilitate these goals, including the bioRxiv preprint server, where papers can be
shared before the very long process of peer review is completed; GitHub, for sharing computer
code; and data science notebook technology that helps combine code, figures, and text in a way
that makes it easier to share reproducible and reusable results.

We hope this textbook helps catalyze this transition of biology to a quantitative, data
science-intensive field. As biological research advances become ever more built on interdisci-
plinary, open, and team science, progress will dramatically speed up, laying the groundwork
for fantastic new discoveries in the future.



x Preface

We also deeply thank all of the chapter authors for contributing their knowledge and time
to help the many future readers of this book learn how to apply the myriad bioinformatic
techniques covered within these pages to their own research questions.

Andreas D. Baxevanis
Gary D. Bader
David S. Wishart
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Biological Sequence Databases
Andreas D. Baxevanis

Introduction

Over the past several decades, there has been a feverish push to understand, at the most
elementary of levels, what constitutes the basic “book of life.” Biologists (and scientists in gen-
eral) are driven to understand how the millions or billions of bases in an organism’s genome
contain all of the information needed for the cell to conduct the myriad metabolic processes
necessary for the organism’s survival – information that is propagated from generation to
generation. To have a basic understanding of how the collection of individual nucleotide
bases drives the engine of life, large amounts of sequence data must be collected and stored
in a way that these data can be searched and analyzed easily. To this end, much effort has
gone into the design and maintenance of biological sequence databases. These databases have
had a significant impact on the advancement of our understanding of biology not just from
a computational standpoint but also through their integrated use alongside studies being
performed at the bench.

The history of sequence databases began in the early 1960s, when Margaret Dayhoff and
colleagues (1965) at the National Biomedical Research Foundation (NBRF) collected all of the
protein sequences known at that time – all 65 of them – and published them in a book called
the Atlas of Protein Sequence and Structure. It is important to remember that, at this point in the
history of biology, the focus was on sequencing proteins through traditional techniques such
as the Edman degradation rather than on sequencing DNA, hence the overall small number
of available sequences. By the late 1970s, when a significant number of nucleotide sequences
became available, those were also included in later editions of the Atlas. As this collection
evolved, it included text-based descriptions to accompany the protein sequences, as well as
information regarding the evolution of many protein families. This work, in essence, was the
first annotated sequence database, even though it was in printed form. Over time, the amount
of data contained in the Atlas became unwieldy and the need for it to be available in electronic
form became obvious. From the early 1970s to the late 1980s, the contents of the Atlas were
distributed electronically by NBRF (and later by the Protein Information Resource, or PIR) on
magnetic tape, and the distribution included some basic programs that could be used to search
and evaluate distant evolutionary relationships.

The next phase in the history of sequence databases was precipitated by the veritable explo-
sion in the amount of nucleotide sequence data available to researchers by the end of the
1970s. To address the need for more robust public sequence databases, the Los Alamos National
Laboratory (LANL) created the Los Alamos DNA Sequence Database in 1979, which became
known as GenBank in 1982 (Benson et al. 2018). Meanwhile, the European Molecular Biology
Laboratory (EMBL) created the EMBL Nucleotide Sequence Data Library in 1980. Throughout
the 1980s, EMBL (then based in Heidelberg, Germany), LANL, and (later) the National Center
for Biotechnology Information (NCBI, part of the National Library of Medicine at the National
Institutes of Health) jointly contributed DNA sequence data to these databases. This was done
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by having teams of curators manually transcribing and interpreting what was published in
print journals to an electronic format more appropriate for computational analyses. The DNA
Databank of Japan (DDBJ; Kodama et al. 2018) joined this DNA data-collecting collabora-
tion a few years later. By the late 1980s, the quantity of DNA sequence data being produced
was so overwhelming that print journals began asking scientists to electronically submit their
DNA sequences directly to these databases, rather than publishing them in printed journals
or papers. In 1988, after a meeting of these three groups (now referred to as the International
Nucleotide Sequence Database Collaboration, or INSDC; Karsch-Mizrachi et al. 2018), there
was an agreement to use a common data exchange format and to have each database update
only the records that were directly submitted to it. Thanks to this agreement, all three centers
(EMBL, DDBJ, and NCBI) now collect direct DNA sequence submissions and distribute them
so that each center has copies of all of the sequences, with each center acting as a primary distri-
bution center for these sequences. DDBJ/EMBL/GenBank records are updated automatically
every 24 hours at all three sites, meaning that all sequences can be found within DDBJ, the
European Nucleotide Archive (ENA; Silvester et al. 2018), and GenBank in short order. That
said, each database within the INSDC has the freedom to display and annotate the sequence
data as it sees fit.

In parallel with the early work being done on DNA sequence databases, the foundations
for the Swiss-Prot protein sequence database were also being laid in the early 1980s by Amos
Bairoch, recounting its history from an engaging perspective in a first-person review (Bairoch
2000). Bairoch converted PIR’s Atlas to a format similar to that used by EMBL for its nucleotide
database. In this initial release, called PIR+, additional information about each of the pro-
teins was added, increasing its value as a curated, well-annotated source of information on
proteins. In the summer of 1986, Bairoch began distributing PIR+ on the US BIONET (a pre-
cursor to the Internet), renaming it Swiss-Prot. At that time, it contained the grand sum of
3900 protein sequences. This was seen as an overwhelming amount of data, in stark contrast
to today’s standards. As Swiss-Prot and EMBL followed similar formats, a natural collaboration
developed between these two groups, and these collaborative efforts strengthened when both
EMBL’s and Swiss-Prot’s operations were moved to EMBL’s European Bioinformatics Insti-
tute (EBI; Cook et al. 2018) in Hinxton, UK. One of the first collaborative projects undertaken
by the Swiss-Prot and EMBL teams was to create a new and much larger protein sequence
database supplement to Swiss-Prot. As maintaining the high quality of Swiss-Prot entries was a
time-consuming process involving extensive sequence analysis and detailed curation by expert
annotators (Apweiler 2001), and to allow the quick release of protein data not yet annotated
to Swiss-Prot’s stringent standards, a new database called TrEMBL (for “translation of EMBL
nucleotide sequences”) was created. This supplement to Swiss-Prot initially consisted of com-
putationally annotated sequence entries derived from the translation of all coding sequences
(CDSs) found in INSDC databases. In 2002, a new effort involving the Swiss Institute of Bioin-
formatics, EMBL-EBI, and PIR was launched, called the UniProt consortium (UniProt Con-
sortium 2017). This effort gave rise to the UniProt Knowledgebase (UniProtKB), consisting
of Swiss-Prot, TrEMBL, and PIR. A similar effort also gave rise to the NCBI Protein Database,
bringing together data from numerous sources and described more fully in the text that follows.

The completion of human genome sequencing and the sequencing of numerous model
genomes, as well as the existence of a gargantuan number of sequences in general, provides
a golden opportunity for biological scientists, owing to the inherent value of these data. At
the same time, the sheer magnitude of data also presents a conundrum to the inexperienced
user, resulting not just from the size of the “sequence information space” but from the
fact that the information space continues to get larger by leaps and bounds. Indeed, the
sequencing landscape has changed significantly in recent years with the development of new
high-throughput technologies that generate more and more sequence data in a way that is
best described as “better, cheaper, faster,” with these advances feeding into the “insatiable
appetite” that scientists have for more and more sequence data (Green et al. 2017). Given the
inherent value of the data contained within these sequence databases, this chapter will focus
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on providing the reader with a solid understanding of these major public sequence databases,
as a first step toward being able to perform robust and accurate bioinformatic analyses.

Nucleotide Sequence Databases

As described above, the major sources of nucleotide sequence data are the databases involved
in INSDC – DDBJ, ENA, and GenBank – with new or updated data being shared between
these three entities once every 24 hours. This transfer is facilitated by the use of common data
formats for the kinds of information described in detail below.

The elementary format underlying the information held in sequence databases is a text file
called the flatfile. The correspondence between individual flatfile formats greatly facilitates the
daily exchange of data between each of these databases. In most cases, fields can be mapped
on a one-to-one basis from one flatfile format to the other. Over time, various file formats have
been adopted and have found continued widespread use; others have fallen to the wayside for
a variety of reasons. The success of a given format depends on its usefulness in a variety of
contexts, as well as its power in effectively containing and representing the types of biological
data that need to be archived and communicated to scientists.

In its simplest form, a sequence record can be represented as a string of nucleotides with
some basic tag or identifier. The most widely used of these simple formats is FASTA, origi-
nally introduced as part of the FASTA software suite developed by Lipman and Pearson (1985)
that is described in detail in Chapter 3. This inherently simple format provides an easy way of
handling primary data for both humans and computers, taking the following form.

>U54469.1
CGGTTGCTTGGGTTTTATAACATCAGTCAGTGACAGGCATTTCCAGAGTTGCCCTGTTCAACAATCGATA
GCTGCCTTTGGCCACCAAAATCCCAAACTTAATTAAAGAATTAAATAATTCGAATAATAATTAAGCCCAG
TAACCTACGCAGCTTGAGTGCGTAACCGATATCTAGTATACATTTCGATACATCGAAATCATGGTAGTGT
TGGAGACGGAGAAGGTAAGACGATGATAGACGGCGAGCCGCATGGGTTCGATTTGCGCTGAGCCGTGGCA
GGGAACAACAAAAACAGGGTTGTTGCACAAGAGGGGAGGCGATAGTCGAGCGGAAAAGAGTGCAGTTGGC

For brevity, only the first few lines of the sequence are shown. In the simplest incarna-
tion of the FASTA format, the “greater than” character (>) designates the beginning of a new
sequence record; this line is referred to as the definition line (commonly called the “def line”).
A unique identifier – in this case, the accession.version number (U54469.1) – is followed by the
nucleotide sequence, in either uppercase or lowercase letters, usually with 60 characters per
line. The accession number is the number that is always associated with this sequence (and
should be cited in publications), while the version number suffix allows users to easily deter-
mine whether they are looking at the most up-to-date record for a particular sequence. The
version number suffix is incremented by one each time the sequence is updated.

Additional information can be included on the definition line to make this simple format a
bit more informative, as follows.

>ENA|U54469|U54469.1 Drosophila melanogaster eukaryotic initiation factor 4E (eIF4E)
gene, complete cds, alternatively spliced.

This modified FASTA definition line now has information on the source database (ENA),
its accession.version number (U54469.1), and a short description of what biological entity is
represented by the sequence.

Nucleotide Sequence Flatfiles: A Dissection

As flatfiles represent the elementary unit of information within sequence databases and facil-
itate the interchange of information between these databases, it is important to understand
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what each individual field within the flatfile represents and what kinds of information can be
found in varying parts of the record. While there are minor differences in flatfile formats, they
can all be separated into three major parts: the header, containing information and descrip-
tors pertaining to the entire record; the feature table, which provides relevant annotations to
the sequence; and the sequence itself.

The Header

The header is the most database-specific part of the record. Here, we will use the ENA version
of the record for discussion (shown in its entirety in Appendix 1.1), with the corresponding
DDBJ and GenBank versions of the header appearing in Appendix 1.2. The first line of the
record provides basic identifying information about the sequence contained in the record,
appropriately named the ID line; this corresponds to the LOCUS line in DDBJ/GenBank.

ID U54469; SV 1; linear; genomic DNA; STD; INV; 2881 BP.

The accession number is shown on the ID line, followed by its sequence version (here, the
first version, or SV 1). As this is SV 1, this is equivalent to writing U54469.1, as described above.
This is then followed by the topology of the DNA molecule (linear) and the molecule type
(genomic DNA). The next element represents the ENA data class for this sequence (STD,
denoting a “standard” annotated and assembled sequence). Data classes are used to group
sequence records within functional divisions, enabling users to query specific subsets of the
database. A description of these functional divisions can be found in Box 1.1. Finally, the ID
line presents the taxonomic division for the sequence of interest (INV, for invertebrate; see
Internet Resources) and its length (2881 base pairs). The accession number will also be shown
separately on the AC line that immediately follows the ID lines.

Box 1.1 Functional Divisions in Nucleotide Databases

The organization of nucleotide sequence records into discrete functional types provides
a way for users to query specific subsets of the records within these databases. In addi-
tion, knowledge that a particular sequence is from a given technique-oriented database
allows users to interpret the data from the proper biological point of view. Several of these
divisions are described below, and examples of each of these functional divisions (called
“data classes” by ENA) can be found by following the example links listed on the ENA Data
Formats page listed in the Internet Resources section of this chapter.

CON Constructed (or “contigged”) records of chromosomes, genomes, and other long DNA
sequences resulting from whole -genome sequencing efforts. The records in this
division do not contain sequence data; rather, they contain instructions for the
assembly of sequence data found within multiple database records.

EST Expressed Sequence Tags. These records contain short (300–500 bp) single reads
from mRNA (cDNA) that are usually produced in large numbers. ESTs represent a
snapshot of what is expressed in a given tissue or at a given developmental stage.
They represent tags – some coding, some not – of expression for a given cDNA library.

GSS Genome Survey Sequences. Similar to the EST division, except that the sequences are
genomic in origin. The GSS division contains (but is not limited to) single-pass read
genome survey sequences, bacterial artificial chromosome (BAC) or yeast artificial
chromosome (YAC) ends, exon-trapped genomic sequences, and Alu polymerase chain
reaction (PCR) sequences.

HTG High-Throughput Genome sequences. Unfinished DNA sequences generated by
high-throughput sequencing centers, made available in an expedited fashion to the
scientific community for homology and similarity searches. Entries in this division
contain keywords indicating its phase within the sequencing process. Once finished,
HTG sequences are moved into the appropriate database taxonomic division.
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STD A record containing a standard, annotated, and assembled sequence.

STS Sequence-Tagged Sites. Short (200–500 bp) operationally unique sequences that
identify a combination of primer pairs used in a PCR assay, generating a reagent that
maps to a single position within the genome. The STS division is intended to facilitate
cross-comparison of STSs with sequences in other divisions for the purpose of
correlating map positions of anonymous sequences with known genes.

WGS Whole-Genome Shotgun sequences. Sequence data from projects using shotgun
approaches that generate large numbers of short sequence reads that can then be
assembled by computer algorithms into sequence contigs, higher -order scaffolds, and
sometimes into near-chromosome- or chromosome-length sequences.

Following the ID line are one or more date lines (denoted by DT), indicating when the entry
was first created or last updated. For our sequence of interest, the entry was originally created
on May 19, 1996 and was last updated in ENA on June 23, 2017:

DT 19-MAY-1996 (Rel. 47, Created)
DT 23-JUN-2017 (Rel. 133, Last updated, Version 5)

The release number in each line indicates the first quarterly release made after the entry
was created or last updated. The version number for the entry appears on the second line and
allows the user to determine easily whether they are looking at the most up-to-date record
for a particular sequence. Please note that this is different from the accession.version format
described above – while some element of the record may have changed, the sequence may have
remained the same, so these two different types of version numbers may not always correspond
to one another.

The next part of the header contains the definition lines, providing a succinct description
of the kinds of biological information contained within the record. The definition line (DE in
ENA, DEFINITION in DDBJ/GenBank) takes the following form.

DE Drosophila melanogaster eukaryotic initiation factor 4E (eIF4E) gene,
DE complete cds, alternatively spliced.

Much care is taken in the generation of these definition lines and, although many of them
can be generated automatically from other parts of the record, they are reviewed to ensure
that consistency and richness of information are maintained. Obviously, it is quite impossible
to capture all of the biology underlying a sequence in a single line of text, but that wealth of
information will follow soon enough in downstream parts of the same record.

Continuing down the flatfile record, one finds the full taxonomic information on the
sequence of interest. The OS line (or SOURCE line in DDBJ/GenBank) provides the preferred
scientific name from which the sequence was derived, followed by the common name of the
organism in parentheses. The OC lines (or ORGANISM lines in DDBJ/GenBank) contain
the complete taxonomic classification of the source organism. The classification is listed
top-down, as nodes in a taxonomic tree, with the most general grouping (Eukaryota) given
first.

OS Drosophila melanogaster (fruit fly)
OC Eukaryota; Metazoa; Ecdysozoa; Arthropoda; Hexapoda; Insecta; Pterygota;
OC Neoptera; Holometabola; Diptera; Brachycera; Muscomorpha; Ephydroidea;
OC Drosophilidae; Drosophila; Sophophora.

Each record must have at least one reference or citation, noted within what are called refer-
ence blocks. These reference blocks offer scientific credit and set a context explaining why this
particular sequence was determined. The reference blocks take the following form.
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RN [1]
RP 1-2881
RX DOI; .1074/jbc.271.27.16393.
RX PUBMED; 8663200.
RA Lavoie C.A., Lachance P.E., Sonenberg N., Lasko P.;
RT "Alternatively spliced transcripts from the Drosophila eIF4E gene produce
RT two different Cap-binding proteins";
RL J Biol Chem 271(27):16393-16398(1996).
XX
RN [2]
RP 1-2881
RA Lasko P.F.;
RT ;
RL Submitted (09-APR-1996) to the INSDC.
RL Paul F. Lasko, Biology, McGill University, 1205 Avenue Docteur Penfield,
RL Montreal, QC H3A 1B1, Canada

In this case, two references are shown, one referring to a published paper and the other
referring to the submission of the sequence record itself. In the example above, the second
block provides information on the senior author of the paper listed in the first block, as well
as the author’s postal address. While the date shown in the second block indicates when the
sequence (and accompanying information) was submitted to the database, it does not indicate
when the record was first made public, so no inferences or claims based on first public release
can be made based on this date. Additional submitter blocks may be added to the record each
time the sequence is updated.

Some headers may contain COMMENT (DDBJ/GenBank) or CC (ENA) lines. These lines
can include a great variety of notes and comments (descriptors) that refer to the entire
record. Often, genome centers will use these lines to provide contact information and to
confer acknowledgments. Comments also may include the history of the sequence. If the
sequence of a particular record is updated, the comment will contain a pointer to the previous
versions of the record. Alternatively, if an earlier version of the record is retrieved, the
comment will point forward to the newer version, as well as backwards, if there was a still
earlier version. Finally, there are database cross-reference lines (marked DR) that provide
links to allied databases containing information related to the sequence of interest. Here, a
cross-reference to FlyBase can be seen in the complete header for this record in Appendix 1.1.
Note that the corresponding DDBJ/GenBank header in Appendix 1.2 does not contain these
cross-references.

The Feature Table

Early on in the collaboration between INSDC partner organizations, an effort was made to
come up with a common way to represent the biological information found within a given
database record. This common representation is called the feature table, consisting of feature
keys (a single word or abbreviation indicating the described biological property), location infor-
mation denoting where the feature is located within the sequence, and additional qualifiers
providing additional descriptive information about the feature. The online INSDC feature table
documentation is extensive and describes in great detail what features are allowed and what
qualifiers can be used with each individual feature. Wording within the feature table uses com-
mon biological research terminology wherever possible and is consistent between DDBJ, ENA,
and GenBank entries.

Here, we will dissect the feature table for the eukaryotic transcription factor 4E gene from
Drosophila melanogaster, shown in its entirety in both Appendices 1.3 (in ENA format) and
1.4 (in DDBJ/GenBank format). This particular sequence is alternatively spliced, producing
two distinct gene products, 4E-I and 4E-II. The first block of information in the feature table is
always the source feature, indicating the biological source of the sequence and additional infor-
mation relating to the entire sequence. This feature must be present in all INSDC entries, as all
DNA or RNA sequences derive from some specific biological source, including synthetic DNA.
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FT source 1..2881
FT /organism="Drosophila melanogaster"
FT /chromosome="3"
FT /map="67A8-B2"
FT /mol_type="genomic DNA"
FT /db_xref="taxon:7227"
FT gene 80..2881
FT /gene="eIF4E"

In the first line of the source key, notice that the numbering scheme shows the range of
positions covered by this feature key as two numbers separated by two dots (1..2881). As
the source key pertains to the entire sequence, we can infer that the sequence described in
this entry is 2881 nucleotides in length. The various ways in which the location of any given
feature can be indicated are shown in Table 1.1, accounting for a wide range of biological
scenarios. The qualifiers then follow, each preceded by a slash. The full scientific name of
the organism is provided, as are specific mapping coordinates, indicating that this sequence
is at map location 67A8-B2 on chromosome 3. Also indicated is the type of molecule that
was sequenced (genomic DNA). Finally, the last line indicates a database cross-reference
(abbreviated as db_xref) to the NCBI taxonomy database, where taxon 7227 corresponds to
D. melanogaster. In general, these cross-references are controlled qualifiers that allow entries
to be connected to an external database, using an identifier that is unique to that external
database. Following the source block above is the gene feature, indicating that the gene
itself is a subset of the entire sequence in this entry, starting at position 80 and ending at
position 2881.

FT mRNA join(80..224,892..1458,1550..1920,1986..2085,2317..2404,
FT 2466..2881)
FT /gene="eIF4E"
FT /product="eukaryotic initiation factor 4E-I"
FT mRNA join(80..224,1550..1920,1986..2085,2317..2404,2466..2881)
FT /gene="eIF4E"
FT /product="eukaryotic initiation factor 4E-II"

Table 1.1 Indicating locations within the feature table.

345 Single position within the sequence
345..500 A continuous range of positions bounded by and including the

indicated positions
<345..500 A continuous range of positions, where the exact lower boundary

is not known; the feature begins somewhere prior to position 345
but ends at position 500

345..>500 A continuous range of positions, where the exact upper boundary
is not known; the feature begins at position 345 but ends
somewhere after position 500

<1..888 The feature starts before the first sequenced base and continues to
position 888

(102.110) Indicates that the exact location is unknown, but that it is one of
the positions between 102 and 110, inclusive

123 ̂ 124 Points to a site between positions 123 and 124
123 ̂ 177 Points to a site between two adjacent nucleotides or amino acids

anywhere between positions 123 and 177
join(12..78,134..202) Regions 12–78 and 134–202 are joined to form one contiguous

sequence
complement(4918..5126) The sequence complementary to that found from 4918 to 5126 in

the sequence record
J00194:100..202 Positions 100–202, inclusive, in the entry in this database having

accession number J00194
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The next feature in this example indicates which regions form the two mRNA transcripts for
this gene, the first for eukaryotic initiation factor 4E-I and the second for eukaryotic initiation
factor 4E-II. In the first case (shown above), the join line indicates that six distinct DNA
segments are transcribed to form the mature RNA transcript while, in the second case, the
second region is missing, with only five distinct DNA segments transcribed into the mature
RNA transcript – hence the two splice variants that are ultimately encoded by this molecule.

FT CDS join(201..224,1550..1920,1986..2085,2317..2404,2466..2629)
FT /codon_start=1
FT /gene="eIF4E"
FT /product="eukaryotic initiation factor 4E-II"
FT /note="Method: conceptual translation with partial peptide
FT sequencing"
FT /db_xref="GOA:P48598"
FT /db_xref="InterPro:IPR001040"
FT /db_xref="InterPro:IPR019770"
FT /db_xref="InterPro:IPR023398"
FT /db_xref="PDB:4AXG"
FT /db_xref="PDB:4UE8"
FT /db_xref="PDB:4UE9"
FT /db_xref="PDB:4UEA"
FT /db_xref="PDB:4UEB"
FT /db_xref="PDB:4UEC"
FT /db_xref="PDB:5ABU"
FT /db_xref="PDB:5ABV"
FT /db_xref="PDB:5T47"
FT /db_xref="PDB:5T48"
FT /db_xref="UniProtKB/Swiss-Prot:P48598"
FT /protein_id="AAC03524.1"
FT /translation="MVVLETEKTSAPSTEQGRPEPPTSAAAPAEAKDVKPKEDPQETGE
FT PAGNTATTTAPAGDDAVRTEHLYKHPLMNVWTLWYLENDRSKSWEDMQNEITSFDTVED
FT FWSLYNHIKPPSEIKLGSDYSLFKKNIRPMWEDAANKQGGRWVITLNKSSKTDLDNLWL
FT DVLLCLIGEAFDHSDQICGAVINIRGKSNKISIWTADGNNEEAALEIGHKLRDALRLGR
FT NNSLQYQLHKDTMVKQGSNVKSIYTL"

Following the mRNA feature is the CDS feature shown above, describing the region that
ultimately encodes the protein product. Focusing just on eukaryotic initiation factor 4E-II, the
CDS feature also shows a join line with coordinates that are slightly different from those
shown in the mRNA feature, specifically at the beginning and end positions. The difference
lies in the fact that the 5′ and 3′ untranslated regions (UTRs) are included in the mRNA fea-
ture but not in the CDS feature. The CDS feature corresponds to the sequence of amino acids
found in the translated protein product whose sequence is shown in the/translation qual-
ifier above. The /codon_start qualifier indicates that the amino acid translation of the first
codon begins at the first position of this joined region, with no offset.

The /protein_id qualifier shows the accession number for the corresponding entry in
the protein databases (AAC03524.1) and is hyperlinked, enabling the user to go directly to
that entry. These unique identifiers use a “3+ 5” format – three letters, followed by five num-
bers. Versions are indicated by the decimal that follows; when the protein sequence in the
record changes, the version is incremented by one. The assignment of a gene product or pro-
tein name (via the/protein qualifier) often is subjective, sometimes being assigned via weak
similarities to other (and sometimes poorly annotated) sequences. Given the potential for the
transitive propagation of poor annotations (that is, bad data tend to beget more bad data),
users are advised to consult curated nucleotide and protein sequence databases for the most
up-to-date, accurate information regarding the putative function of a given sequence. Finally,
notice the extensive cross-referencing via the /db_xref qualifier to entries in InterPro, the
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Protein Data Bank (PDB), and UniProtKB/Swiss-Prot, as well as to a Gene Ontology annotation
(GOA; Gene Ontology Consortium 2017).

Implicit in the source feature and the organism that is assigned to it is the genetic code used
to translate the nucleic acid sequence into a protein sequence when a CDS feature is present
in the record. Also, the DNA-centric nature of these feature tables means that all features are
mapped through a DNA coordinate system, not that of amino acid reference points, as shown
in the examples in Appendices 1.3 and 1.4.

SQ Sequence 2881 BP; 849 A; 699 C; 585 G; 748 T; 0 other;
cggttgcttg ggttttataa catcagtcag tgacaggcat ttccagagtt gccctgttca 60
acaatcgata gctgcctttg gccaccaaaa tcccaaactt aattaaagaa ttaaataatt 120
cgaataataa ttaagcccag taacctacgc agcttgagtg cgtaaccgat atctagtata 180
.
. <truncated for brevity>
.
aaacggaacc ccctttgtta tcaaaaatcg gcataatata aaatctatcc gctttttgta 2820
gtcactgtca ataatggatt agacggaaaa gtatattaat aaaaacctac attaaaaccg 2880
g 2881

//

Finally, at the end of every nucleotide sequence record, one finds the actual nucleotide
sequence, with 60 bases per row. Note that, in the SQ line signaling the beginning of this section
of the record, not only is the overall length of the sequence provided, but a count of how many
of each individual type of nucleotide base is also provided, making it quite easy to compute the
GC content of this sequence.

Graphical Interfaces

Graphical interfaces have been developed to facilitate the interpretation of the data found
within text-based flatfiles, with an example of the graphical view of the ENA record for our
sequence of interest (U54469.1) shown in Figure 1.1. These graphical views are particularly
useful when there is a long list of documented biological features within the feature table,
enabling the user to visualize potential interactions or relationships between biological
features. An additional example of the use of graphical views to assist in the interpretation
of the information found within a database record is provided in the discussion of the NCBI
Entrez discovery pathway in Chapter 2, as well as later in this chapter.

RefSeq

As one might expect, especially given the breakneck speed at which DNA sequence data
are currently being produced, there is a significant amount of redundancy within the major
sequence databases, with a good number of sequences being represented more than once.
This is often problematic for the end user, who may find themselves confused as to which
sequence to use after performing a search that returns numerous results. To address this
issue, NCBI developed RefSeq, the goal of which is to provide a single reference sequence
for each molecule of the central dogma – DNA, RNA, and protein. The distinguishing
features of RefSeq go beyond its non-redundant nature, with individual entries including the
biological attributes of the gene, gene transcript, or protein. RefSeq entries encompass a wide
taxonomic range, and entries are updated and curated on an ongoing basis to reflect current
knowledge about the individual entries. Additional information on RefSeq can be found
in Box 1.2.
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Figure 1.1 The landing page for ENA record U54469.1, providing a graphical view of biological features found within the sequence of the
Drosophila melanogaster eukaryotic initiation factor 4E (eIF4E) gene. The tracks within the graphical view show the position of the gene,
mRNAs, and coding regions (marked CDS) within the 2881 bp sequence reported in this record.

Box 1.2 RefSeq

The first several chapters of this book describe a variety of ways in which sequence data
and sequence annotations find their way into public databases. While the combination of
data derived from systematic sequencing projects and individual investigators’ laborato-
ries yields a rich and highly valuable set of sequence data, some problems are apparent.
The most important issue is that a single biological entity may be represented by many
different entries in various databases. It also may not be clear whether a given sequence
has been experimentally determined or is simply the result of a computational prediction.

To address these issues, NCBI developed the RefSeq project, the major goal of which
is to provide a reference sequence for each molecule in the central dogma (DNA, mRNA,
and protein). As each biological entity is represented only once, RefSeq is, by definition,
non-redundant. Nucleotide and protein sequences in RefSeq are explicitly linked to one
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another. Most importantly, RefSeq entries undergo ongoing curation, assuring that the
RefSeq entry represents the most up-to-date state of knowledge regarding a particular
DNA, mRNA, or protein sequence.

RefSeq entries are distinguished from other entries in GenBank through the use of a
distinct accession number series. RefSeq accession numbers follow a “2+ 6” format: a
two-letter code indicating the type of reference sequence, followed by an underscore and
a six-digit number. Experimentally determined sequence data are denoted as follows:

NT_123456 Genomic contigs (DNA)

NM_123456 mRNAs

NP_123456 Proteins

Reference sequences derived through genome annotation efforts are denoted as follows:

XM_123456 Model mRNAs

XM_123456 Model proteins

It is important to understand the distinction between the “N” numbers and “X” num-
bers – the former represent actual, experimentally determined sequences, while the latter
represent computational predictions derived from the raw DNA sequence.

Additional types of RefSeq entries, along with more information on the RefSeq project,
can be found on the NCBI RefSeq web site.

Protein Sequence Databases

With the availability of myriad complete genome sequences from both prokaryotes and eukary-
otes, significant effort is being dedicated to the identification and functional analysis of the
proteins encoded by these genomes. The large-scale analysis of these proteins continues to
generate huge amounts of data, including through the use of proteomic methods (Chapter 11)
and through protein structure analysis (Chapter 12), to name a few. These and other meth-
ods make it possible to identify large numbers of proteins quickly, to map their interactions
(Chapter 13), to determine their location within the cell, and to analyze their biological activi-
ties. This ever-increasing “information space” reinforces the central role that protein sequence
databases play as a resource for storing data generated by these efforts, making them freely
available to the life sciences community.

As most sequence data in protein databases are derived from the translation of nucleotide
sequences, they can be, in large part, thought of as “secondary databases.” Universal protein
sequence databases cover proteins from all species, whereas specialized protein sequence
databases concentrate on particular protein families, groups of proteins, or those from a
specific organism. Representative model organism databases include the Mouse Genome
Database (MGD; Smith et al. 2018) and WormBase (Lee et al. 2018), among others (Baxe-
vanis and Bateman 2015; Rigden and Fernández 2018). Organismal sequence databases are
discussed in greater detail in Chapter 2.

Universal protein databases can be divided further into two broad categories: sequence
repositories, where the data are stored with little or no manual intervention, and curated
databases, in which experts enhance the original data through expert biocuration. The
importance of ensuring interoperability, creating and implementing standards, and adopting
best practices aimed at accurately representing the biological knowledge found within the
sequence databases is absolutely paramount. Indeed, these curation goals are so important
that there is an organization called the International Society for Biocuration, the primary
mission of which is to advance these central tenets.
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The NCBI Protein Database

NCBI maintains the Protein database, which derives its content from a number of sources.
These include the translations of the annotated coding regions from INSDC databases
described above, from RefSeq (Box 1.2), and from NCBI’s Third Party Annotation (TPA)
database. The TPA dataset is quite interesting in its own right, as it captures both experimen-
tal and inferential data provided by the scientific community to supplement the information
found in an INSDC nucleotide entry. As the name suggests, the information in the TPA is pro-
vided by third parties and not by the original submitter of the corresponding INSDC entry. The
NCBI Protein database also includes additional non-NCBI sources of protein sequence data,
including Swiss-Prot, PIR, PDB, and the Protein Research Foundation. Step-by-step methods
for performing searches against the NCBI Protein database are described in detail in Chapter 3.

UniProt

Although data repositories are an essential vehicle through which scientists can access
sequence data as quickly as possible, it is clear that the addition of biological information from

Figure 1.2 Results of a search for the human heterogeneous nuclear ribosomal protein A1 record within UniProtKB, using the accession
number P09651 as the search term. See text for details.
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multiple, highly regarded sources greatly increases the power of the underlying sequence
data. The UniProt Consortium was formed to accomplish just that, bringing together the
Swiss-Prot, TrEMBL, and the Protein Information Resource Protein Sequence Database
under a single umbrella, called UniProt (UniProt Consortium 2017). UniProt comprises
three main databases: the UniProt Archive, a non-redundant set of all publicly available
protein sequences compiled from a variety of source databases; UniProtKB, combining entries
from UniProtKB/Swiss-Prot and UniProtKB/TrEMBL; and the UniProt Reference Clusters
(UniRef), containing non-redundant views of the data contained in UniParc and UniProtKB
that are clustered at three different levels of sequence identity (Suzek et al. 2015).

The wealth of information found within a UniProtKB entry can be best illustrated by an
example. Here, we will consider the entry for the human heterogeneous nuclear ribonuclear
protein A1, with accession number P09651. A search of UniProtKB using this accession num-
ber as the search term produces the view seen in Figure 1.2. The lower part of the left-hand
column shows the various types of information available for this protein, and the user can
select or de-select sections based on their interests. The main part of the window provides basic

Figure 1.3 The Subcellular location and Pathology & Biotech sections of the record for the human heterogeneous nuclear ribosomal
protein A1 record within UniProtKB. These sections can be accessed by clicking on the blue tiles in the left-hand column of the window.
See text for details.
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identifying information about this sequence, as well as an indication of whether the entry has
been manually reviewed and annotated by UniProtKB curators. Here, we see that the entry
has indeed been reviewed and that there is experimental evidence that supports the existence
of the protein. The next section in the file is devoted to conveying functional information, also
providing Gene Ontology (GO) terms that are associated with the entry, as well as links to
enzyme and pathway databases such as Reactome (see Chapter 13). Clicking on any of the
blue tiles in the left-hand column will jump the user down to the selected section of the entry.
For instance, if one clicks on Subcellular location, the view seen in Figure 1.3 is produced,
providing a color-coded schematic of the cell indicating the type of annotation (manual or
automatic) and links to publications supporting the annotation. The lower part of Figure 1.3
also shows information regarding the protein’s involvement in disease, documenting variants
that have been implicated in early onset Paget disease and amyotrophic lateral sclerosis (Kim
et al. 2013; Liu et al. 2016).

In the upper left corner of the UniProtKB window are display options that are quite useful
in visualizing the significant amount of data found in this entry’s feature table. By clicking
on Feature viewer, one is presented with the view shown in Figure 1.4, neatly summarizing

Figure 1.4 The Feature viewer rendering of the record for the human heterogeneous nuclear ribosomal protein A1 within UniProtKB.
Clicking the Display link, found in the upper left portion of the window, provides access to the Feature viewer. Any of the sections can be
expanded by clicking on the labels in the blue boxes to the left of the graphic. See text for details.
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the annotations for this sequence in a coordinate-based fashion. Any of the sections can
be expanded by clicking on the labels in the blue boxes to the left of the graphic. Here, the
post-translational modification (PTM) section has been expanded, showing the position of
modified residues in this protein; clicking on any of the markers in the track will produce a
pop-up with additional information on the PTM, along with relevant links to the literature.
In Figure 1.5, the Structural features and Variants sections have also been expanded, showing
the positions of all alpha helices, beta strands, and beta turns within the protein, as well as
the location of putatively clinically relevant point mutations. Here, a variant at position 351 is
highlighted, with the proline-to-leucine variant identified as part of the ClinVar project (Lan-
drum et al. 2016) having a possible association with relapsing–remitting multiple sclerosis. By
examining different sections of this very useful graphical display, the user can start to see how
various features overlap with one another, perhaps indicating whether a known or predicted
disease-causing variant falls within a structured region of the protein. These annotations
and observations can provide important insights with respect to experimental design and the
interpretation of experimental data.

Figure 1.5 Expanding the PTM, Structural features, and Variants sections within the Feature viewer display shows the position of all
post-translational modifications (PTMs), alpha helices, beta strands, and beta turns within the human heterogeneous nuclear ribosomal
protein A1, as well as the location of putatively clinically relevant point mutations. Clicking on any of the variants produces a pop-up
window with additional information; here, the pop-up window provides disease association data for the proline-to-leucine variant at
position 351 of the sequence. See text for details.
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Summary

The rapid pace of discovery in the genomic and proteomic arenas requires that databases are
built in a way that facilitates not just the storage of these data, but the efficient handling
and retrieval of information from these databases. Many lessons have been learned over the
decades regarding how to approach critical questions regarding design and content, often the
hard way. Thus, the continued development of currently existing databases, as well as the
conceptualization and creation of new types of databases, will be a critical focal point for
the advancement of biological discovery. As should be obvious from this chapter, keeping
databases up to date and accurate is a task that requires the active involvement of the bio-
logical community (Box 1.3). Therefore, it is incumbent upon all users to ensure the accuracy
of these data in an active fashion, engaging the curators in a continuous dialog so that these
widely used resources continue to remain a valuable resource to biologists worldwide.

Box 1.3 Ensuring the Continued Quality of Data in Public Sequence Databases

Given the roles of DDBJ, EMBL, and GenBank in maintaining the archive of all publicly
available DNA, RNA, and protein sequences, the continued usefulness of this resource
is highly dependent on the quality of data found within it. Despite the high degree of
both manual and automated checking that takes place before a record becomes pub-
lic, errors will still find their way into the databases. These errors may be trivial and
have no biological consequence (e.g. an incorrect postal code), may be misleading (e.g.
an organism having the correct genus but wrong species name), or downright incorrect
(e.g. a full-length mRNA not having a CDS annotated on it). Sometimes, records may have
incorrect reference blocks, preventing researchers from linking to the correct publication
describing the sequence. Over time, many have taken an active role in reporting these
errors but, more often than not, these errors are left uncorrected.

While the individual INSDC members have the responsibility for hosting and dissemi-
nating the data found within their databases, keep in mind that the ownership of the data
rests with the original submitter – and these original submitters (or their designees) are
the only ones who can make updates to their database records. To keep these community
resources as accurate and up to date as possible, users are actively encouraged to report
any errors found when using the databases in the course of their work so that the database
administrators can follow up with the original submitters as appropriate.

Given below are the current e-mail addresses for submitting information regarding
errors to the three major sequence databases. As all the databases share information with
each other nightly, it is only necessary to report the error to one of the three members of
the consortium. Authors are actively encouraged to check their own records periodically
to ensure that the information they previously submitted is still accurate. Even though
this charge to the community is discussed here in the context of the three major sequence
databases, all databases provide similar mechanisms through which incorrect information
can be brought to the attention of the database administrators.

DDBJ ddbjupdt@ddbj.nig.ac.jp

EMBL datasubs@ebi.ac.uk

GenBank gb-admin@ncbi.nlm.nih.gov

As alluded to above, the range of publicly available data obviously goes well beyond human
data, whether sequence based or not. As the major public sequence databases need to be able to
store data in a fairly generalized fashion, these databases often do not contain more specialized
types of information that would be of interest to specific segments of the biological community.
To address this, many smaller, specialized databases have emerged and have been developed
and curated by biologists “in the trenches” to fulfill specific needs. These databases, which
contain information ranging from strain crosses to gene expression data, provide a valuable

mailto:ddbjupdt@ddbj.nig.ac.jp
mailto:datasubs@ebi.ac.uk
mailto:gb-admin@ncbi.nlm.nih.gov
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adjunct to the more visible public sequence databases, and users are encouraged to make intel-
ligent use of both types of databases. An annotated list of such databases can be found in the
yearly Database issue of Nucleic Acids Research (Rigden and Fernández 2018).

The position of this chapter at the beginning of this book reflects the belief that an
understanding of biological databases is the first step toward being able to perform robust
and accurate bioinformatic analyses. The reader is very strongly encouraged to take the
time to understand the structure of the data found within these databases, as the basis for
finding sequence data of interest and performing the more advanced analyses described in
the chapters that follow.
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Swiss-Prot (ExPASy) web.expasy.org/docs/swiss-prot_guideline.html
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sequencing methodologies in novel contexts and the implications of those applications to issues
of data storage and data sharing.
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online molecular biology database collection. Nucleic Acids Res. 46: D1–D7. The 25th overview

http://www.ddbj.nig.ac.jp/ddbj/data-categories-e.html
http://www.ddbj.nig.ac.jp
http://www.embl.org
https://www.ebi.ac.uk/ena/submit/data-formats
https://www.ebi.ac.uk
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov/genbank/htgs/divisions
http://geneontology.org
http://insdc.org/documents/feature_table.html
http://biocuration.org
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/DATAMODL.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/DATAMODL.HTML
http://www.ncbi.nlm.nih.gov/protein
https://academic.oup.com/nar
http://www.rcsb.org
https://pir.georgetown.edu
http://www.proteinresearch.net
http://www.ncbi.nlm.nih.gov/refseq
https://www.ebi.ac.uk/uniprot
https://web.expasy.org/docs/swiss-prot_guideline.html
http://www.uniprot.org


18 Biological Sequence Databases

of the annual database issue published by Nucleic Acids Research, capturing the wide variety of
publicly available bioinformatic databases available to the community. This overview is updated
yearly, and the individual papers describing these database resources are freely available
through the Nucleic Acids Research web site.
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Information Retrieval from Biological Databases
Andreas D. Baxevanis

Introduction

On April 14, 2003, the biological community celebrated the achievement of the Human
Genome Project’s major goal: the complete, accurate, and high-quality sequencing of the
human genome (International Human Genome Sequencing Consortium 2001; Schmutz et al.
2004). The attainment of this goal, which many have compared to landing a person on the
moon, has had a profound effect on how biological and biomedical research is conducted
and will undoubtedly continue to have a profound effect on its direction in the future. The
availability of not just human genome data, but also human sequence variation data, model
organism sequence data, and information on gene structure and function provides fertile
ground for biologists to better design and interpret their experiments in the laboratory,
fulfilling the promise of bioinformatics in advancing and accelerating biological discovery.

One of the most important databases available to biologists is GenBank, the annotated col-
lection of all publicly available DNA and protein sequences (Benson et al. 2017; see Chapter 1).
This database, maintained by the National Center for Biotechnology Information (NCBI) at the
National Institutes of Health (NIH), represents a collaborative effort between NCBI, the Euro-
pean Molecular Biology Laboratory (EMBL), and the DNA Data Bank of Japan (DDBJ). At
the time of this writing, GenBank contained over 200 million sequences and over 300 trillion
nucleotide bases. The completion of human genome sequencing and the sequencing of an
ever-expanding number of model organism genomes, as well as the existence of a gargantuan
number of sequences in general, provides a golden opportunity for biological scientists, owing
to the inherent value of these data. However, at the same time, the sheer magnitude of data
presents a conundrum to the inexperienced user, resulting not just from the size of the “se-
quence information space” but from the fact that the information space continues to get larger
and larger – by leaps and bounds – at a pace that will continue to accelerate, even though
human genome sequencing has long been “completed.”

The effect of the Human Genome Project and other systematic sequencing projects on the
continued accumulation of sequence data is illustrated by the growth of GenBank, as shown
in Figure 2.1; the exponential growth rate illustrated in the figure is expected to continue for
some time to come. The continued expansion of not just the sequence space but of the myriad
biological data now available because of the expansion of the sequence space underscores the
necessity for all biologists to learn how to effectively navigate this information for effective
use in their work – even allowing investigators to avoid performing expensive experiments
themselves based on the data found within these virtual treasure troves.

GenBank (or any other biological database, for that matter) serves little purpose unless the
data can be easily searched and entries retrievable in a useful, meaningful format. Otherwise,
sequencing efforts such as those described above have no useful end – without effective search
and retrieval tools, the biological community as a whole cannot make use of the information
hidden within these millions of bases and amino acids, much less the structures they form or

Bioinformatics, Fourth Edition. Edited by Andreas D. Baxevanis, Gary D. Bader, and David S. Wishart.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
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Figure 2.1 The exponential growth of GenBank in terms of number of nucleotides (squares, in millions)
and number of sequences submitted (circles, in thousands). Source data for the figure have been obtained
from the National Center for Biotechnology Information (NCBI) web site. Note that the period of accel-
erated growth after 1997 coincides with the completion of the Human Genome Project’s genetic and
physical mapping goals, setting the stage for high-accuracy, high-throughput sequencing, as well as the
development of new sequencing technologies (Collins et al. 1998, 2003; Green et al. 2011).

the mutations they harbor. Much effort has gone into making such data accessible to the biolo-
gist, and a selection of the programs and interfaces resulting from these efforts are the focus of
this chapter. The discussion will center on querying databases maintained by NCBI, as these
more “general” repositories are far and away the ones most often accessed by biologists, but
attention will also be given to specialized databases that provide information not necessarily
found through the use of Entrez, NCBI’s integrated information retrieval system.

Integrated Information Retrieval: The Entrez System

One of the most widely used interfaces for the retrieval of information from biological
databases is the NCBI Entrez system. Entrez capitalizes on the fact that there are pre-existing,
logical relationships between the individual entries found in numerous public databases. For
example, a paper in PubMed may describe the sequencing of a gene whose sequence appears
in GenBank. The nucleotide sequence, in turn, may code for a protein product whose sequence
is stored in NCBI’s Protein database. The three-dimensional structure of that protein may
be known, and the coordinates for that structure may appear in NCBI’s Structure database.
Finally, there may be allelic or structural variants documented for the gene of interest,
cataloged in databases such as the Single Nucleotide Polymorphism Database (called dbSNP)
or the Database of Genomic Structural Variation (called dbVAR), respectively. The existence
of such natural connections, all having a biological underpinning, motivated the development
of a method through which all of the information about a particular biological entity could be
found without having to sequentially visit and query individual databases, one by one.

Entrez, to be clear, is not a database itself. Rather, it is the interface through which its com-
ponent databases can be accessed and traversed – an integrated information retrieval system.
The Entrez information space includes PubMed records, nucleotide and protein sequence
data, information on conserved protein domains, three-dimensional structure information,
and genomic variation data with potential clinical relevance, a good number of which will be
touched upon in this chapter. The strength of Entrez lies in the fact that all of this information,
across a large number of component databases, can be accessed by issuing one – and only
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one – query. This very powerful, integrated approach is made possible through the use of two
general types of connections between database entries: neighboring and hard links.

Relationships Between Database Entries: Neighboring

The concept of neighboring enables entries within a given database to be connected to one
another. If a user is looking at a particular PubMed entry, the user can then “ask” Entrez to
find all of the other papers in PubMed that are similar in subject matter to the original paper.
Likewise, if a user is looking at a sequence entry, Entrez can return a list of all other sequences
that bear similarity to the original sequence. The establishment of neighboring relationships
within a database is based on statistical measures of similarity, some of which are described in
more detail below. While the term “neighboring” has traditionally been used to describe these
connections, the terminology on the NCBI web site denotes neighbors as “related data.”

BLAST Biological sequence similarities are detected and sequence data are compared with one
another using the Basic Local Alignment Search Tool, or BLAST (Altschul et al. 1990). This
algorithm attempts to find high-scoring segment pairs – pairs of sequences that can be aligned
with one another and, when aligned, meet certain scoring and statistical criteria. Chapter 3
discusses the family of BLAST algorithms and their application at length.

VAST Molecular structure similarities are detected and sets of coordinate data are com-
pared using a vector-based method known as VAST (the Vector Alignment Search Tool;
Gibrat et al. 1996). This methodology uses geometric criteria to assess similarity between
three-dimensional domains, and there are three major steps that take place in the course of a
VAST comparison:

• First, based on known three-dimensional coordinate data, the alpha helices and beta strands
that constitute the structural core of each protein are identified. Straight-line vectors are then
calculated based on the position of these secondary structural elements. VAST keeps track
of how one vector is connected to the next (that is, how the C-terminal end of one vector
connects to the N-terminal end of the next vector), as well as whether each vector repre-
sents an alpha helix or a beta strand. Subsequent comparison steps use only these vectors
in assessing structural similarity to other proteins – so, in effect, most of the painstakingly
deduced atomic coordinate data are discarded at this step. The reason for this apparent over-
simplification is simply due to the scale of the problem at hand; with the 150 000 structures
in the Molecular Modeling Database (MMDB; Madej et al. 2014) available at the time of this
writing, the time that it would take to do an in-depth comparison of each and every one of
these structures with all of the other structures in MMDB would make the calculations both
impractical and intractable.

• Next, the algorithm attempts to optimally align these sets of vectors, looking for pairs of
structural elements that are of the same type and relative orientation, with consistent con-
nectivity between the individual elements. The object is to identify highly similar “core
substructures,” pairs that represent a statistically significant match above that which would
be obtained by comparing randomly chosen proteins with one another.

• Finally, a refinement is done using Monte Carlo (random search) methods at each residue
position to optimize the structural alignment. The resultant alignment need not be global,
as matches may be between individual structural domains of the proteins being compared.

In 2014, a significant improvement to VAST was introduced. This new approach, called
VAST+ (Madej et al. 2014), moves beyond assessing structural similarity by comparing
individual three-dimensional domains with one another; instead, it considers the entire set
of three-dimensional domains within a macromolecular complex. This approach essentially
moves the comparison from the tertiary structure to the quaternary structure level, enabling
the identification of similar functional, multi-subunit assemblies. In the VAST+ parlance,
macromolecular complexes are referred to as a “biological unit” and can include not just the
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proteins that constitute the complex, but also nucleotides and chemicals where such structural
information is available. The VAST+ comparison begins as described above for VAST and then
marches through a number of steps that involve the identification of biological units that can
be superimposed, calculation of root-mean-square deviations (RMSDs) of the superimposed
structures as a quantitative measure of the superposition (see Box 12.1), and, finally, performs
a refinement step to improve the RMSD values for the superposition. The result of this process
is a global structural alignment where both the most and least similar parts of the aligned
molecules can be identified and, from a biological standpoint, comparisons between similarly
shaped proteins can be facilitated; it can also be used in the context of looking at conforma-
tional changes of a single complex under varying conditions. While VAST+ is now the default
method for identifying structural neighbors within the Entrez system, keep in mind that the
algorithm depends on biological units being explicitly identified within the source Protein
Data Bank (PDB) coordinate data records that form the basis for MMDB records; if no such
biological units are defined, the original VAST algorithm is then used for the comparisons.

By using approaches such as VAST and VAST+, it is possible to find structural relationships
between proteins in cases where simply looking at sequence similarity may not suggest relat-
edness – information that could, with additional data and insights, be used to help inform the
question of functional similarity. More information on additional structure prediction meth-
ods based on X-ray or nuclear magnetic resonance (NMR) coordinate data can be found in
Chapter 12.

Weighted Key Terms The problem of comparing sequence or structure data somewhat pales
next to that of comparing PubMed entries, which consist of free text whose rules of syntax are
not necessarily fixed. Given that no two people’s writing styles are exactly the same, finding a
way to compare seemingly disparate blocks of text poses a substantial problem. Entrez employs
a method known as the relevance pairs model of retrieval to make such comparisons, relying
on weighted key terms (Wilbur and Coffee 1994; Wilbur and Yang 1996). This concept is best
described by example. Consider two manuscripts with the following titles:

BRCA1 as a Genetic Marker for Breast Cancer
Genetic Factors in the Familial Transmission of the Breast Cancer BRCA1 Gene

Both titles contain the terms BRCA1, Breast, and Cancer, and the presence of these common
terms may indicate that the manuscripts are similar in subject matter. The proximity between
the words is also considered, so that words common to two records that are closer together are
scored higher than common words that are further apart. In the example, the terms Breast and
Cancer are always next to each other, so they would score higher based on proximity than either
of those words would against BRCA1. Common words found in a title score higher than those
found in an abstract, since title words are presumed to be “more important” than those found
in the body of an abstract. Overall, weighting depends inversely on the frequency of a given
word among all the entries in PubMed, with words that occur infrequently in the database
assigned a higher weight while common words are down-weighted.

Hard Links

The hard link concept is simpler and much more straightforward than the neighboring
approaches described above. Hard links are applied between entries in different databases and
exist wherever there is a logical connection between entries. For instance, if a PubMed entry
describes the sequencing of a chromosomal region containing a gene of interest, a hard link is
established between the PubMed entry and the corresponding nucleotide entry for that gene.
If an open reading frame in that gene codes for a known protein, a hard link is established
between the nucleotide entry and the protein entry. If the protein entry has an experimentally
deduced structure, a hard link would be placed between the protein entry and the structural
entry.

Searches can begin anywhere within the Entrez ecosystem – there are no constraints on the
user as to where the foray into this information space must begin. However, depending on
which database is used as the jumping-off point, different database fields will be available for
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searching. This stands to reason, as the entries in different databases are necessarily organized
differently, reflecting the biological nature of the entities that each database is trying to catalog.

The Entrez Discovery Pathway

The best way to illustrate the integrated nature of the Entrez system and to drive home the
power of neighboring is by considering some biological examples. The simplest way to query
Entrez is through the use of individual search terms, coupled together by Boolean operators
such as AND, OR, or NOT. Consider the case in which one wants to retrieve all available
information on a gene named DCC (deleted in colorectal carcinoma), limiting the returned
information to publications where an investigator named Guy A. Rouleau is an author. There
is a very simple query interface at the top of the NCBI home page, allowing the user to select
which database they want to search from a pull-down menu and a text box where the query
terms can be entered. In this case, to search for published papers, PubMed would be selected
from the pull-down menu and, within the text box to the right, the user would type DCC AND
"Rouleau GA" [AU]. The [AU] qualifying the second search term indicates to Entrez that
this is an author term, so only the author field in entries should be considered when evalu-
ating this part of the search statement. The result of the query is shown in Figure 2.2. Here,

Figure 2.2 Results of a text-based Entrez query against PubMed using Boolean operators and field delimiters. The initial query (DCC AND
"Rouleau GA" [AU]) is shown in the search box near the top of the window, with the three papers identified using this query following
below. Each entry gives the title of the manuscript, the names of the authors, and the citation information. The actual record can be
retrieved by clicking on the name of the manuscript.



24 Information Retrieval from Biological Databases

Table 2.1 Entrez Boolean search statements.

General syntax:

search term [tag] Boolean operator search term [tag] ...

where [tag] =
[ACCN] Accession
[AD] Affiliation
[ALL] All fields
[AU] Author name

Lentz R [AU] yields all of Lentz RA, Lentz RB, etc.
"Lentz R" [AU] yields only Lentz R

[AUID] Unique author identifier, such as an ORCID ID
[ECNO] Enzyme Commission numbers
[EDAT] Entrez date

YYYY/MM/DD , YYYY/MM, or YYYY; insert a colon for date range,
e.g. 2016:2018

[GENE] Gene name
[ISS] Issue of journal
[JOUR] Journal title, official abbreviation, or ISSN number

Journal of Biological Chemistry
J Biol Chem
0021-9258

[LA] Language
[MAJR] MeSH major topic

One of the major topics discussed in the article
[MH] MeSH terms

Controlled vocabulary of biomedical terms (subject)
[ORGN] Organism
[PDAT] Publication date

YYYY/MM/DD , YYYY/MM, or YYYY; insert a colon for date range,
e.g. 2016:2018

[PMID] PubMed ID
[PROT] Protein name (for sequence records)
[PT] Publication type, includes:

Review
Clinical Trial
Lectures
Letter
Technical Report

[SH] MeSH subheading
Used to modify MeSH Terms
stenosis [MH] AND pharmacology [SH]

[SUBS] Substance name
Name of chemical discussed in article

[SI] Secondary source ID
Names of secondary source databanks and/or accession numbers of
sequences discussed in article

[TITL] Title word
Only words in the definition line (not available in Structure database)

[WORD] Text words
All words and numbers in the title and abstract, MeSH terms,
subheadings, chemical substance names, personal name as subject,
and MEDLINE secondary sources

[VOL] Volume of journal

and Boolean operator = AND, OR, or NOT
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three entries matching the query were found in PubMed. The user can further narrow down
the query by adding additional terms if the user is interested in a more specific aspect of this
gene or if there are quite simply too many entries returned by the initial query. A list of available
field delimiters is given in Table 2.1.

For each of the found papers shown in the Summary view in Figure 2.2, the user is presented
with the title of the paper, the authors of that paper, and the citation. To look at any of the
papers resulting from the search, the user can simply click on any of the hyperlinked titles.
For this example, consider the third reference in the list, by Srour et al. (2010). Clicking on
the title takes the user to the Abstract view shown in Figure 2.3. This view presents the name
of the paper, the list of authors, their institutional affiliation, and the abstract itself. Below
the abstract is a gray bar labeled “MeSH terms, Substances”; clicking on the plus sign at the
end of the gray bar reveals cataloging information (MeSH terms, for medical subject headings)
and indexed substances related to the manuscript. Several alternative formats are available
for displaying this information, and these various formats can be selected using the Format
pull-down menu found in the upper left corner of the window. Switching to MEDLINE format

Figure 2.3 An example of a PubMed record in Abstract format, as returned through Entrez. This Abstract view is for the third reference
shown in Figure 2.2. This view provides connections to related articles, sequence information, and the full-text journal article through the
Discovery Column that runs down the right-hand side of the page. See text for details.



26 Information Retrieval from Biological Databases

produces the MEDLINE layout, with two-letter codes corresponding to the contents of each
field going down the left-hand side of the entry (e.g. the author field is again denoted by the
code AU). Lists of entries in this format can be saved to the desktop and easily imported into
third-party bibliography management programs.

The column on the right-hand side of this window – aptly named the Discovery
Column – provides access to the full-text version of the paper and, more importantly,
contains many useful links to additional information related to this manuscript. The Similar
articles section provides one of the entry points from which the user can take advantage of the
neighboring and hard link relationships described earlier and, in the examples that follow,
we will return to this page several times to illustrate a selected cross-section of the kinds of
information available to the user. To begin this journey, if the user clicks on the See all link
at the bottom of that section, Entrez will return a list of 104 references related to the original
Rouleau paper at the time of this writing; the first six of these papers are shown in Figure 2.4.
The first paper in the list is the same Rouleau paper because, by definition, it is most related to
itself (the “parent” entry). The order in which the related papers follow is based on statistical

Figure 2.4 Neighbors to an entry found in PubMed. The original entry from Figure 2.3 (Srour et al. 2010) is at the top of the list, indicating
that this is the parent entry. Additional neighbors to each of the papers in this list can be found by clicking the Similar articles link found
below each entry. See text for details.
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Figure 2.5 The Entrez Gene page for the DCC (deleted in colorectal carcinoma) netrin-1 receptor from human. The entry indicates that this
is a protein-coding gene at map location 18q21.2, and information on the genomic context of DCC, as well as alternative gene names and
information on the encoded protein, is provided. An extensive collection of links to other National Center for Biotechnology Information
(NCBI) and external databases is also provided. See text for details.

similarity. Thus, the entry closest to the parent is deemed to be the closest in subject matter
to the parent. By scanning the titles, the user can easily find related information on other
studies, as well as quickly amass a bibliography of relevant references. This is a particularly
useful and time-saving function when one is writing grants or papers, as abstracts can easily
be scanned and papers of real interest can be identified quickly.

Returning to the Abstract view presented in Figure 2.3, at the bottom of the Discovery
Column is a series of hard-link connections to other databases within the Entrez system
that can take the user directly to an extensive set of information related to the content of the
publication of interest. Here, selecting the Gene link takes the user to Entrez Gene, a feature of
Entrez that provides a wealth of information about the gene in question (Figure 2.5). The data
are gathered from a variety of sources, including RefSeq. Here, we see that DCC is the official
symbol of a protein-coding gene for a netrin-1 receptor in humans. The Genomic context
section of this page indicates that the DCC is a protein-coding gene at map location 18q21.2.
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Immediately below, summary information on the genomic region, transcripts, and products
of the DCC gene are presented graphically, with genomic coordinates provided. Additional
content not shown in the figure can be found by scrolling down the Gene page, where the
user will find relevant functional information (such as gene expression data), associated
phenotypes, information on protein–protein interactions, pathway information, Gene Ontol-
ogy assignments, and homologies to similar sequences in selected organisms. Shortcut links to
these sections can be found in the Table of contents at the top of the Discovery Column. Fur-
ther down the Discovery Column are extensive lists of links to additional resources provided
through NCBI and other sources. One link of note is the SNP: Gene View link, taking the user
to data derived from dbSNP (Figure 2.6). The information found within dbSNP goes beyond
just single-nucleotide polymorphisms (SNPs), including data on short genetic variations such
as short insertions and deletions, short tandem repeats, and microsatellites. Here, we will
focus on the table shown in Figure 2.6, which is a straightforward way to view information
about individual SNPs. Each SNP entry occupies two or more lines of the table, with one line
showing the contig reference (the more common allele) and the other showing the SNP (the

Figure 2.6 A section of the Database of Single Nucleotide Polymorphisms (dbSNP) GeneView page providing information on each SNP
identified within the human DCC gene. See text for details.
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less common allele). Consider the first three lines of the table, showing a contig reference G for
which there are two documented SNPs, changing the G at that position to either an A or a C. At
the protein level, this changes the amino acid at position 2 of the DCC protein from glutamic
acid to lysine (for the G-to-A substitution) or to glutamine (for the G-to-C substitution). These
rows are colored red since these are “non-synonymous SNPs” – that is, the SNP produces a dis-
crete change at the amino acid level. In contrast, consider the first set of green rows in the table,
with the green indicating that this is a “synonymous SNP,” where the codons for the contig
reference (G) and the SNP allele (A) ultimately produce the same amino acid (Glu); this is not
altogether surprising, with the SNP being in the wobble position of the codon, where there is
often redundancy in the genetic code. Additional information on human SNPs can be found in
Chapter 15.

Starting again from the Abstract view shown in Figure 2.3, protein sequences from RefSeq
that have been linked to this abstract can be found by clicking on the Protein (RefSeq) link
found in the Related information section on the right-hand side of the page, producing the
view shown in Figure 2.7. Note that all but one of the entries is marked as “predicted”; the final

Figure 2.7 Entries in the RefSeq protein database corresponding to the original Srour et al. (2010) entry in Figure 2.3. Entries can be
accessed and examined by clicking on any of the accession numbers. See text for details.
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Figure 2.8 The RefSeq entry for the netrin receptor, the protein product of the human DCC gene. The FASTA link at the top of the entry
provides quick access to the protein sequence in FASTA format, while the Graphics link provides access to a graphical view of all of the
individual elements captured within the entry’s feature table (see Figure 2.9). See text for details.

entry in the list has an accession number beginning with NP, indicating that it contains an
experimentally determined or verified sequence (see Box 1.2). Clicking on the first line of that
entry (number 6) takes the user to the view shown in Figure 2.8, the RefSeq entry for the netrin
receptor, the protein product of the DCC gene. The feature table – the section of the GenBank
entry listing the location and characteristics of each of the documented biological features
found within this protein sequence, such as post-translational modifications, recognizable
repeat units, secondary structural regions, and clinically relevant variation – is particularly
long in this case. This makes it difficult to determine the relative orientation of the features
to one another and may lead the user to miss important interactions or relationships between
biological features. Fortunately, a viewer that provides a bird’s eye view of the elements found
within the feature table is available by clicking on the Graphics link at the top of the entry,
producing the more accessible display shown in Figure 2.9. Zoom controls are provided, and



Integrated Information Retrieval: The Entrez System 31

Figure 2.9 The same RefSeq entry for the netrin receptor shown in Figure 2.8, now rendered in graphical format. The user can learn more
about individual elements displayed in this view by simply hovering the cursor over any of the elements in the display; one such example
is shown in the pop-up box at the bottom right, for the phosphorylation site at position 1267 of the sequence. Zoom and navigational
controls are at the top of the view window, allowing the user to understand this gene within its broader genomic context.

hovering over any of the elements in the display produces a pop-up containing the specific
information for that feature from the GenBank entry.

From here, the user can also enter the structural realm by examining the protein structures
that are available through the Discovery Column. Clicking on the See all 9 structures link
takes the user to the view shown in Figure 2.10, listing structural entries related to the netrin
receptor. The second entry is for the crystal structure of a fragment of netrin-1 complexed with
the DCC receptor (PDB:4URT; Finci et al. 2014), and clicking on the title of that entry takes the
user to the structure summary page shown in Figure 2.11. Starting on the right, the Interac-
tions window shows the relationships between the individual elements in this biological unit,
here consisting of the netrin-1 protein (circle A), the DCC receptor (circle B), and five different
chemical entities (diamonds 1–5). The three-dimensional structure is shown in the left panel,
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Figure 2.10 Protein structures associated with the RefSeq entry for the human netrin receptor shown in Figures 2.8 and 2.9. The description
of each structure is hyperlinked, allowing the user to access the structure summary page for that entry (see Figure 2.11). Individual links
below each entry allow quick access to related structures and proteins, information on conserved domains, and the iCn3D viewer.

and the structure can be further interrogated by clicking on the square with the diagonal
arrow in the bottom left of that panel. This action will launch iCn3D (for “I see in three-D”),
a web-based viewer that allows the structure to be rotated, provides coloring and rendering
options to enhance visualization, and provides a wide variety of additional options; the reader
is referred to the iCn3D online documentation for specifics. In the upper right of the 4URT
structure summary page is a link to similar structures, as determined by VAST+. Clicking on
the VAST+ link produces the output shown in Figure 2.12, here showing the first 10 of 256
structures deemed to have similar biological units to the query (4URT); the table shown here
is sorted by RMSD of all aligned residues (in Å), from smallest to largest.
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Figure 2.11 The structure summary page for pdb:4URT, the crystal structure of a fragment of netrin-1 complexed with the DCC receptor
(Finci et al. 2014). The entry shows header information from the corresponding Molecular Modeling Database (MMDB) entry, a link to the
paper reporting this structure, and the methodology used to determine this structure (here, X-ray diffraction with a resolution of 3.1 Å).
See text for details.

Medical Databases

Although the focus of many investigators is on sequence-based data, database cataloging and
organizing sequence information are not the only kinds of databases useful to the biomedical
research community. An excellent example of such a database that is tremendously useful
in genomics is called Online Mendelian Inheritance in Man (OMIM), the electronic version
of the venerable catalog of human genes and genetic disorders originally founded by Victor
McKusick and first published in 1966 (McKusick 1966, 1998; Amberger et al. 2014). OMIM,
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Figure 2.12 A list of structures deemed similar to pdb:4URT using VAST+. The table is sorted by the root-mean-square deviation of all
aligned residues (in Å), from smallest to largest. Details on each individual structure in the list can be found by clicking on its Protein Data
Bank (PDB) ID number.

which is authored and maintained at The Johns Hopkins University School of Medicine,
provides concise textual information from the published literature on most human conditions
having a genetic basis, as well as pictures illustrating the condition or disorder (where appro-
priate), full citation information, and links to a number of useful external resources, some
of which will be described below. As will become obvious through the following example, a
basic knowledge of OMIM should be part of the armamentarium of physician-scientists with
an interest in the clinical aspects of genetic disorders.

OMIM has a defined numbering system in which each entry is assigned a unique number – a
“MIM number” – that is similar to an accession number, with certain positions within that
number indicating information about the genetic disorder itself. The first digit represents
the mode of inheritance of the disorder: 1, 2, and 6 stand for autosomal loci or phenotypes,
3 for X-linked loci or phenotype, 4 for Y-linked loci or phenotype, and 5 for mitochondrial
loci or phenotypes. An asterisk (*) preceding a MIM number indicates a gene, a hash sign (#)
indicates an entry describing a phenotype, a plus sign (+) indicates that the entry describes
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Figure 2.13 Online Mendelian Inheritance in Man (OMIM) entries related to the DCC gene. The hash sign (#) preceding the first entry
indicates that it is an entry describing a phenotype – here, mirror movements. The second entry is preceded by an asterisk (*), indicating
that it is a gene entry – here, for the DCC gene.

a gene of known sequence and phenotype, and a percent sign (%) describes a confirmed
Mendelian phenotype or locus for which the underlying molecular basis is unknown. If no
Mendelian basis has been clearly established for a particular entry, no symbol precedes the
MIM number.

Here, we will continue the Entrez example from the previous section, following the OMIM
(cited) link found in the Discovery Column shown in Figure 2.3. An intermediate landing page
will then appear listing two entries, one for the DCC gene, the other for a phenotype entry
describing mirror movements (Figure 2.13). Clicking on the second entry leads the user to the
OMIM page for the DCC gene shown in Figure 2.14, with the Text section of the entry providing
a comprehensive overview of seminal details regarding the identification of the gene, its struc-
ture, relevant biochemical features, mapping information, an overview of the gene’s function
and molecular genetics, and studies involving animal models. For individuals starting work on
a new gene or genetic disorder, this expertly curated section of the OMIM entry should be con-
sidered “required reading,” as it presents the most important aspects of any given gene, with
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Figure 2.14 The Online Mendelian Inheritance in Man (OMIM) entry for the DCC gene. Each entry in OMIM includes information such as
the gene symbol, alternative names for the disease, a description of the disease, a clinical synopsis, and references. See text for details.

links to the original studies cited within the narrative embedded throughout. A particularly
useful feature is the list of allelic variants (Figure 2.15); a short description is given after each
allelic variant of the clinical or biochemical outcome of that particular mutation. At the time
of this writing, there are over 5200 OMIM entries containing at least one allelic variant that
either causes or is associated with a discrete phenotype in humans. Note that the allelic vari-
ants shown in Figure 2.15 produce significantly different clinical outcomes – two different
types of cancer as well as the motor disorder used throughout this example – an interesting
case where different mutations in the same gene lead to distinct genetic disorders.

The studies leading to these and similar observations described in a typical entry often
provide the foundation for clinical trials aimed at translating this knowledge into new
prevention and treatment strategies. NIH’s central information source for clinical trials, aptly
named ClinicalTrials.gov, contains data on both publicly and privately funded clinical trials

http://ClinicalTrials.gov
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Figure 2.15 An example of a list of allelic variants that can be found through Online Mendelian Inheritance in Man (OMIM). The figure
shows three of the four allelic variants for the DCC gene. Two of the documented variants lead to cancers of the digestive tract, while
two are associated with a movement disorder. The description under each allelic variant provides information specific to that particular
mutation.

being conducted worldwide. Figure 2.16 shows the first eight of more than 4600 clinical trials
actively recruiting patients with colorectal cancer at the time of this writing, and clicking
on the name of a protocol will bring the user to a page providing information on the study,
including the principal investigator’s name and contact information. Clicking the On Map tab
at the top of the page produces a clickable map of the world showing how many clinical trials
are being conducted in each region or country (Figure 2.17); this view is useful in identifying
trials that are geographically close to a potential study subject’s home. While we, as scientists,
tend to focus on the types of information discussed throughout the rest of this chapter, the
clinical trials site is, unarguably, the most important of the sites covered in this chapter, as
it provides a means through which patients with a given genetic or metabolic disorder can
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Figure 2.16 The ClinicalTrials.gov page showing all actively recruiting clinical trials relating to colorectal neoplasms. Information on each
trial, including the principal investigator of the trial and qualification criteria for participating in the trial, can be found by clicking on the
name of the trial.

receive the latest, cutting-edge treatment – treatment that may make a substantial difference
to their quality of life.

Organismal Sequence Databases Beyond NCBI

Although it may appear from this discussion that NCBI is the center of the sequence uni-
verse, many specialized genomic databases throughout the world serve specific groups in the
scientific community. Often, these databases provide additional information not available else-
where, such as phenotypes, experimental conditions, strain crosses, and map features. These
data are of great importance to these communities, not only because they influence experimen-
tal design and interpretation of experimental results but also because the kinds of data they
contain do not always fit neatly within the confines of the NCBI data model. Development of
specialized databases necessarily ensued (and continues), and these databases are intended
to be used as an important adjunct to GenBank and similar global databases. It is impossible

http://clinicaltrials.gov
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Figure 2.17 A clickable map showing where actively recruiting clinical trials relating to colorectal neoplasms are being conducted. This
map-based view of the information presented in Figure 2.15 is useful in identifying trials that are within a reasonable distance of a potential
study participant’s home.

to discuss the wide variety of such value-added databases here but, to emphasize the sheer
number of such databases that exist, the journal Nucleic Acids Research devotes its first issue
every year to papers describing these databases (Galperin et al. 2017).

An excellent representative example of a specialized organismal database is the Mouse
Genome Database (MGD; Bult et al. 2016). Housed at the Jackson Laboratory in Bar Har-
bor, ME, the MGD provides a curated, comprehensive knowledgebase on the laboratory
mouse and is an integral part of its overall Mouse Genome Informatics (MGI) resource.
The MGD provides information on genes, genetic markers, mutant alleles and phenotypes,
and homologies to other organisms, as well as extensive linkage, cytogenetic, genetic, and
physical mapping data. A cross-section of these data is shown in Figure 2.18, providing
information on the Dcc gene in mouse, the ortholog to the human DCC gene from the
examples discussed earlier in this chapter. This page can be accessed either by directly
searching for the gene name or, in this case, by following links found within the Animal
Model section of the OMIM entry for DCC discussing seminal discoveries made using
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Figure 2.18 The Mouse Genome Informatics (MGI) entry for the Dcc gene in mouse. The entry provides information on the ortholog to the
human DCC gene, including data on mutant alleles and phenotypes, mapping data, single-nucleotide polymorphisms, and expression data.
In the Mutations, Alleles, and Phenotypes section, the phenotype overview uses blue squares to indicate which phenotypes are due to
mutations in the Dcc gene. In the Expression section, blue squares indicate expression in wild-type mice in the designated tissues, organs,
or systems.

mouse models that, in turn, informed our understanding of the effect of DCC mutations
in humans.

Another long-standing resource devoted to a specific organism is the Zebrafish Model
Organism Database, or Zebrafish Information Network (ZFIN) (Howe et al. 2012) – a
particularly attractive animal model given the experimental tractability of zebrafish in
studying a wide variety of questions focused on vertebrate development, regeneration,
inflammation, infectious disease, and drug discovery, to name a few. ZFIN provides a very
simple search interface that allows free-text searches using any term. Using DCC once
again as our search term brings the user to the summary page for the zebrafish dcc gene
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Figure 2.19 The Zebrafish Information Network (ZFIN) gene page for the dcc gene in zebrafish. This entry provides information on the
ortholog to the human DCC gene. See text for details.

(Figure 2.19), providing information on zebrafish mutants, sequence targeting reagents,
transgenic constructs, orthology to other organisms, data on protein domains found within
the Dcc protein product, and annotated gene expression and phenotype data derived from
the literature or from direct submissions by members of the zebrafish community. Here,
by following the link to the 19 figures in the Gene Expression section, one can examine
full-size images illustrating expression patterns for dcc under various experimental conditions
(Figure 2.20).

While MGD and ZFIN are excellent examples of model organism databases, every major
model organism community maintains such a resource. These groups also collaborate to
develop central portals to ease information retrieval across many of these resources through
the Alliance of Genome Resources.
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Figure 2.20 An example of gene expression data available through the Zebrafish Information Network (ZFIN), here showing the expression
patterns for the zebrafish dcc gene under various experimental conditions. The inset displays a full-size image of data from Gao et al. (2012),
showing the expression pattern for dcc in (panel A) and the co-expression of dcc and the Lim homeobox 5 gene (lhx5; panel B).

Summary

As alluded to in the introduction to this chapter, the information space available to investi-
gators will continue to expand at breakneck speed, with the size of GenBank alone doubling
every year. Although the sheer magnitude of data can present a conundrum to the inexpe-
rienced user, mastery of the techniques covered in this chapter will allow researchers in all
biological disciplines to make the best use of these data. The movement of modern science to
“big data” approaches underscores the idea that both laboratory and computationally based
strategies will be necessary in carrying out cutting-edge research. In the same way that inves-
tigators are trained in, for example, basic biochemistry and molecular biology methodologies,
a basic understanding of bioinformatic techniques as part of the biologist’s arsenal will be
indispensable in the future. As is undoubtedly apparent at this point, there is no substitute
for placing one’s hands on the computer keyboard to learn how to search and use genomic
sequence data effectively. Readers are strongly encouraged to take advantage of the resources
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presented here, to grow in confidence and capability by working with the available tools, and
to begin to apply bioinformatic methods and strategies toward advancing their own research
interests.

Internet Resources

Alliance of Genome Resources www.alliancegenome.org
Basic Local Alignment Search Tool (BLAST) ncbi.nlm.nih.gov/BLAST
ClinicalTrials.gov clinicaltrials.gov
DNA Data Bank of Japan (DDBJ) www.ddbj.nig.ac.jp
European Molecular Biology Laboratory–European
Bioinformatics Institute (EMBL-EBI)

www.ebi.ac.uk

GenBank www.ncbi.nlm.nih.gov/genbank
iCn3D www.ncbi.nlm.nih.gov/Structure/

icn3d/docs/icn3d_about.html
Mouse Genome Database (MGD) informatics.jax.org
Online Mendelian Inheritance in Man (OMIM) omim.org
Protein Data Bank (PDB) www.rcsb.org/pdb
RefSeq ncbi.nlm.nih.gov/refseq
Single Nucleotide Polymorphism Database (dbSNP) www.ncbi.nlm.nih.gov/SNP
Vector Alignment Search Tool (VAST) www.ncbi.nlm.nih.gov/Structure/VAST
Zebrafish Information Network (ZFIN) zfin.org

Further Reading

Baxevanis, A.D. (2012). Searching Online Mendelian Inheritance in Man (OMIM) for information
on genetic loci involved in human disease. Curr. Protoc. Hum. Genet. Chapter 9, Unit 9.13.1–10.
A protocol-driven description of the basic methodology for formulating OMIM searches and a
discussion of the types of information available through OMIM, including descriptions of
clinical manifestations resulting from genetic abnormalities.

Galperin, M.Y., Fernández-Suárez, X.M., and Rigden, D.J. (2017). The 24th annual Nucleic Acids
Research database issue: a look back and upcoming changes. Nucleic Acids Res. 45: D1–D11. A
curated, annual review of specialized databases of interest and importance to the biomedical
research community.
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Assessing Pairwise Sequence Similarity: BLAST and FASTA
Andreas D. Baxevanis

Introduction

One of the cornerstones of bioinformatics is the process of comparing nucleotide or protein
sequences in order to deduce how the sequences are related to one another. Through this
type of comparative analysis, one can draw inferences regarding whether two proteins have
similar function, contain similar structural motifs, or have a discernible evolutionary rela-
tionship. This chapter focuses on pairwise alignments, where two sequences are directly com-
pared, position by position, to deduce these relationships. Another approach, multiple sequence
alignment, is used to identify important features common to three or more sequences; this
approach, which is often used to predict secondary structure and functional motifs and to iden-
tify conserved positions and residues important to both structure and function, is discussed in
Chapter 8.

Before entering into any discussion of how relatedness between nucleotide or protein
sequences is assessed, two important terms need to be defined: similarity and homology. These
terms tend to be used interchangeably when, in fact, they mean quite different things and
imply quite different biological relationships.

Similarity is a quantitative measure of how related two sequences are to one another. Similar-
ity is always based on an observable – usually pairwise alignment of two sequences. When two
sequences are aligned, one can simply count how many residues line up with one another, and
this raw count can then be converted to the most commonly used measure of similarity: per-
cent identity. Measures of similarity are used to quantify changes that occur as two sequences
diverge over evolutionary time, considering the effect of substitutions, insertions, or deletions.
They can also be used to identify residues that are crucial for maintaining a protein’s structure
or function. In short, a high percentage of sequence similarity may imply a common evolu-
tionary history or a possible commonality in biological function.

In contrast, homology implies an evolutionary relationship and is the putative conclusion
reached based on examining the optimal alignment between two sequences and assessing their
similarity. Genes (and their protein products) either are or are not homologous – homology is
not measured in degrees or percentages. The concept of homology and the term homolog may
apply to two different types of relationships, as follows.

• If genes are separated by the event of speciation, they are termed orthologous. Orthologs are
direct descendants of a sequence in a common ancestor, and they may have similar domain
structure, three-dimensional structure, and biological function. Put simply, orthologs can
be thought of as the same gene (or protein) in different species.

• If genes within the same species are separated by a genetic duplication event, they are termed
paralogous. The examination of paralogs provides insight into how pre-existing genes may
have been adapted or co-opted toward providing a new or modified function within a given
species.

Bioinformatics, Fourth Edition. Edited by Andreas D. Baxevanis, Gary D. Bader, and David S. Wishart.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/baxevanis/Bioinformatics_4e
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The concepts of homology, orthology, and paralogy and methods for determining the
evolutionary relationships between sequences are covered in much greater detail in
Chapter 9.

Global Versus Local Sequence Alignments

The methods used to assess similarity (and, in turn, infer homology) can be grouped into two
types: global sequence alignment and local sequence alignment. Global sequence alignment
methods take two sequences and try to come up with the best alignment of the two sequences
across their entire length. In general, global sequence alignment methods are most applicable
to highly similar sequences of approximately the same length. Although these methods can
be applied to any two sequences, as the degree of sequence similarity declines, they will tend
to miss important biological relationships between sequences that may not be apparent when
considering the sequences in their entirety.

Most biologists instead depend on the second class of alignment algorithm – local sequence
alignments. In these methods, the sequence comparison is intended to find the most similar
regions within the two sequences being aligned, rather than finding (or forcing) an alignment
over the entire length of the two sequences being compared. As such, and by focusing on sub-
sequences of high similarity that are more easily alignable, determining putative biological
relationships between the two sequences being compared becomes a much easier proposition.
This makes local alignment methods one of the approaches of choice for biological discovery.
Often times, these methods will return more than one result for the two sequences being com-
pared, as there may be more than one domain or subsequence common to the sequences being
analyzed. Local sequence alignment methods are best for sequences that share some degree of
similarity or for sequences of different lengths, and the ensuing discussion will focus mostly
on these methods.

Scoring Matrices

Whether one uses a global or local alignment method, once the two sequences under consid-
eration are aligned, how does one actually measure how good the alignment is between “se-
quence A” and “sequence B”? The first step toward answering that question involves numerical
methods that consider not just the position-by-position overlap between two sequences but
also the nature and characteristics of the residues or nucleotides being aligned.

Much effort has been devoted to the development of constructs called scoring matrices. These
matrices are empirical weighting schemes that appear in all analyses involving the comparison
of two or more sequences, so it is important to understand how these matrices are constructed
and how to choose between matrices. The choice of matrix can (and does) strongly influence
the results obtained with most sequence comparison methods.

The most commonly used protein scoring matrices consider the following three major bio-
logical factors.

1) Conservation. The matrices need to consider absolute conservation between protein
sequences and also need to provide a way to assess conservative amino acid substitutions.
The numbers within the scoring matrix provide a way of representing what amino acid
residues are capable of substituting for other residues while not adversely affecting the
function of the native protein. From a physicochemical standpoint, characteristics such as
residue charge, size, and hydrophobicity (among others) need to be similar.
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Figure 3.1 The BLOSUM62 scoring matrix (Henikoff and Henikoff 1992). BLOSUM62 is the most widely
used scoring matrix for protein analysis and provides best coverage for general-use cases. Standard
single-letter codes to the left of each row and at the top of each column specify each of the 20 amino
acids. The ambiguity codes B (for asparagine or aspartic acid; Asx) and Z (for glutamine or glutamic acid;
Glx) also appear, as well as an X (denoting any amino acid). Note that the matrix is a mirror image of
itself with respect to the diagonal. See text for details.

2) Frequency. In the same way that amino acid residues cannot freely substitute for one
another, the matrices also need to reflect how often particular residues occur among the
entire constellation of proteins. Residues that are rare are given more weight than residues
that are more common.

3) Evolution. By design, scoring matrices implicitly represent evolutionary patterns, and
matrices can be adjusted to favor the detection of closely related or more distantly related
proteins. The choice of matrices for different evolutionary distances is discussed below.

There are also subtle nuances that go into constructing a scoring matrix, and these are
described in an excellent review by Henikoff and Henikoff (2000).

How these various factors are actually represented within a scoring matrix can be best
demonstrated by deconstructing the most commonly used scoring matrix, called BLOSUM62
(Figure 3.1). Each of the 20 amino acids (as well as the standard ambiguity codes) is shown
along the top and down the side of a matrix. The scores in the matrix actually represent the
logarithm of an odds ratio (Box 3.1) that considers how often a particular residue is observed,
in nature, to replace another residue. The odds ratio also considers how often a particular
residue would be replaced by another if replacements occurred in a random fashion (purely
by chance). Given this, a positive score indicates two residues that are seen to replace each
other more often than by chance, and a negative score indicates two residues that are seen
to replace each other less frequently than would be expected by chance. Put more simply,
frequently observed substitutions have positive scores and infrequently observed substitutions
have negative scores.
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Box 3.1 Scoring Matrices and the Log Odds Ratio

Protein scoring matrices are derived from the observed replacement frequencies of amino
acids for one another. Based on these probabilities, the scoring matrices are generated by
applying the following equation:

Si,j = log [(qi,j)∕(pi pj)]

where pi is the probability with which residue i occurs among all proteins and pj is the
probability with which residue j occurs among all proteins. The quantity qi,j represents
how often the two amino acids i and j are seen to align with one another in multiple
sequence alignments of protein families or in sequences that are known to have a biolog-
ical relationship. Therefore, the log odds ratio Si,j (or “lod score”) represents the ratio of
observed vs. random frequency for the substitution of residue i by residue j. For commonly
observed substitutions, Si,j will be greater than zero. For substitutions that occur less fre-
quently than would be expected by chance, Si,j will be less than zero. If the observed
frequency and the random frequency are the same, Si,j will be zero.

To explain the meaning of the numbers in the matrix more fully, imagine that two sequences
have been aligned with one another, and it is now necessary to assess how well a residue in
sequence A matches to a residue in sequence B at any given position of the alignment. Using
the scoring matrix in Figure 3.1 as our starting point,

• The values on the diagonal represent the score that would be conferred for an exact match
at a given position, and these numbers are always positive. So, if a tryptophan residue (W)
in sequence A is aligned with a tryptophan residue in sequence B, this match would be
conferred 11 points, the value where the row markedW intersects the column markedW. Also
notice that 11 is the highest value on the diagonal, so the high number of points assigned
to a W:W alignment reflects not only the exact match but also the fact that tryptophan is
the rarest of amino acids found in proteins. Put otherwise, the W:W alignment is much less
likely to occur in general and, in turn, is more likely to be correct.

• Moving off the diagonal, consider the case of a conservative substitution: a tyrosine (Y) for a
tryptophan. The intersection of the row marked Y with the column marked W yields a value
of 2. The positive value implies that the substitution is observed to occur more often in an
alignment than it would by chance, but the replacement is not as good as if the tryptophan
residue had been preserved (2< 11) or if the tyrosine residue had been preserved (2< 7).

• Finally, consider the case of a non-conservative substitution: a valine (V) for a tryptophan.
The intersection of the row marked V with the column marked W yields a value of −3. The
negative value implies that the substitution is not observed to occur frequently and may arise
more often than not by chance.

Although the meaning of the numbers and relationships within the scoring matrices seems
straightforward enough, some value judgments need to be made as to what actually constitutes
a conservative or non-conservative substitution and how to assess the frequency of either of
those events in nature. This is the major factor that differentiates scoring matrices from one
another. To help the reader make an intelligent choice, a discussion of the approach, advan-
tages, and disadvantages of the various available matrices is in order.

PAM Matrices

The first useful matrices for protein sequence analysis were developed by Dayhoff et al. (1978).
The basis for these matrices was the examination of substitution patterns in a group of pro-
teins that shared more than 85% sequence identity. The analysis yielded 1572 changes in the
71 groups of closely related proteins that were examined. Using these results, tables were con-
structed that indicated the frequency of a given amino acid substituting for another amino acid
at a given position.
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As the sequences examined shared such a high degree of similarity, the resulting frequencies
represent what would be expected over short evolutionary distances. Further, given the close
evolutionary relationship between these proteins, one would expect that the observed muta-
tions would not significantly change the function of the protein. This is termed acceptance:
changes that can be accommodated through natural selection and result in a protein with the
same or similar function as the original. As individual point mutations were considered, the
unit of measure resulting from this analysis is the point accepted mutation or PAM unit. One
PAM unit corresponds to one amino acid change per 100 residues, or roughly 1% divergence.

Several assumptions went into the construction of the PAM matrices. One of the most impor-
tant assumptions was that the replacement of an amino acid is independent of previous muta-
tions at the same position. Based on this assumption, the original matrix was extrapolated to
come up with predicted substitution frequencies at longer evolutionary distances. For example,
the PAM1 matrix could be multiplied by itself 100 times to yield the PAM100 matrix, which
would represent what one would expect if there were 100 amino acid changes per 100 residues.
(This does not imply that each of the 100 residues has changed, only that there were 100
total changes; some positions could conceivably change and then change back to the origi-
nal residue.) As the matrices representing longer evolutionary distances are an extrapolation
of the original matrix derived from the 1572 observed changes described above, it is important
to remember that these matrices are, indeed, predictions and are not based on direct observa-
tion. Any errors in the original matrix would be exaggerated in the extrapolated matrices, as
the mere act of multiplication would magnify these errors significantly.

There are additional assumptions that the reader should be aware of regarding the construc-
tion of these PAM matrices. All sites have been assumed to be equally mutable, replacement
has been assumed to be independent of surrounding residues, and there is no consideration
of conserved blocks or motifs. The sequences being compared here are of average composition
based on the small number of protein sequences available in 1978, so there is a bias toward
small, globular proteins, even though efforts have been made to bring in additional sequence
data over time (Gonnet et al. 1992; Jones et al. 1992). Finally, there is an implicit assump-
tion that the forces responsible for sequence evolution over shorter time spans are the same
as those for longer evolutionary time spans. Although there are significant drawbacks to the
PAM matrices, it is important to remember that, given the information available in 1978, the
development of these matrices marked an important advance in our ability to quantify the
relationships between sequences. As these matrices are still available for use with numerous
bioinformatic tools, the reader should keep these potential drawbacks in mind and use them
judiciously.

BLOSUM Matrices

In 1992, Steve and Jorja Henikoff took a slightly different approach to the one described above,
one that addressed many of the drawbacks of the PAM matrices. The groundwork for the devel-
opment of new matrices was a study aimed at identifying conserved motifs within families of
proteins (Henikoff and Henikoff 1991, 1992). This study led to the creation of the BLOCKS
database, which used the concept of a block to identify a family of proteins. The idea of a block
is derived from the more familiar notion of a motif, which usually refers to a conserved stretch
of amino acids that confers a specific function or structure to a protein. When these individual
motifs from proteins in the same family can be aligned without introducing a gap, the result
is a block, with the term block referring to the alignment, not the individual sequences them-
selves. Obviously, any given protein can contain one or more blocks, corresponding to each
of its structural or functional motifs. With these protein blocks in hand, it was then possible
to look for substitution patterns only in the most conserved regions of a protein, the regions
that (presumably) were least prone to change. Two thousand blocks representing more than
500 groups of related proteins were examined and, based on the substitution patterns in those
conserved blocks, blocks substitution matrices (or BLOSUMs, for short) were generated.
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Given the pace of scientific discovery, many more protein sequences were available in 1992
than in 1978, providing for a more robust base set of data from which to derive these new
matrices. However, the most important distinction between the BLOSUM and PAM matrices
is that the BLOSUM matrices are directly calculated across varying evolutionary distances and
are not extrapolated, providing a more accurate view of substitution patterns (and, in turn,
evolutionary forces) at those various distances. The fact that the BLOSUM matrices are calcu-
lated directly based only on conserved regions makes these matrices more sensitive to detecting
structural or functional substitutions; therefore, the BLOSUM matrices perform demonstrably
better than the PAM matrices for local similarity searches (Henikoff and Henikoff 1993).

Returning to the point of directly deriving the various matrices, each BLOSUM matrix is
assigned a number (BLOSUMn), and that number represents the conservation level of the
sequences that were used to derive that particular matrix. For example, the BLOSUM62 matrix
is calculated from sequences sharing no more than 62% identity; sequences with more than
62% identity are clustered and their contribution is weighted to 1. The clustering reduces the
contribution of closely related sequences, meaning that there is less bias toward substitutions
that occur (and may be over-represented) in the most closely related members of a family.
Reducing the value of n yields more distantly related sequences.

Which Matrices Should be Used When?

Although most bioinformatic software will provide users with a default choice of a scoring
matrix, the default may not necessarily be the most appropriate choice for the biological ques-
tion being asked. Table 3.1 is intended to provide some guidance as to the proper selection
of scoring matrix, based on studies that have examined the effectiveness of these matrices to
detect known biological relationships (Altschul 1991; Henikoff and Henikoff 1993; Wheeler
2003). Note that the numbering schemes for the two matrix families move in opposite direc-
tions: more divergent sequences are found using higher numbered PAM matrices and lower
numbered BLOSUM matrices. The following equivalencies are useful in relating PAM matrices
to BLOSUM matrices (Wheeler 2003):

• PAM250 is equivalent to BLOSUM45
• PAM160 is equivalent to BLOSUM62
• PAM120 is equivalent to BLOSUM80.

In addition to the protein matrices discussed here, there are numerous specialized matrices
that are either specific to a particular species, concentrate on particular classes of proteins (e.g.
transmembrane proteins), focus on structural substitutions, or use hydrophobicity measures
in attempting to assess similarity (see Wheeler 2003). Given this landscape, the most impor-
tant take-home message for the reader is that no single matrix is the complete answer for all
sequence comparisons. A thorough understanding of what each matrix represents is critical
to performing proper sequence-based analyses.

Table 3.1 Selecting an appropriate scoring matrix.

Matrix Best use Similarity

PAM40 Short alignments that are highly similar 70–90%
PAM160 Detecting members of a protein family 50–60%
PAM250 Longer alignments of more divergent sequences ∼30%
BLOSUM90 Short alignments that are highly similar 70–90%
BLOSUM80 Detecting members of a protein family 50–60%
BLOSUM62 Most effective in finding all potential similarities 30–40%
BLOSUM30 Longer alignments of more divergent sequences <30%

The Similarity column gives the range of similarities that the matrix is able to best detect (Wheeler 2003).
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Nucleotide Scoring Matrices

At the nucleotide level, the scoring landscape is much simpler. More often than not, the matri-
ces used here simply count matches and mismatches. These matrices also assume that each
of the possible four nucleotide bases occurs with equal frequency (25% of the time). In some
cases, ambiguities or chemical similarities between the bases are also considered; this type
of matrix is shown in Figure 3.2. The basic differences in the construction of nucleotide and
protein scoring matrices should make obvious the fact that protein-based searches are always
more powerful than nucleotide-based searches of coding DNA sequences in determining simi-
larity and inferring homology, given the inherently higher information content of the 20-letter
amino acid alphabet versus the four-letter nucleotide alphabet.

Gaps and Gap Penalties

Often times, gaps are introduced to improve the alignment between two nucleotide or protein
sequences. These gaps compensate for insertions and deletions between the sequences being
studied so, in essence, these gaps represent biological events. As such, the number of gaps
introduced into a pairwise sequence alignment needs to be kept to a reasonable number so as
to not yield a biologically implausible scenario.

The scoring of gaps in pairwise sequence alignments is different from scoring approaches
discussed to this point, as no comparison between characters is possible – one sequence has a
residue at some position and the other sequence has nothing. The most widely used method
for scoring gaps involves a quantity known as the affine gap penalty. Here, a fixed deduction
is made for introducing the gap; an additional deduction is made that is proportional to the
length of the gap. The formula for the affine gap penalty is G + Ln, where G is the gap-opening
penalty (the cost of creating the gap), L is the gap-extension penalty, and n is the length of the
gap, with G > L. This last condition is important: given that the gap-opening penalty is larger
than the gap-extension penalty, lengthening existing gaps would be favored over creating new
ones. The values of G and L can be adjusted manually in most programs to make the insertion

Figure 3.2 A nucleotide scoring table. The scoring for the four nucleotide bases is shown in the upper
left of the figure, with the remaining one-letter codes specifying the IUPAC/UBMB codes for ambiguities
or chemical similarities. Note that the matrix is a mirror image of itself with respect to the diagonal.
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of gaps either more or less permissive, but most methods automatically adjust both G and L to
the most appropriate values for the scoring matrix being used.

The other major type of gap penalty used is a non-affine (or linear) gap penalty. Here, there
is no cost for opening the gap; a simple, fixed mismatch penalty is assessed for each position in
the gap. It is thought that affine penalties better represent the biology underlying the sequence
alignments, as affine gap penalties take into account the fact that most conserved regions are
ungapped and that a single mutational event could insert or delete many more than just one
residue. In practice, use of the affine gap penalty better enables the detection of more distant
homologs.

BLAST

By far the most widely used technique for detecting similarity between sequences of interest
is the Basic Local Alignment Search Tool, or BLAST (Altschul et al. 1991). The widespread
adoption of BLAST as a cornerstone technique in sequence analysis lies in its ability to detect
similarities between nucleotide and protein sequences accurately and quickly, without sacri-
ficing sensitivity. The original, standard family of BLAST programs is shown in Table 3.2, but
in the time since its introduction many variations of the original BLAST program have been
developed to address specific needs in the realm of pairwise sequence comparison, several of
which will be discussed in this chapter.

The Algorithm

BLAST is a local alignment method that is capable of detecting not only the best region of local
alignment between a query sequence and its target, but also whether there are other plausi-
ble alignments between the query and the target. To find these regions of local alignment in a
computationally efficient fashion, the method begins by seeding the search with a small sub-
set of letters from the query sequence, known as the query word. Using the example shown
in Figure 3.3, consider a search where the query word of default length 3 is RDQ. (In prac-
tice, all words of length 3 are considered, so, using the sequence in Figure 3.3, the first query
word would be TLS, followed by LSH, and so on across the sequence.) BLAST now needs to
find not only the word RDQ in all of the sequences in the target database but also related
words where conservative substitutions have been introduced, as those matches may also be
biologically informative and relevant. To determine which words are related to RDQ, scoring
matrices are used to develop what is called the neighborhood. The center panel of Figure 3.3
shows the collection of words that are related to the original query word, in descending score
order; the scores here are calculated using a BLOSUM62 scoring matrix (Figure 3.1). Obvi-
ously, some cut-off must be applied so that further consideration is only given to words that
are indeed closely related to the original query word. The parameter that controls this cut-off
is the neighborhood score threshold (T). The value of T is determined automatically by the
BLAST program but can be adjusted by the user. Increasing T would push the search toward
more exact matches and would speed up the search, but could lead to overlooking possibly
interesting biological relationships. Decreasing T allows for the detection of more distant rela-
tionships between sequences. Here, only words with T ≥ 11 move to the next step.

Table 3.2 BLAST algorithms.

Program Query Database

BLASTN Nucleotide Nucleotide
BLASTP Protein Protein
BLASTX Nucleotide, six-frame translation Protein
TBLASTN Protein Nucleotide, six-frame translation
TBLASTX Nucleotide, six-frame translation Nucleotide, six-frame translation
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Query Word (W = 3)

Establish neighborhood

Extension using neighborhood
words greater than neighborhood
score threshold (T = 11)

Figure 3.3 The initiation of a BLAST search. The search begins with query words of a given length (here,
three amino acids) being compared against a scoring matrix to determine additional three-letter words
“in the neighborhood” of the original query word. Any occurrences of these neighborhood words in
sequences within the target database are then investigated. See text for details.

Focusing now on the lower panel of Figure 3.3, the original query word (RDQ) has been
aligned with another word from the neighborhood whose score is more than the score thresh-
old of T ≥ 11 (REQ). The BLAST algorithm now attempts to extend this alignment in both
directions, tallying a cumulative score resulting from matches, mismatches, and gaps, until it
constructs a local alignment of maximal length. Determining what the maximal length actually
is can be best explained by considering the graph in Figure 3.4. Here, the number of residues
that have been aligned is plotted against the cumulative score resulting from the alignment.
The left-most point on the graph represents the alignment of the original query word with one
of the words from the neighborhood, again having a value of T = 11 or greater. As the exten-
sion proceeds, as long as exact matches and conservative substitutions outweigh mismatches
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Figure 3.4 BLAST search extension. Length of extension represents the number of characters that
have been aligned in a pairwise sequence comparison. Cumulative score represents the sum of the
position-by-position scores, as determined by the scoring matrix used for the search. T represents the
neighborhood score threshold, S is the minimum score required to return a hit in the BLAST output, and
X is the significance decay. See text for details.
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and gaps, the cumulative score will increase. As soon as the cumulative score breaks the score
threshold S, the alignment is reported in the BLAST output. Simply clearing S does not auto-
matically mean that the alignment is biologically significant, a very important point that will
be addressed later in this discussion.

As the extension continues, at some point, mismatches and gaps will begin to outweigh
the exact matches and conservative substitutions, accruing negative scores from the scoring
matrix. As soon as the curve begins to turn downward, BLAST measures whether the drop-off
exceeds a threshold called X . If the curve decays more than is allowed by the value of X , the
extension is terminated and the alignment is trimmed back to the length corresponding to
the preceding maximum in the curve. The resulting alignment is called a high-scoring seg-
ment pair, or HSP. Given that the BLAST algorithm systematically marches across the query
sequence using all possible query words, it is possible that more than one HSP may be found
for any given sequence pair.

After an HSP is identified, it is important to determine whether the resulting alignment is
actually significant. Using the cumulative score from the alignment, along with a number of
other parameters, a new value called E (for “expect”) is calculated (Box 3.2). For each hit, E
gives the number of expected HSPs having a score of S or more that BLAST would find purely
by chance. Put another way, the value of E provides a measure of whether the reported HSP is
a false positive (see Box 5.4). Lower E values imply greater biological significance.

Box 3.2 The Karlin–Altschul Equation

As one might imagine, assessing the putative biological significance of any given BLAST hit
based simply on raw scores is difficult, since the scores are dependent on the composition
of the query and target sequences, the length of the sequences, the scoring matrix used
to compute the raw scores, and numerous other factors. In one of the most important
papers on the theory of local sequence alignment statistics, Karlin and Altschul (1990)
presented a formula which directly addresses this problem. The formula, which has come
to be known as the Karlin–Altschul equation, uses search-specific parameters to calculate
an expectation value (E). This value represents the number of HSPs that would be expected
purely by chance. The equation and the parameters used to calculate E are as follows:

E = kmNe−𝜆s

where k is a minor constant, m is the number of letters in the query, N is the total number
of letters in the target database, 𝜆 is a constant used to normalize the raw score of the
high-scoring segment pair, with the value of 𝜆 varying depending on the scoring matrix
used; and S is the score of the high-scoring segment pair.

Performing a BLAST Search

While many BLAST servers are available throughout the world, the most widely used portal
for these searches is the BLAST home page at the National Center for Biotechnology Infor-
mation (NCBI; Figure 3.5). The top part of the page provides access to the most frequently
performed types of BLAST searches, summarized in Table 3.2, while the lower part of the page
is devoted to specialized types of BLAST searches. To illustrate the relative ease with which
one can perform a BLAST search, a protein-based search using BLASTP is discussed. Click-
ing on the Protein BLAST box brings users to the BLASTP search page, a portion of which is
shown in Figure 3.6. Obviously, a query sequence that will be used as the basis for comparison
is required. Harking back to the Entrez discussion in Chapter 2, the sequence of the netrin
receptor from Homo sapiens (NP_005206.2) has been pasted into the query sequence box.
Immediately to the right, the user can use the query subrange boxes to specify whether only a
portion of this sequence is to be used; if the whole sequence is to be used, these fields should
be left blank.
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Figure 3.5 The National Center for Biotechnology Information (NCBI) BLAST landing page. Examples of the most commonly used queries
that can be performed using the BLAST interface are discussed in the text.

Moving to the Choose Search Set section of the page, the database to be searched can be
selected using the Database pull-down menu; clicking on the question mark next to the
Database pull-down provides a brief description of each of the available target databases.
Here, the search will be performed against the RefSeq database (see Box 1.2). Directly below,
the Organism box can be used to limit the search results to sequences from individual
organisms or taxa. While not part of this worked example, if the user wanted to limit the
returned results to those from just mouse and rat, using the same type of syntax used in
issuing Entrez searches (see Table 2.1), the user would type Mus musculus [ORGN] AND
Rattus norvegicus [ORGN] in this field; if the user wanted all results except those
from mouse and rat, they would also need to check the Exclude box. As this search will be
performed against RefSeq, one can exclude predicted proteins from the search results by
clicking the “Models (XM/XP)” checkbox. Finally, in the Program Selection section, BLASTP
is selected by default.
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Figure 3.6 The upper portion of the BLASTP query page. The first section in the window is used to specify the sequence of interest, whether
only a portion of that sequence should be used in performing the search (query subrange), which database should be searched, and which
protein-based BLAST algorithm should be used to execute the query. See text for details.

If the user wishes to use the default settings for all algorithm parameters, the search can
be submitted by simply clicking on the blue BLAST button. However, the user can exert finer
control over how the search is performed by changing the items found in the Algorithm param-
eters section. To access these settings, the user must first click on the plus sign next to the words
“Algorithm parameters” to expand this section of the web page, producing the view shown in
Figure 3.7. This part of the query page is where the theory underlying a BLAST search dis-
cussed earlier in this chapter comes into play. In the General Parameters section, the expect
threshold limits returned results to those having an E value lower than the specified value, with
smaller values providing a more stringent cut-off. The word size setting changes the size of the
query word used to initiate the BLAST search, with longer word sizes initiating the search with
longer ungapped alignments. A word size of 3 is recommended for protein searches, as shorter
words increase sensitivity; however, if searching for near-exact matches, a longer word size
can be used, also yielding faster search times.
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Figure 3.7 The lower portion of the BLASTP query page, showing algorithm parameters that the user can adjust to fine-tune the search.
Values that have been changed for the search discussed in the text are highlighted in yellow and marked with a diamond. See text for
details.

In the Scoring Parameters section, the user can select an appropriate scoring matrix (with
the default being BLOSUM62). Changing the matrix automatically changes the gap penalties to
values appropriate for that scoring matrix. As described in the discussion of affine gap penalties
above, the user may change these values manually; increasing the gap costs would result in
pairwise alignments with fewer gaps, where decreasing the values would make the insertion
of gaps more permissive.

In the Filters and Masking section, one should filter to remove low-complexity regions.
Low-complexity regions are defined simply as regions of biased composition (Wootton
and Federhen 1993). These may include homopolymeric runs, short-period repeats, or the
subtle over-representation of several residues in a sequence. The biological role of these
low-complexity regions is not understood; it is thought that they may represent the results of
either DNA replication errors or unequal crossing-over events. It is important to determine
whether sequences of interest contain low-complexity regions; they tend to prove problematic
when performing sequence alignments and can lead to false-positive results, as they are
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generally similar across unrelated proteins. Finally, before issuing the query, be sure to check
the box marked “Show results in a new window.” This leaves the original query window (or
tab) in place, making it easier to go back and refine or change search parameters, as needed.

Understanding the BLAST Output

The first part of the BLASTP results for the query described above is shown in Figure 3.8. The
top part of the figure shows the position of conserved protein domains found by comparing
the query sequence with data found within NCBI’s Conserved Domain Database (CDD). This
is followed by a graphical overview of the BLASTP results, providing a sense of how many
sequences were found to have similarity to the query and how they scored against the query.
Details of the various graphical display features are given in the legend to Figure 3.8. The actual
list of sequences found as a result of this particular BLASTP search – the “hit list” – is shown,
in part, in Figure 3.9. The information included for each hit includes the definition line from

Figure 3.8 Graphical display of BLASTP results. The query sequence is represented by the thick cyan bar labeled “Query,” with the tick
marks indicating residue positions within the query. The thinner bars below the query represent each of the matches (“hits”) detected by
the BLAST algorithm. The colors represent the relative scores for each hit, with the color key for the scores appearing at the top of the box.
The length of each line, as well as its position, represents the region of similarity with the query. Hits connected by a thin line indicate
more than one high-scoring segment pair (HSP) within the same sequence; similarly, a thin vertical bar crossing one of the hits indicates a
break in the overall alignment. Moving the mouse over any of the lines produces a pop-up that shows the identity of that hit. Clicking on
any of the lines takes the user directly to detailed information about that hit (see Figure 3.10).
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Figure 3.9 The BLASTP “hit list.” For each sequence found, the user is presented with the definition line from the hit’s source database entry,
the score value for the best high-scoring segment pair (HSP) alignment, the total of all scores across all HSP alignments, the percentage of
the query covered by the HSPs, and the E value and percent identity for the best HSP alignment. The hyperlinked accession number allows
for direct access to the source database record for that hit. In the E value column, vanishingly low E values are rounded down to zero. For
non-zero E values, exponential notation is used; using the first non-zero value in the figure, 2e-159 should be read as 2× 10−159.

the hit’s source database entry, the score value that is, in turn, used to calculate the E value for
the best HSP alignment, the percent identity for that best HSP alignment, and the hyperlinked
accession number, allowing for direct access to the source database record for that hit. The table
is sorted by E value from lowest to highest, by default; recall that lower values of E represent
better alignments. In the E value column, notice that many of the entries have E-values of 0.0.
This represents a vanishingly low E value that has been rounded down to zero and implies
statistical significance. Note that each entry in the hit list is preceded by a check box; checking
one or more of these boxes lights up the grayed-out options shown in Figure 3.9, allowing
the user to download the selected sequences, view the selected hits graphically, generate a
dendrogram, or construct a multiple sequence alignment on the fly.

Clicking on the name of any of the proteins in the hit list moves the user down the page
to the portion of the output showing the pairwise alignment(s) for that hit (Figure 3.10). The
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Figure 3.10 Detailed information on a representative BLASTP hit. The header provides the identity of the hit, as well as the
score and E value. The percent identity indicates exact matches, whereas the percent “positives” considers both exact matches
and conservative substitutions. The gap figures show how many residues remain unaligned owing to the introduction of gaps.
Gaps are indicated by dashes and low-complexity regions are indicated by grayed-out lower case letters. Note that there is
no header preceding the second alignment; this indicates that this is a second high-scoring segment pair (HSP) within the
same database entry.
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header provides the complete definition line for this particular hit, and each identified HSP
is then shown below the header. In most cases, the user will only see one alignment, but in
the case shown in Figure 3.10 there are two, with the hit having the better score and E value
shown first. The statistics given for each hit include the E value, the number of identities (exact
matches), the number of “positives” (exact matches and conservative substitutions), and the
number of residues that fell into a gapped region. Within the alignments, gaps are indicated
by dashes, while low-complexity regions are indicated by grayed-out lower case letters.

Suggested BLAST Cut-Offs

As was previously alluded to, the listing of a hit in a BLAST report does not automatically mean
that the hit is biologically significant. Over time, and based on both the methodical testing
and the personal experience of many investigators, many guidelines have been put forward as
being appropriate for establishing a boundary that separates meaningful hits from the rest. For
nucleotide-based searches, one should look for E values of 10−6 or less and sequence identities
of 70% or more. For protein-based searches, one should look for hits with E values of 10−3

or less and sequence identities of 25% or more. Using less-stringent cut-offs risks entry into
what is called the “twilight zone,” the low-identity region where any conclusions regarding
the relationship between two sequences may be questionable at best (Doolittle 1981, 1989;
Vogt et al. 1995; Rost 1999).

The reader is cautioned not to use these cut-offs (or any other set of suggested cut-offs)
blindly, particularly in the region right around the dividing line. Users should always keep
in mind whether the correct scoring matrix was used. Likewise, they should manually inspect
the pairwise alignments and investigate the biology behind any putative homology by read-
ing the literature to convince themselves whether hits on either side of the suggested cut-offs
actually make good biological sense.

BLAST 2 Sequences

A variation of BLAST called BLAST 2 Sequences can be used to find local alignments between
any two protein or nucleotide sequences of interest (Tatusova and Madden 1999). Although
the BLAST engine is used to find the best local alignment between the two sequences,
no database search is performed. Rather, the two sequences to be compared are specified
in advance by the user. The method is particularly useful for comparing sequences that
have been determined to be homologous through experimental methods or for making
comparisons between sequences from different species. Returning to the Protein BLAST
(BLASTP) search page shown in Figure 3.6, checking the box marked “Align two or more
sequences” will change the structure of the page, now allowing for the user to enter both
the query and subject sequences that will be compared with one another (Figure 3.11). As
with any BLAST search, the user can adjust the standard array of BLAST-related options,
including the selection of scoring matrix and gap penalties. A sample of the results produced
by the BLAST 2 Sequences method is shown in Figure 3.12, comparing the transcription
factor SOX-1 from H. sapiens and the ctenophore Mnemiopsis leidyi, the earliest branching
animal species dating back at least 500 million years in evolutionary time (Ryan et al. 2013;
Schnitzler et al. 2014). The major difference between this output and the typical BLAST
output is the inclusion of a dot matrix view of the alignment, or “dotplot.” Dotplots are
intended to provide a graphical representation of the degree of similarity between the two
sequences being compared, allowing for the quick identification of regions of local alignment,
direct or inverted repeats, insertions, deletions, and low-complexity regions. The dotplot in
Figure 3.12 indicates two regions of alignment, and additional information on those two
regions of alignment is provided in the Alignments section at the bottom of the figure. As with
all BLAST searches, the Alignments section provides the user with the usual set of scores, the
E value, and percentages for identities, positives, and any gaps that may have been introduced.
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Figure 3.11 Performing a BLAST 2 Sequences alignment. Clicking the check box at the bottom of the Enter Query Sequence section expands
the search page, generating a new Enter Subject Sequence section. Here, sequences for the transcription factor SOX-1 from human and
the ctenophore Mnemiopsis leidyi have been used as the query and subject, respectively (Schnitzler et al. 2014). Here, only the BLASTP
algorithm is available in the Program Selection section, as a one-to-one alignment has already been specified. The usual set of algorithm
parameters is available, allowing the user to fine-tune the alignment as needed.

MegaBLAST

MegaBLAST is a variation of the BLASTN algorithm that has been optimized specifically for
use in aligning either long or highly similar (>95%) nucleotide sequences and is a method
of choice when looking for exact matches in nucleotide databases. The use of a greedy
gapped alignment routine (Zhang et al. 2000) allows MegaBLAST to handle longer nucleotide
sequences approximately 10 times faster than BLASTN would. MegaBLAST is particularly
well suited to finding whether a sequence is part of a larger contig, detecting potential
sequencing errors, and for comparing large, similar datasets against each other. The run
speeds that are achieved using MegaBLAST come from changing two aspects of the traditional
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Figure 3.12 Typical output from a BLAST 2 Sequences alignment, based on the query issued in Figure 3.11. The standard graphical view is
shown at the top of the figure, here indicating two high-scoring segment pairs (HSPs) for the alignment of the sequences for the transcription
factor SOX-1 from human and the ctenophore Mnemiopsis leidyi. The dot matrix view is an alternative view of the alignment, with the query
sequence represented on the horizontal axis and the subject sequence represented by the vertical axis; the diagonal indicates the regions
of alignment captured within the two HSPs. The detailed alignments are shown at the bottom of the figure, along with the E values and
alignment statistics for each HSP.

BLASTN routine. First, longer default word lengths are used; in BLASTN, the default word
length is 11, whereas MegaBLAST uses a default word length of 28. Second, MegaBLAST uses
a non-affine gap penalty scheme, meaning that there is no penalty for opening the gap; there
is only a penalty for extending the gap, with a constant charge for each position in the gap.
MegaBLAST is capable of accepting batch queries by simply pasting multiple sequences in
FASTA format or a list of accession numbers into the query window.

There is also a variation of MegaBLAST called discontiguous MegaBLAST. This version
has been designed for comparing divergent sequences from different organisms, sequences
where one would expect there to be low sequence identity. This method uses a discontigu-
ous word approach that is quite different from those used by the rest of the programs in the
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BLAST suite. Here, rather than looking for query words of a certain length to seed the search,
non-consecutive positions are examined over longer sequence segments (Ma et al. 2002). The
approach has been shown to find statistically significant alignments even when the degree of
similarity between sequences is very low.

PSI-BLAST

The variation of the BLAST algorithm known as PSI-BLAST (for position-specific iterated
BLAST) is particularly well suited for identifying distantly related proteins – proteins that
may not have been found using the traditional BLASTP method (Altschul et al. 1997; Altschul
and Koonin 1998). PSI-BLAST relies on the use of position-specific scoring matrices (PSSMs),
which are also often called hidden Markov models or profiles (Schneider et al. 1986; Gribskov
et al. 1987; Staden 1988; Tatusov et al. 1994; Bücher et al. 1996). PSSMs are, quite simply, a
numerical representation of a multiple sequence alignment, much like the multiple sequence
alignments that will be discussed in Chapter 8. Embedded within a multiple sequence align-
ment is intrinsic sequence information that represents the common characteristics of that
particular collection of sequences, frequently a protein family. By using a PSSM, one is able
to use these embedded, common characteristics to find similarities between sequences with
little or no absolute sequence identity, allowing for the identification and analysis of distantly
related proteins. PSSMs are constructed by taking a multiple sequence alignment representing
a protein family and then asking a series of questions, as follows.

• What residues are seen at each position of the alignment?
• How often does a particular residue appear at each position of the alignment?
• Are there positions that show absolute conservation?
• Can gaps be introduced anywhere in the alignment?

As soon as those questions are answered, the PSSM is constructed, and the numbers in the
table now represent the multiple sequence alignment (Figure 3.13). The numbers within the
PSSM reflect the probability of any given amino acid occurring at each position. The PSSM
numbers also reflect the effect of a conservative or non-conservative substitution at each posi-
tion in the alignment, much like the PAM or BLOSUM matrices do. This PSSM now can be
used for comparison against single sequences, or in an iterative approach where newly found
sequences can be incorporated into the original PSSM to find additional sequences that may
be of interest.

The Method

Starting with a query sequence of interest, the PSI-BLAST process operates by taking a query
protein sequence and performing a standard BLASTP search, as described above. This search
produces a number of hits having E values better than a certain set threshold. These hits, along
with the initial, single-query sequence, are used to construct a PSSM in an automated fashion.
As soon as the PSSM is constructed, the PSSM then serves as the query for doing a new search
against the target database, using the collective characteristics of the identified sequences to
find new, related sequences. The process continues, round by round, either until the search
converges (meaning that no new sequences were found in the last round) or until the limit on
the number of iterations is reached.

Performing a PSI-BLAST Search

PSI-BLAST searches can be initiated by following the Protein BLAST link on the BLAST land-
ing page (Figure 3.5). The search page shown in Figure 3.14 is identical to the one shown
in the BLASTP example discussed earlier in this chapter. Here, the sequence of the human
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Figure 3.13 Constructing a position-specific scoring matrix (PSSM). In the upper portion of the figure
is a multiple sequence alignment of length 10. Using the criteria described in the text, the PSSM cor-
responding to this multiple sequence alignment is shown in the lower portion of the figure. Each row
of the PSSM corresponds to a column in the multiple sequence alignment. Note that position 8 of the
alignment always contains a threonine residue (T), whereas position 10 always contains a glycine (G).
Looking at the corresponding scores in the matrix, in row 8, the threonine scores 150 points; in row 10,
the glycine also scores 150 points. These are the highest values in the row, corresponding to the fact
that the multiple sequence alignment shows absolute conservation at those positions. Now, consider
position 9, where most of the sequences have a proline (P) at that position. In row 9 of the PSSM, the
proline scores 89 points – still the highest value in the row, but not as high a score as would have been
conferred if the proline residue was absolutely conserved across all sequences. The first column of the
PSSM provides the deduced consensus sequence.

sex-determining protein SRY from UniProtKB/Swiss-Prot (Q05066) will be used as the query,
using UniProtKB/Swiss-Prot as the target database and limiting returned results to human
sequences. PSI-BLAST is selected in the Program Selection section and, as before, selected
changes will be made to the default parameters (Figure 3.15). The maximum number of target
sequences has been raised from 500 to 1000, as a safeguard in case a large number of sequences
in UniProtKB/Swiss-Prot match the query. In addition, both the E value threshold and the
PSI-BLAST threshold have been changed to 0.001, and filtering of low-complexity regions has
been enabled. The query can now be issued as before by clicking on the blue “BLAST” button
at the bottom of the page.

The results of the first round of the search are shown in Figure 3.16, with 31 sequences
found in the first round (at the time of this writing). The structure of the hit list table is exactly
as before, now containing two additional columns that are specific to PSI-BLAST. The first
shows a column of check boxes that are all selected; this instructs the algorithm to use all the
sequences to construct the first PSSM for this particular search. Keeping in mind that the first
round of any PSI-BLAST search is simply a BLASTP search and that no PSSM has yet been con-
structed, the second column is blank. To run the next iteration of PSI-BLAST, simply click the
“Go” button at the bottom of this section. At this point, the first PSSM is constructed based on
a multiple sequence alignment of the sequences selected for inclusion, and the matrix is now
used as the query against Swiss-Prot. The results of this second round are shown in Figure 3.17,
with the final two columns indicating which sequences are to be used in constructing the
new PSSM for the next round of searches, as well as which sequences were used to build the
PSSM for the current round. Also note that a good number of the sequences are highlighted in
yellow; here, 26 additional sequences that scored below the PSI-BLAST threshold in the first
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Figure 3.14 Performing a PSI-BLAST search. See text for details.

round have now been pulled into the search results. This provides an excellent example of how
PSSMs can be used to discover new relationships during each PSI-BLAST iteration, thereby
making it possible to identify additional homologs that may not have been found using the
standard BLASTP approach. Of course, the user should always check the E values and percent
identities for all returned results before passing them through to the next round, unchecking
inclusion boxes as needed. There may also be cases where prior knowledge would argue for
removing some of the found sequences based on the descriptors. As with all computational
methods, it is always important to keep biology in mind when reviewing the results.

BLAT

In response to the assembly needs of the Human Genome Project, a new nucleotide sequence
alignment program called BLAT (for BLAST-Like Alignment Tool) was introduced (Kent
2002). BLAT is most similar to the MegaBLAST version of BLAST in that it is designed
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Figure 3.15 Selecting algorithm parameters for a PSI-BLAST search. See text for details.

to rapidly align longer nucleotide sequences having more than 95% similarity. However,
the BLAT algorithm uses a slightly different strategy than BLAST to achieve faster speeds.
Before any searches are performed, the target databases are pre-indexed, keeping track of
all non-overlapping 11-mers; this index is then used to find regions similar to the query
sequence. BLAT is often used to find the position of a sequence of interest within a genome
or to perform cross-species analyses.

As an example, consider a case where an investigator wishes to map a cDNA clone coming
from the Cancer Genome Anatomy Project (CGAP) to the rat genome. The BLAT query page
is shown in Figure 3.18, and the sequence of the clone of interest has been pasted into the
sequence box. Above the sequence box are several pull-down menus that can be used to specify
which genome should be searched (organism), which assembly should be used (usually, the
most recent), and the query type (DNA, protein, translated DNA, or translated RNA). Once
the appropriate choices have been made, the search is commenced by pressing the “Submit”
button. The results of the query are shown in the upper panel of Figure 3.19; here, the hit with
the highest score is shown at the top of the list, a match having 98.1% identity with the query
sequence. More details on this hit can be found by clicking the “details” hyperlink, to the left
of the entry. A long web page is then returned, providing information on the original query,
the genomic sequence, and an alignment of the query against the found genomic sequence
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Figure 3.16 Results of the first round of a PSI-BLAST search. For each sequence found, the user is presented with the definition
line from the corresponding UniProtKB/Swiss-Prot entry, the score value for the best high-scoring segment pair (HSP) alignment,
the total of all scores across all HSP alignments, the percentage of the query covered by the HSPs, and the E value and percent
identity for the best HSP alignment. The hyperlinked accession number allows for direct access to the source database record
for that hit. Sequences whose “Select for PSI blast” box are checked will be used to calculate a position-specific scoring matrix
(PSSM), and that PSSM then serves as the new “query” for the next round, the results of which are shown in Figure 3.17.
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Figure 3.17 Results of the second round of a PSI-BLAST search. New sequences identified through the use of the position-specific
scoring matrix (PSSM) calculated based on the results shown in Figure 3.16 are highlighted in yellow. Check marks in the right-most
column indicate which sequences were used to build the PSSM producing these results.
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Figure 3.18 Submitting a BLAT query. A rat clone from the Cancer Genome Anatomy Project Tumor Gene Index (CB312815) is the query.
The pull-down menus at the top of the page can be used to specify which genome should be searched (organism), which assembly should
be used (usually, the most recent), and the query type (DNA, protein, translated DNA, or translated RNA). The “I’m feeling lucky” button
returns only the highest scoring alignment and provides a direct path to the UCSC Genome Browser.

(Figure 3.19, bottom panel). The genomic sequence here is labeled chr5, meaning that the
query corresponds to a region of rat chromosome 5. Matching bases in the cDNA and genomic
sequences are colored in dark blue and are capitalized. Lighter blue uppercase bases mark the
boundaries of aligned regions and often signify splice sites. Gaps and unaligned regions are
indicated by lower case black type. In the Side by Side Alignment, exact matches are indicated
by the vertical line between the two sequences. Clicking on the “browser” hyperlink in the
upper panel of Figure 3.19 would take the user to the UCSC Genome Browser, where detailed
information about the genomic assembly in this region of rat chromosome 5 (specifically, at
5q31) can be obtained (cf. Chapter 4).

FASTA

While the most commonly used technique for detecting similarity between sequences is
BLAST, it is not the only heuristic method that can be used to rapidly and accurately compare
sequences with one another. In fact, the first widely used program designed for database sim-
ilarity searching was FASTA (Lipman and Pearson 1985; Pearson and Lipman 1988; Pearson
2000). Like BLAST, FASTA enables the user to rapidly compare a query sequence against large
databases, and various versions of the program are available (Table 3.3). In addition to the main
implementations, a variety of specialized FASTA versions are available, described in detail
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Figure 3.19 Results of a BLAT query. Based on the query submitted in Figure 3.18, the highest scoring hit is to a sequence on chro-
mosome 5 rat genome having 98.1% sequence identity. Clicking on the “details” hyperlink brings the user to additional information
on the found sequence, shown in the lower panel. Matching bases in the cDNA and genomic sequences are colored in dark blue and
are capitalized. Lighter blue uppercase bases mark the boundaries of aligned regions and often signify splice sites. Gaps are indicated
by lowercase black type. In the side-by-side alignment, exact matches are indicated by the vertical line between the sequences.
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Table 3.3 Main FASTA algorithms.

Program Query Database
Corresponding
BLAST Program

FASTA Nucleotide Nucleotide BLASTN
Protein Protein BLASTP

FASTX/FASTY DNA Protein BLASTX
TFASTYX/TFASTY Protein Translated DNA TBLASTN

in Pearson (2016). An interesting historical note is that the FASTA format for representing
nucleotide and protein sequences originated with the development of the FASTA algorithm.

The Method

The FASTA algorithm can be divided into four major steps. In the first step, FASTA deter-
mines all overlapping words of a certain length both in the query sequence and in each of
the sequences in the target database, creating two lists in the process. Here, the word length
parameter is called ktup, which is the equivalent of W in BLAST. These lists of overlapping
words are compared with one another in order to identify any words that are common to the
two lists. The method then looks for word matches that are in close proximity to one another
and connects them to each other (intervening sequence included), without introducing any
gaps. This can be represented using a dotplot format (Figure 3.20a). Once this initial round of
connections are made, an initial score (init1) is calculated for each of the regions of similarity.

In step 2, only the 10 best regions for a given pairwise alignment are considered for further
analysis (Figure 3.20b). FASTA now tries to join together regions of similarity that are close to
each other in the dotplot but that do not lie on the same diagonal, with the goal of extending
the overall length of the alignment (Figure 3.20c). This means that insertions and deletions are
now allowed, but there is a joining penalty for each of the diagonals that are connected. The
net score for any two diagonals that have been connected is the sum of the score of the original
diagonals, less the joining penalty. This new score is referred to as initn.

In step 3, FASTA ranks all of the resulting diagonals, and then further considers only the
“best” diagonals in the list. For each of the best diagonals, FASTA uses a modification of the
Smith–Waterman algorithm (1981) to come up with the optimal pairwise alignment between
the two sequences being considered. A final, optimal score (opt) is calculated on this pairwise
alignment.

(a) (b) (c)

Figure 3.20 The FASTA search strategy. (a) Once FASTA determines words of length ktup common to the
query sequence and the target sequence, it connects words that are close to each other, and these are
represented by the diagonals. (b) After an initial round of scoring, the top 10 diagonals are selected for
further analysis. (c) The Smith–Waterman algorithm is applied to yield the optimal pairwise alignment
between the two sequences being considered. See text for details.
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In the fourth and final step, FASTA assesses the significance of the alignments by estimat-
ing what the anticipated distribution of scores would be for randomly generated sequences
having the same overall composition (i.e. sequence length and distribution of amino acids
or nucleotides). Based on this randomization procedure and on the results from the original
query, FASTA calculates an expectation value E (similar to the BLAST E value), which, as
before, represents the probability that a reported hit has occurred purely by chance.

Running a FASTA Search

The University of Virginia provides a web front-end for issuing FASTA queries. Various pro-
tein and nucleotide databases are available, and up to two databases can be selected for use in
a single run. From this page, the user can also specify the scoring matrix to be used, gap and
extension penalties, and the value for ktup. The default values for ktup are 2 for protein-based
searches and 6 for nucleotide-based searches; lowering the value of ktup increases the sensitiv-
ity of the run, at the expense of speed. The user can also limit the results returned to particular
E values.

The results returned by a FASTA query are in a significantly different format than those
returned by BLAST. Consider a FASTA search using the sequence of histone H2B.3 from the
highly regenerative cnidarian Hydractinia, one of four novel H2B variants used in place of
protamines to compact sperm DNA (KX622131.1; Török et al. 2016), as the query. The first
part of the FASTA output resulting from a search using BLOSUM62 as the scoring matrix and
Swiss-Prot as the target database is shown in Figure 3.21, summarizing the results as a his-
togram. The histogram is intended to convey the distribution of all similarity scores computed
in the course of this particular search. The first column represents bins of similarity scores,
with the scores increasing as one moves down the page. The second column gives the actual
number of sequences observed to fall into each one of these bins. This count is also represented
by the length of each of the lines in the histogram, with each of the equals signs representing
a certain number of sequences; in the figure, each equals sign corresponds to 130 sequences
from UniProtKB/Swiss-Prot. The third column of numbers represents how many sequences
would be expected to fall into each one of the bins; this is indicated by the asterisks in the
histogram. The hit list would immediately follow, and a portion of the hit list for this search
is shown in Figure 3.22. Here, the accession number and partial definition line for each hit is
given, along with its optimal similarity score (opt), a normalized score (bit), the expectation
value (E), percent identity and similarity figures, and the aligned length. Not shown here are
the individual alignments of each hit to the original query sequence, which would be found by
further scrolling down in the output. In the pairwise alignments, exact matches are indicated
by a colon, while conservative substitutions are indicated by a dot.

Statistical Significance of Results

As before, the E values from a FASTA search represent the probability that a hit has occurred
purely by chance. Pearson (2016) puts forth the following guidelines for inferring homology
from protein-based searches, which are slightly different than those previously described for
BLAST: an E value < 10−6 almost certainly implies homology. When E < 10−3, the query and
found sequences are almost always homologous, but the user should guarantee that the highest
scoring unrelated sequence has an E value near 1.

Comparing FASTA and BLAST

Since both FASTA and BLAST employ rigorous algorithms to find sequences that are statis-
tically (and hopefully biologically) relevant, it is logical to ask which one of the methods is
the better choice. There actually is no good answer to the question, since both of the methods
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Figure 3.21 Search summary from a protein–protein FASTA search, using the sequence of histone H2B.3 from Hydractinia echinata
(KX622131.1; Török et al. 2016) as the query and BLOSUM62 as the scoring matrix. The header indicates that the query is against the
Swiss-Prot database. The histogram indicates the distribution of all similarity scores computed for this search. The left-most column
provides a normalized similarity score, and the column marked opt gives the number of sequences with that score. The column
marked E() gives the number of sequences expected to achieve the score in the first column. In this case, each equals sign in the
histogram represents 130 sequences in Swiss-Prot. The asterisks in each row indicate the expected, random distribution of hits. The
inset is a magnified version of the histogram in that region.
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Figure 3.22 Hit list for the protein–protein FASTA search described in Figure 3.21. Only the first 18 hits are shown. For each hit, the
accession number and partial definition line for the hit is provided. The column marked opt gives the raw similarity score, the column
marked bits gives a normalized bit score (a measure of similarity between the two sequences), and the column marked E gives the
expectation value. The percentage columns indicate percent identity and percent similarity, respectively. The alen column gives the total
aligned length for each hit. The +- characters shown at the beginning of some lines indicate that more than one alignment was found
between the query and subject; in the case of the first hit (Q7Z5P9), four alignments were returned. The align link at the end of each
row takes the user to the alignment for that hit (not shown).

bring significant strengths to the table. Summarized below are some of the fine points that
distinguish the two methods from one another.

• FASTA begins the search by looking for exact matches of words, while BLAST allows for
conservative substitutions in the first step.

• BLAST allows for automatic masking of sequences, while FASTA does not.
• FASTA will return one and only one alignment for a sequence in the hit list, while BLAST

can return multiple results for the same sequence, each result representing a distinct HSP.
• Since FASTA uses a version of the more rigorous Smith–Waterman alignment method, it

generally produces better final alignments and is more apt to find distantly related sequences
than BLAST. For highly similar sequences, their performance is fairly similar.

• When comparing translated DNA sequences with protein sequences or vice versa, FASTA
(specifically, FASTX/FASTY for translated DNA → protein and TFASTX/TFASTY for pro-
tein → translated DNA) allows for frameshifts.

• BLAST runs faster than FASTA, since FASTA is more computationally intensive.

Several studies have attempted to answer the “which method is better” question by per-
forming systematic analyses with test datasets (Pearson 1995; Agarawal and States 1998; Chen
2003). In one such study, Brenner et al. (1998) performed tests using a dataset derived from
already known homologies documented in the Structural Classification of Proteins database
(SCOP; Chapter 12). They found that FASTA performed better than BLAST in finding relation-
ships between proteins having >30% sequence identity, and that the performance of all meth-
ods declines below 30%. Importantly, while the statistical values reported by BLAST slightly
underestimated the true extent of errors when looking for known relationships, they found
that BLAST and FASTA (with ktup = 2) were both able to detect most known relationships,
calling them both “appropriate for rapid initial searches.”
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Summary

The ability to perform pairwise sequence alignments and interpret the results from such anal-
yses has become commonplace for nearly all biologists, no longer being a technique employed
solely by bioinformaticians. With time, these methods have undergone a continual evolution,
keeping pace with the types and scale of data that are being generated both in individual
laboratories and by systematic, organismal sequencing projects. As with all computational
techniques, the reader should have a firm grasp of the underlying algorithm, always keep-
ing in mind the algorithm’s capabilities and limitations. Intelligent use of the tools presented
in this chapter can lead to powerful and interesting biological discoveries, but there have also
been many cases documented where improper use of the tools has led to incorrect biological
conclusions. By understanding the methods, users can optimally use them and end up with
a better set of results than if these methods were treated simply as a “black box.” As biol-
ogy is increasingly undertaken in a sequence-based fashion, using sequence data to underpin
the design and interpretation of experiments, it becomes increasingly important that compu-
tational results, such as those generated using BLAST and FASTA, are cross-checked in the
laboratory, against the literature, and with additional computational analyses to ensure that
any conclusions drawn not only make biological sense but also are actually correct.

Internet Resources

BLAST
European Bioinformatics Institute (EBI) www.ebi.ac.uk/blastall
National Center for Biotechnology Information (NCBI) blast.ncbi.nlm.nih.gov

BLAST-Like Alignment Tool (BLAT) genome.ucsc.edu/cgi-bin/hgBlat
NCBI Conserved Domain Database (CDD) ncbi.nlm.nih.gov/cdd
Cancer Genome Anatomy Project (CGAP) ocg.cancer.gov/programs/cgap
FASTA

EBI www.ebi.ac.uk/Tools/sss/fasta
University of Virginia fasta.bioch.virginia.edu

RefSeq ncbi.nlm.nih.gov/refseq
Structural Classification of Proteins (SCOP) scop.berkeley.edu
Swiss-Prot www.uniprot.org

Further Reading

Altschul, S.F., Boguski, M.S., Gish, W., and Wootton, J.C. (1994). Issues in searching molecular
sequence databases. Nat. Genet. 6: 119–129. A review of the issues that are of importance in
using sequence similarity search programs, including potential pitfalls.

Fitch, W. (2000). Homology: a personal view on some of the problems. Trends Genet. 16: 227–231.
A classic treatise on the importance of using precise terminology when describing the
relationships between biological sequences.

Henikoff, S. and Henikoff, J.G. (2000). Amino acid substitution matrices. Adv. Protein Chem. 54:
73–97. A comprehensive review covering the factors critical to the construction of protein
scoring matrices.

Koonin, E. (2005. Orthologs, paralogs, and evolutionary genomics). Annu. Rev. Genet. 39: 309–338.
An in-depth explanation of orthologs, paralogs, and their subtypes, with a discussion of their
evolutionary origin and strategies for their detection.
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http://genome.ucsc.edu/cgi-bin/hgBlat
http://www.ncbi.nlm.nih.gov/cdd
https://ocg.cancer.gov/programs/cgap
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http://scop.berkeley.edu
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Genome Browsers
Tyra G. Wolfsberg

Introduction

The first complete sequence of a eukaryotic genome – that of Saccharomyces cerevisiae – was
published in 1996 (Goffeau et al. 1996). The chromosomes of this organism, which range in
size from 270 to 1500 kb, presented an immediate challenge in data management, as the upper
limit for single database entries in GenBank at the time was 350 kb. To better manage the yeast
genome sequence, as well as other chromosome and genome-length sequences being deposited
into GenBank around that time, the National Center for Biotechnology Information (NCBI) at
the National Institutes of Health (NIH) established the Genomes division of Entrez (Benson
et al. 1997). Entries in this division were organized around a reference sequence onto which all
other sequences from that organism were aligned. As these reference sequences have no size
limit, “virtual” reference sequences of large genomes or chromosomes could be assembled
from shorter GenBank sequences. For partially sequenced chromosomes, NCBI developed
methods to integrate genetic, physical, and cytogenetic maps onto the framework of the whole
chromosome. Thus, Entrez Genomes was able to provide the first graphical views of large-scale
genomic sequence data.

The working draft of the human genome, completed in February 2001 (Lander et al. 2001),
generated virtual reference sequences for each human chromosome, ranging in size from
46 to 246 Mb. NCBI created the first version of its human Map Viewer (Wheeler et al. 2001)
shortly thereafter, in order to display these longer sequences. Around the same time, the
University of California, Santa Cruz (UCSC) Genome Bioinformatics Group was developing
its own human genome browser, based on software originally designed for displaying the
much smaller Caenorhabditis elegans genome (Kent and Zahler 2000). Similarly, the Ensembl
project at the European Molecular Biology Laboratory’s European Bioinformatics Institute
(EMBL-EBI) was also producing a system to automatically annotate the human genome
sequence, as well as store and visualize the data (Hubbard et al. 2002). The three genome
browsers all came online at about the same time, and researchers began using them to help
navigate the human genome (Wolfsberg et al. 2002). Today, each site provides free access not
only to human sequence data but also to a myriad of other assembled genomic sequences,
from commonly used model organisms such as mouse to more recently released assemblies
such as those of the domesticated turkey. Although the NCBI’s Map Viewer is not being
further developed and will be replaced by its new Genome Data Viewer (Sayers et al. 2019),
the UCSC and Ensembl Genome Browsers continue to be popular resources, used by most
members of the bioinformatics and genomics communities. This chapter will focus on the
last two genome browsers.

The reference human genome was sequenced in a clone-by-clone shotgun sequencing strat-
egy and was declared complete in April 2003, although sequencing of selected regions is still
continuing. This strategy includes constructing a bacterial artificial chromosome (BAC) tiling
map for each human chromosome, then sequencing each BAC using a shotgun sequencing
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approach (reviewed in Green 2001). The sequences of individual BACs were deposited into the
High Throughput Genomic (HTG) division of GenBank as they became available. UCSC began
assembling these BAC sequences into longer contigs in May 2000 (Kent and Haussler 2001),
followed by assembly efforts undertaken at NCBI (Kitts 2003). These contigs, which contained
gaps and regions of uncertain order, became the basis for the development of the genome
browsers. Over time, as the genome sequence was finished, the human genome assembly was
updated every few months. After UCSC stopped producing its own human genome assemblies
in August 2001, NCBI built eight reference human genome assemblies for the bioinformatics
community, culminating with a final assembly in March 2006. Subsequently, an international
collaboration that includes the Wellcome Trust Sanger Institute (WTSI), the Genome Institute
at Washington University, EBI, and NCBI formed the Genome Reference Consortium (GRC),
which took over responsibility for subsequent assemblies of the human genome. This con-
sortium has produced two human genome assemblies, namely GRCh37 in February 2009 and
GRCh38 in December 2013. As one might expect, each new genome assembly leads to changes
in the sequence coordinates of annotated features. In between the release of major assemblies,
GRC creates patches, which either correct errors in the assembly or add alternate loci. These
alternate loci are multiple representations of regions that are too variable to be represented by
a single reference sequence, such as the killer cell immunoglobulin-like receptor (KIR) gene
cluster on chromosome 19 and the major histocompatibility complex (MHC) locus on chromo-
some 6. Unlike new genome assemblies, patches do not affect the chromosomal coordinates
of annotated features. GRCh38.p10 has 282 alternate loci or patches.

While the GRC also assembles the mouse, zebrafish, and chicken genomes, other genomes
are sequenced and assembled by specialized sequencing consortia. The panda genome
sequence, published in 2009, was the first mammalian genome to abandon the clone-based
sequencing strategies used for human and mouse, relying entirely on next generation
sequencing methodologies (Li et al. 2010). Subsequent advances in sequencing technologies
have led to rapid increases in the number of complete genome sequences. At the time of
this writing, both the UCSC Genome Browser and the main Ensembl web site host genome
assemblies of over 100 organisms. The look and feel of each genome browser is the same
regardless of the species displayed; however, the types of annotation differ depending on what
data are available for each organism.

The backbone of each browser is an assembled genomic sequence. Although the underlying
genomic sequence is, with a few exceptions, the same in both genome browsers, each team cal-
culates its annotations independently. Depending on the type of analysis, a user may find that
one genome browser has more relevant information than the other. The location of genes, both
known and predicted, is a central focus of both genome browsers. For human, at present, both
browsers feature the GENCODE gene predictions, an effort that is aimed at providing robust
evidence-based reference gene sets (Harrow et al. 2012). Other types of genomic data are also
mapped to the genome assembly, including NCBI reference sequences, single-nucleotide poly-
morphisms (SNPs) and other variants, gene regulatory regions, and gene expression data, as
well as homologous sequences from other organisms. Both genome browsers can be accessed
through a web interface that allows users to navigate through a graphical view of the genome.
However, for those wishing to carry out their own calculations, sequences and annotations
can also be retrieved in text format. Each browser also provides a sequence search tool – BLAT
(Kent 2002) or BLAST (Camacho et al. 2009) – for interrogating the data via a nucleotide or
protein sequence query. (Additional information on both BLAT and BLAST is provided in
Chapter 3.)

In order to provide stability and ensure that old analyses can be reproduced, both genome
browsers make available not only the current version of the genome assemblies but older ones
as well. In addition, annotation tracks, such as the GENCODE gene track and the SNP track,
may be based on different versions of the underlying data. Thus, users are encouraged to verify
the version of all data (both genome assembly and annotations) when comparing a region of
interest between the UCSC and Ensembl Genome Browsers.
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This chapter presents general guidelines for accessing the genome sequence and annotations
using the UCSC and Ensembl Genome Browsers. Although similar analyses could be carried
out with either browser, we have chosen to use different examples at the two sites to illustrate
different types of questions that a researcher might want to ask. We finish with a short descrip-
tion of JBrowse (Buels et al. 2016), another web-based genome browser that users can set up
on their own servers to share custom genome assemblies and annotations. All of the resources
discussed in this chapter are freely available.

The UCSC Genome Browser

After starting in 2000 with just a display of an early draft of the human genome assembly,
the UCSC Genome Browser now provides access to assemblies and annotations from over 100
organisms (Haeussler et al. 2019). The majority of assemblies are of mammalian genomes, but
other vertebrates, insects, nematodes, deuterostomes, and the Ebola virus are also included.
The assemblies from some organisms, including human and mouse, are available in multiple
versions. New organisms and assembly versions are added regularly.

The UCSC Browser presents genomic annotation in the form of tracks. Each track provides a
different type of feature, from genes to SNPs to predicted gene regulatory regions to expression
data. Each organism has its own set of tracks, some created by the UCSC Genome Bioinformat-
ics team and others provided by members of the bioinformatics community. Over 200 tracks are
available for the GRCh37 version of the human genome assembly. The newer human genome
assembly, GRCh38, has fewer tracks, as not all the data have been remapped from the older
assembly. Other genomes are not as well annotated as human; for example, fewer than 20
tracks are available for the sea hare. Some tracks, such as those created from NCBI transcript
data, are updated weekly, while others, such as the SNP tracks created from NCBI variant data
(Sayers et al. 2019), are updated less frequently, depending on the release schedule of the under-
lying data. For ease of use, tracks are organized into subsections. For example, depending on
the organism, the Genes and Gene Predictions section may include evidence-based gene pre-
dictions, ab initio gene predictions, and/or alignment of protein sequences from other species.

The home page of the UCSC Genome Browser provides a stepping-off point for many of the
resources developed by the Genome Bioinformatics group at UCSC, including the Genome
Browser, BLAT, and the Table Browser, which will be described in detail later in this chapter.
The Tools menu provides a link to liftOver, a widely used tool that converts genomic coordinates
from one assembly to another. Using this tool, it is possible to update annotation files so that old
data can be integrated into a new genome assembly. The Download menu provides an option
to download all the sequence and annotation data for each genome assembly hosted by UCSC,
as well as some of the source code. The What’s New section provides updates on new genome
assemblies, as well as new tools and features. Finally, there is an extensive Help menu, with
detailed documentation as well as videos. Users may also submit questions to a mailing list,
and most queries are answered within a day.

The UCSC Genome Browser provides multiple ways for both individual users and larger
genome centers to share data with collaborators or even the entire bioinformatics commu-
nity. These sharing options are available on the My Data link on the home page. Custom
Tracks allow users to display their own data as a separate annotation track in the browser.
User data must be formatted in a standard data structure in order to be interpreted correctly by
the browser. Many commonly used file formats are supported, including Browser Extensible
Data (BED), Binary Alignment/Map (BAM), and Variant Call Format (VCF; Box 4.1). Small
data files can be uploaded or pasted into the Genome Browser for personal use. Larger files
must be saved on the user’s web server and accessed by URL through the Genome Browser.
As anyone with the URL can access the data, this method can be used to share data with col-
laborators. Alternatively, Custom Tracks, along with track configurations and settings, can be
shared with selected collaborators using a named Session. Some groups choose to make their
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Sessions available to the world at large in My Data → Public Sessions. Finally, groups with very
large datasets can host their data in the form of a Track Hub so that it can be viewed on the
UCSC Genome Browser. When a Track Hub is paired with an Assembly Hub, it can be used to
create a browser for a genome assembly not already hosted by UCSC.

Box 4.1 Common File Types for Genomic Data

Both the UCSC and Ensembl Genome Browsers allow users to upload their own data so
that they can be viewed in context with other genome-scale data. User data must be
formatted in a commonly used data structure in order to be interpreted correctly by the
browser.

Browser Extensible Data (BED) format is a tab-delimited format that is flexible enough to
display many types of data. It can be used to display fairly simple features like the
location of transcription binding factor sites, as well more complex ones like transcripts
and their exons.

Binary Alignment/Map (BAM) format is the compressed binary version of the Sequence Align-
ment/Map (SAM) format. It is a compact format designed for use with very large files of
nucleotide sequence alignments. Because it can be indexed, only the portion of the file
that is needed for display is transferred to the browser. Many tools for next generation
sequence analysis use BAM format as output or input.

Variant Call Format (VCF) is a flexible format for large files of variation data including
single-nucleotide variants, insertions/deletions, copy number variants, and structural
variants. Like BAM format, it is compressed and indexed, and only the portion of the file
that is needed for display is transferred to the browser. Many tools for variant analysis
use VCF format as output or input.

The UCSC Genome Browser home page lists commonly accessed tools, as well as a
frequently updated news section that highlights major data and software updates. To reach
the Genome Browser Gateway, the main entry point for text-based searches, click on the
Gateway link on the home page (Figure 4.1). The default assembly is the most recent
human assembly, GRCh38, from December 2013. The genomes of other species can be
selected from the phylogenetic tree on the left side of the Gateway page, or by typing
their name in the selection box. On the human Gateway page, there is also the option to
select one of four older human genome assemblies. Details about the GRCh38 assembly
and instructions for searching are available on the Gateway page.

To perform a search, enter text into the Position/Search Term box. If the query maps to a
unique position in the genome, such as a search for a particular chromosome and position, the
Go button links directly to the Genome Browser. However, if there is more than one hit for the
query, such as a search for the term metalloprotease, the resulting page will contain a list
of results that all contain that term. For some species, the terms have been indexed, and typing
a gene symbol into the search box will bring up a list of possible matches. In this example, we
will search for the human hypoxia inducible factor 1 alpha subunit (HIF1A) gene (Figure 4.1),
which produces a single hit on GRCh38.

The default Genome Browser view showing the genomic context of the HIF1A gene is shown
in Figure 4.2. The navigation controls are presented across the top of the display. The arrows
move the window to the left and right along the chromosome. Alternatively, the user can
move the display left and right by holding down the mouse button and dragging the window.
To zoom in and out, use the buttons at the top of the display. The base button zooms in so
far that individual nucleotides are displayed, while the zoom out 100× button will show the
entire chromosome if it is pressed a few times. The current genomic position and the length
of window (in nucleotides) is shown above a schematic of chromosome 14, where the current
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Figure 4.1 The home page of the UCSC Genome Browser, showing a query for the gene HIF1A on the human GRCh38 genome assembly.
The organism can be selected by clicking on its name in the phylogenetic tree. For many organisms, more than one genome assembly is
available. Typing a term into the Position/Search Term box returns a list of matching gene symbols.

genomic position is highlighted with a red box. A new search term can be entered into the
search box.

Below the browser window illustrated in Figure 4.2, one would find a list of tracks that
are available for display on the assembly. The tracks are separated into nine categories: Map-
ping and Sequencing, Genes and Gene Predictions, Phenotype and Literature, mRNA and
Expressed Sequence Tag (EST), Expression, Regulation, Comparative Genomics, Variation,
and Repeats. Clicking on a track name opens the Track Settings page for that track, provid-
ing a description of the data displayed in that track. Most tracks can be displayed in one of the
following five modes.

1) Hide: the track is not displayed at all.
2) Dense: all features are collapsed into a single line; features are not labeled.
3) Squish: each feature is shown separately, but at 50% the height of full mode; features are

not labeled.
4) Pack: each feature is shown separately, but not necessarily on separate lines; features are

labeled.
5) Full: each feature is labeled and displayed on a separate line.
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Figure 4.2 The default view of the UCSC Genome Browser, showing the genomic context of the human HIF1A gene.

In order to simplify the display, most tracks are in hide mode by default. To change the
mode, use the pull-down menu below the track name or on the Track Settings page. Other
settings, such as color or annotation details, can also be configured on the Track Settings page.
For example, the NCBI RefSeq track allows users to select if they want to view all reference
sequences or only those that are curated or predicted (Box 1.2). One possible point of confusion
is that the UCSC Genome Browser will “remember” the mode in which each track is displayed
from session to session. Custom settings can be cleared by selecting Reset all User Settings under
the Genome Browser pull-down menu at the top of any page.

The annotation tracks in the window below the chromosome are the focus of the Genome
Browser (Figure 4.2). Tracks are depicted horizontally, with a title above the track and labels
on the left. The first two lines show the scale and chromosomal position. The term that was
searched for and matched (HIF1A in this case) is highlighted on the annotation tracks. The
next tracks shown by default are gene prediction tracks. The default gene track on GRCh38
is the GENCODE Genes set, which replaces the UCSC Genes track that is still displayed on
GRCh37 and older human assemblies. GENCODE genes are annotated using a combination
of computational analysis and manual curation, and are used by the ENCODE Consortium
and other groups as reference gene sets (Box 4.2). The GENCODE v24 track depicts all of the
gene models from the GENCODE v24 release, which includes both protein-coding genes and
non-coding RNA genes.
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Box 4.2 GENCODE

The GENCODE gene set was originally developed by the ENCODE Consortium as a com-
prehensive source of high-quality human gene annotations (Harrow et al. 2012). It has
now been expanded to include the mouse genome (Mudge and Harrow 2015). The goal of
the GENCODE project is to include all alternative splice variants of protein-coding loci, as
well as non-coding loci and pseudogenes. The GENCODE Consortium uses computational
methods, manual curation, and experimental validation to identify these gene features.
The first step is carried out by the same Ensembl gene annotation pipeline that is used
to annotate all vertebrate genomes displayed at Ensembl (Aken et al. 2016). This pipeline
aligns cDNAs, proteins, and RNA-seq data to the human genome in order to create can-
didate transcript models. All Ensembl transcript models are supported by experimental
evidence; no models are created solely from ab initio predictions. The Human and Verte-
brate Analysis and Annotation (HAVANA) group produces manually curated gene sets for
several vertebrate genomes, including mouse and human. These manually curated genes
are merged with the Ensembl transcript models to create the GENCODE gene sets for
mouse and human. A subset of the human models has been confirmed by an experimental
validation pipeline (Howald et al. 2012).

The consortium makes available two types of GENCODE gene sets. The Comprehen-
sive set encompasses all gene models, and may include many alternatively spliced tran-
scripts (isoforms) for each gene. The Basic set includes a subset of representative tran-
scripts for each gene that prioritizes full-length protein-coding transcripts over partial- or
non-protein-coding transcripts. The Ensembl Genome Browser displays the Comprehen-
sive set by default. Although the UCSC Genome Browser displays the Basic set by default,
the Comprehensive set can be selected by changing the GENCODE track settings. At the
time of this writing, Ensembl is displaying GENCODE v27, released in August 2017. The
GENCODE version available by default at the UCSC Genome Browser is v24, from Decem-
ber 2015. More recent versions of GENCODE can be added to the browser by selecting
them in the All GENCODE super-track.

GENCODE and RefSeq both aim to provide a comprehensive gene set for mouse and
human. Frankish et al. (2015) have shown that, in human, the RefSeq gene set is more
similar to the GENCODE Basic set, while the GENCODE Comprehensive set contains more
alternative splicing and exons, as well as more novel protein-coding sequences, thus cov-
ering more of the genome. They also sought to determine which gene set would provide
the best reference transcriptome for annotating variants. They found that the GENCODE
Comprehensive set, because of its better genomic coverage, was better for discovering new
variants with functional potential, while the GENCODE Basic set may be better suited for
applications where a less complex set of transcripts is needed. Similarly, Wu et al. (2013)
compared the use of different gene sets to quantify RNA-seq reads and determine gene
expression levels. Like Frankish et al., they recommend using less complex gene anno-
tations (such as the RefSeq gene set) for gene expression estimates, but more complex
gene annotations (such as GENCODE) for exploratory research on novel transcriptional or
regulatory mechanisms.

In the GENCODE track, as well as other gene tracks, exons (regions of the transcript that
align with the genome) are depicted as blocks, while introns are drawn as the horizontal
lines that connect the exons. The direction of transcription is indicated by arrowheads on
the introns. Coding regions of exons are depicted as tall blocks, while non-coding exons
are shorter. In this example, the GENCODE track depicts five alternatively spliced tran-
scripts, labeled HIF1A on the left, for the HIF1A gene. As shown by the arrowheads, all
transcripts are transcribed from left to right. The 5′-most exon of each transcript (on the
left side of the display) is shorter on the left, indicating an untranslated region (UTR), and

(Continued)



86 Genome Browsers

Box 4.2 (Continued)

taller on the right, indicating a coding sequence. The reverse is true for the 3′-most exon
of each transcript. A very close visual inspection of the Genome Browser shows that the
last four HIF1A transcripts have a different pattern of exons from each other; a BLAST
search (not shown) reveals that first two transcripts differ by only three nucleotides in
one exon. There is also a transcript labeled HIF1A-AS2, an anti-sense HIF1A transcript that
is transcribed from right to left. Another transcript, labeled RP11-618G20.1, is a synthetic
construct DNA. Zooming the display out by 3× allows a view of the genes immediately
upstream and downstream of HIF1A (Figure 4.3). A second HIF1A antisense transcript,
HIF1A-AS1, is also visible.

The track below the GENCODE track is the RefSeq gene predictions from NCBI track. This is
a composite track showing human protein-coding and non-protein-coding genes taken from
the NCBI RNA reference sequences collection (RefSeq; Box 1.2). By default, the RefSeq track
is shown in dense mode, with the exons of the individual transcripts condensed into a single
line (Figure 4.2). Note that, in this dense mode, the exons are displayed as blocks, as in the
GENCODE track, but there are no arrowheads on the gene model to show the direction of
transcription. To change the display of the RefSeq track to view individual transcripts, open
the Track Settings page for the NCBI RefSeq track by clicking on the track name in the first row

Figure 4.3 The genomic context of the human HIF1A gene, after clicking on zoom out 3×. The genes immediately upstream (FLJ22447) and
downstream (SNAPC1) of HIF1A are now visible.
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Figure 4.4 The RefSeq Track Settings page. The track settings pages are used to configure the display of annotation tracks. By default, all
of the RefSeq tracks are set to display in dense mode, with all features condensed into a single line. In this example, the Curated RefSeqs
are being set to display in full mode, in which each RefSeq transcript will be labeled and displayed on a separate line. The remainder of
the RefSeqs will be displayed in dense mode. The types of RefSeqs, curated and predicted, are described in Box 1.2. After changing the
settings, press the submit button to apply them.

of the Genes and Gene Predictions section (below the graphical view shown in Figure 4.2). The
resulting Track Settings page (Figure 4.4) allows the user to choose which type of RefSeqs to
display (e.g. all, curated only, or predicted only). In this example, we change the mode of the
RefSeq Curated track from dense to full, and the resulting graphical view (Figure 4.5) displays
each curated RefSeq as a separate transcript. In contrast to the GENCODE track, there are
only three RefSeq transcripts for the HIF1A gene, and the HIF1A-AS2 RefSeq transcript is
much shorter than the GENCODE transcript with the same name. These discrepancies are
due to differences in how the RefSeq and GENCODE transcript sets are assembled (Boxes 1.2
and 4.2).

Additional information about each transcript in the GENCODE and RefSeq tracks is avail-
able by clicking on the gene symbol (HIF1A, in this case); as the original search was for HIF1A,

Figure 4.5 The genomic context of the human HIF1A gene, after displaying RefSeq Curated genes in full mode. Each RefSeq transcript is
now drawn on a separate line, so that individual exons, as well as the direction of transcription, are visible. Compare this rendition with
Figure 4.2, where all RefSeq transcripts are condensed on a single line.
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Figure 4.6 The Get Genomic Sequence page that provides an interface for users to retrieve the sequence for a feature of interest. Click on
an individual transcript in the GENCODE or RefSeq track to open a page with additional details for that transcript. On either of those details
pages, click the link for Genomic Sequence to open the page displayed here, which provides choices for retrieving sequences upstream
or downstream of the transcript, as well as intron or exon sequences. In this example, retrieve the sequence 1000 nt upstream of the
annotated transcription start site. Shown in the inset is the result of retrieving the FASTA-formatted sequence 1000 nt upstream of the
HIF1A transcript.

the gene name is highlighted in inverse type. For GENCODE genes, UCSC has collected infor-
mation from a variety of public sources and includes a text description, accession numbers,
expression data, protein structure, Gene Ontology terms, and more. For RefSeq transcripts,
UCSC provides links to NCBI resources. Both GENCODE and RefSeq details pages provide a
link to Genomic Sequence in the Sequence and Links section, allowing users to retrieve genomic
sequences connected to an individual transcript. From the selection menu (Figure 4.6), users
can choose whether to download the sequence upstream or downstream of the gene, as well
as the exon or intron sequence. The sequence is returned in FASTA format.

Further down on the graphical view shown in Figure 4.3 are tracks from the ENCODE
Regulation super-track: Layered H3K27Ac and DNase Clusters. These data were generated
by the Encyclopedia of DNA Elements (ENCODE) Consortium between 2003 and 2012
(ENCODE Project Consortium 2012). The ENCODE Consortium has developed reagents
and tools to identify all functional elements in the human genome sequence. The Layered
H3K27Ac track indicates regions where there are modified histones that may indicate active
enhancers (Box 4.3).
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Box 4.3 Histone Marks

Histone proteins package DNA into chromosomes. Post-translational modifications of
these histones can affect gene expression, as well as DNA replication and repair, by
changing chromatin structure or recruiting histone modifiers (Lawrence et al. 2016).
The post-translational modifications include methylation, phosphorylation, acetylation,
ubiquitylation, and sumoylation. Histone H3 is primarily acetylated on lysine residues,
methylated at arginine or lysine, or phosphorylated on serine or threonine. Histone H4
is primarily acetylated on lysine, methylated at arginine or lysine, or phosphorylated on
serine.

Histone modification (or “marking”) is identified by the name of the histone, the residue
on which it is marked, and the type of mark. Thus, H3K27Ac is histone H3 that is acetylated
on lysine 27, while H3K79me2 is histone H3 that is dimethylated on lysine 79. Different
histone marks are associated with different types of chromatin structure. Some are more
likely found near enhancers and others near promoters and, while some cause an increase
of expression from nearby genes, others cause less. For example, H3K4me3 is associ-
ated with active promoters, and H3K27me3 is associated with developmentally controlled
repressive chromatin states.

The DNase Clusters track depicts regions where chromatin is hypersensitive to cutting
by the DNaseI enzyme. In these hypersensitive regions, the nucleosome structure
is less compacted, meaning that the DNA is available to bind transcription factors.
Thus, regulatory regions, especially promoters, tend to be DNase sensitive. The track
settings for the ENCODE Regulation super-track allows other ENCODE tracks to be
added to the browser window, including additional histone modification and DNa-
seI hypersensitivity data. Changing the display of the H3K4Me3 peaks from hide to
full highlights the peaks in the H3K4Me3 track near the 5′ ends of the HIF1A and
SNAPC1 transcripts that overlap with DNase hypersensitive sites (Figure 4.7, blue
highlights). These peaks may represent promoter elements that regulate the start of
transcription.

The UCSC Genome Browser displays data from NCBI’s Single Nucleotide Polymorphism
Database (dbSNP) in four SNP tracks. Common SNPs contains SNPs and small insertions and
deletions (indels) from NCBI’s dbSNP that have a minor allele frequency of at least 1% and
are mapped to a single location in the genome. Researchers looking for disease-causing SNPs
can use this track to filter their data, hypothesizing that their variant of interest will be rare
and therefore not displayed in this track. Flagged SNPs are those that are deemed by NCBI to
be clinically associated, while Mult. SNPs have been mapped to more than one region in the
genome. NCBI filters out most multiple-mapping SNPs as they may not be true SNPs, so there
are not many variants in this track. All SNPs includes all SNPs from the three subcategories.
dbSNP is in a continuous state of growth, and new data are incorporated a few times each year
as a new release, or new build, of dbSNP. These four SNP tracks are available for a few of the
most recent builds of dbSNP, indicated by the number in the track name. Thus, for example,
Common SNPs (150) are SNPs found in ≥1% of samples from dbSNP build 150.

By default, the Common SNPs (150) track is displayed in dense mode, with all variants in the
region compressed onto a single line. Variants in the Common SNPs track are color coded by
function. Open the Track Settings for this track in order to modify the display (Figure 4.8). Set
the Display mode to pack in order to show each variant separately. At the same time, modify the
Coloring Options so that SNPs in UTRs of transcripts are set to blue and SNPs in coding regions
of transcripts are set to green if they are synonymous (no change to the protein sequence) or
red if they are non-synonymous (altering the protein sequence), with all remaining classes of
SNPs set to display in black. Note the changes in the resulting browser window, with the green
synonymous and blue untranslated SNPs clearly visible (Figure 4.9).
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Figure 4.7 The genomic context of the human HIF1A gene, after changing the display of the H3K4Me3 peaks from hide to full. The H3K4Me3
track is part of the ENCODE Regulation super-track. Below the graphic display window in Figure 4.5, open up the ENCODE Regulation
Super-track, in the Regulation menu. Change the track display from hide to full to reproduce the page shown here. Note that the H3K4Me3
peaks, which can indicate promoter regions (Box 4.3), overlap with the transcription starts of the SNAPC1 and HIF1A genes (light blue
highlight). These regions also overlap with the DNase HS track, indicating that the chromatin should be available to bind transcription
factors in this region. The highlights were added within the Genome Browser using the Drag-and-select tool. This tool is accessed by
clicking anywhere in the Scale track at the top of the Genome Browser display and dragging the selection window across a region of
interest. The Drag-and-select tool provides options to Highlight the selected region or Zoom directly to it.

Figure 4.8 Configuring the track settings for the Common SNPs(150) track. Set the Coloring Options so that all SNPs are black, except for
untranslated SNPs (blue), coding-synonymous SNPs (green), and coding-non-synonymous SNPs (red). In addition, change the Display mode
of the track from dense to pack so that the individual SNPs can be seen. By default, the function of each variant is defined by its position
within transcripts in the GENCODE track. However, the track used for annotation can be changed in the settings called Use Gene Tracks for
Functional Annotation.
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Figure 4.9 The genomic context of the human HIF1A gene, after changing the colors and display mode of the Common SNPs(150) track as
shown in Figure 4.8. The SNPs in the 5′ and 3′ untranslated regions of the HIF1A GENCODE transcripts are now colored blue, while the
coding-synonymous SNP is colored green.

Two types of Expression tracks display data from the NIH Genotype-Tissue Expression
(GTEx) project (GTEx Consortium 2015). The GTEx Gene track displays gene expression
levels in 51 tissues and two cell lines, based on RNA-seq data from 8555 samples. The GTEx
Transcript track provides additional analysis of the same data and displays median transcript
expression levels. By default, the GTEx Gene track is shown in pack mode, while the GTEx
Transcript track is hidden. Figure 4.10 shows the Gene track in pack display mode, in the
region of the phenylalanine hydroxylase (PAH) gene. The height of each bar in the bar graph
represents the median expression level of the gene across all samples for a tissue, and the
bar color indicates the tissue. The PAH gene is highly expressed in kidney and liver (the two
brown bars). The expression is more clearly visible in the details page for the GTEx track
(Figure 4.10, inset, purple box). The GTEx Transcript track is similar, but depicts expression
for individual transcripts rather than an average for the gene.

An alternate entry point to the UCSC Genome Browser is via a BLAT search (see Chapter 3),
where a user can input a nucleotide or protein sequence to find an aligned region in a
selected genome. BLAT excels at quickly identify a matching sequence in the same or highly
similar organism. We will attempt to use BLAT to find a lizard homolog of the human gene
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Figure 4.10 The GTEx Gene track, which depicts median gene expression levels in 51 tissues and two cell lines, based on RNA-seq data
from the GTEx project from 8555 tissue samples. The main browser window depicts the GTEx Gene track for the human PAH gene, showing
high expression in the two tissues colored brown (liver and kidney) but low or no expression in others. Clicking on the GTEx track opens it
in a larger window, shown in the inset.

disintegrin and metalloproteinase domain-containing protein 18 (ADAM18). The ADAM18
protein sequence is copied in FASTA format from the NCBI view of accession number
NP_001307242.1 and pasted into the BLAT Search box that can be accessed from the Tools
pull-down menu; the method for retrieving this sequence in the correct format is described
in Chapter 2. Select the lizard genome and assembly AnoCar2.0/anoCar2. BLAT will auto-
matically determine that the query sequence is a protein and will compare it with the lizard
genome translated in all six reading frames. A single result is returned (Figure 4.11a). The
alignment between the ADAM18 protein sequence and lizard chromosome Un_GL343418
runs from amino acid 368 to amino acid 383, with 81.3% identity. The browser link depicts
the genomic context of this 48 nt hit (Figure 4.11b). Although the ADAM18 protein sequence
aligns to a region in which other human ADAM genes have also been aligned, the other
human genes are represented by a thin line, indicating a gap in their alignment. The details
link shown in Figure 4.11a produces the alignment between the ADAM18 protein and lizard
chromosome Un_GL343418 (Figure 4.11c). The top section of the results shows the protein
query sequence, with the blue letters indicating the short region of alignment with the
genome. The bottom section shows the pairwise alignment between the protein and genomic
sequence translated in six frames. Vertical black lines indicate identical sequences. Taken
together, the BLAT results show that only 16 amino acids of the 715 amino acid ADAM18
protein align to the lizard genome (Figure 4.11c). This alignment is short and likely does not
represent a homologous region between the ADAM18 protein and the lizard genome. Thus,
the BLAT algorithm, although fast, is not always sensitive enough to detect cross-species
orthologs. The BLAST algorithm, described in the Ensembl Genome Browser section, is more
sensitive, and is a better choice for identifying such homologs.
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(a)

(b)

Figure 4.11 BLAT search at the UCSC Genome Browser. (a) This page shows the results of running a BLAT search against the lizard
genome, using as a query the human protein sequence of the gene ADAM18, accession NP_001307242.1. The ADAM18 protein sequence
is available from NCBI at www.ncbi.nlm.nih.gov/protein/NP_001307242.1?report=fasta. At the UCSC Genome Browser, the web inter-
face to the BLAT search is in the Tools menu at the top of each page. The BLAT search was run against the lizard genome assembly from
May 2010, also called anoCar2. The columns on the results page are as follows: ACTIONS, links to the browser (Figure 4.11b) and details
(Figure 4.11c); QUERY, the name of the query sequence; SCORE, the BLAT score, determined by the number of matches vs. mismatches
in the final alignment of the query to the genome; START, the start coordinate of the alignment, on the query sequence; END, the end
coordinate of the alignment, on the query sequence; QSIZE, the length of the query; IDENTITY, the percent identity between the query
and the genomic sequences; CHRO, the chromosome to which the query sequence aligns; STRAND, the chromosome strand to which
the query sequence aligns; START; the start coordinate of the alignment, on the genomic sequence; END, the end coordinate of the
alignment, on the genomic sequence; and SPAN, the length of the alignment, on the genomic sequence. Note that, in this example,
there is a single alignment; searches with other sequences may result in many alignments, each shown on a separate line. It is possible
to search with up to 25 sequences at a time, but each sequence must be in FASTA format. (b) This page shows the browser link from the
BLAT summary page. The alignment between the query and genome is shown as a new track called Your Sequence from BLAT Search.
(c) The details link from the BLAT summary page, showing the alignment between the query (human ADAM18 protein) and the lizard
genome, translated in six frames. The protein query sequence is shown at the top, with the blue letters indicating the amino acids
that align to the genome. The bottom section shows the pairwise alignment between the protein and genomic sequence translated in
six frames. Black lines indicate identical sequences; red and green letters indicate where the genomic sequence encodes a different
amino acid. Although the ADAM18 protein sequence has a length of 715 amino acids, only 16 amino acids align as a single block to
the lizard genome.

http://www.ncbi.nlm.nih.gov/protein/NP_001307242.1?report=fasta
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(c)

Figure 4.11 (Continued)

UCSC Table Browser

The Table Browser tool provides users a text-based interface with which to query, inter-
sect, filter, and download the data that are displayed graphically in the Genome Browser.
These data can then be saved in a spreadsheet for further analysis, or used as input into a
different program. Using a web-based interface, users select a genome assembly, track, and
position, then choose how to manipulate that track data and what fields to return. This
example will demonstrate how to retrieve a list of all NCBI mRNA reference sequences that
overlap with an SNP from the Genome-Wide Association Study (GWAS) Catalog track, which
identifies genetic loci associated with common diseases or traits. The GWAS Catalog is a
manually curated collection of published genome-wide association studies that assayed at
least 100 000 SNPs, in which all SNP-trait associations have p values of <1× 10−5 (Buniello
et al. 2019).

The Table Browser landing page is accessible from either the UCSC Genome Browser home
page or the Tools pull-down menu. First, reset all user cart settings by clicking on the click here
link at the bottom of the Table Browser settings section.

Then, select the NCBI RefSeq track on the GRCh38 genome assembly (Figure 4.12a). Create
a filter to limit the search to curated mRNA reference sequences in the NM_ accession series
(Box 1.2; Figure 4.12b). Next, intersect the RefSeq track with variants from the GWAS Catalog
(Figure 4.12c). Finally, on the Table Browser form, change the output format to hyperlinks to
Genome Browser, then click get output. The output is a list of 3000+RefSeq mRNAs that overlap
with a variant from the GWAS Catalog (Figure 4.12d). The Genome Browser view of one of the
transcripts, from the gene arginine–glutamic acid dipeptide (RE) repeats (RERE), and the six
SNPs from the GWAS Catalog that it overlaps, can be found by clicking on the first link in the
results list and is shown in Figure 4.12e.
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(a)

(b)

(c)

Figure 4.12 Configuring the UCSC Table Browser. The link to the Table Browser is in the Tools menu at
the top of each page. (a) On the Table Browser home page, first reset all previous selections by clicking
on the reset button at the bottom of the window. Next, select the track called NCBI RefSeq in the group
Genes and Gene Predictions on the human GRCh38 genome assembly. The region should be set to genome
and the output format to hyperlinks to Genome Browser. (b) Create a filter to limit the search to curated
mRNA reference sequences in the NM_ accession series (see Box 1.2). Click on the filter button shown in
Figure 4.12a and enter the term NM_* in the name field. The asterisk is a wildcard character that matches
any text. Thus, this setting will limit the results to those curated RefSeqs whose name contains the term
NM_. (c) Create an intersection between the RefSeq track and the variants from the GWAS Catalog. Click
on the intersection button shown in Figure 4.12a and select the appropriate track. The group is Phenotype
and Literature and the track is called GWAS Catalog. Leave other selections set to the default. (d) Click
on the get output button shown in Figure 4.12a. The output is a list of more than 3000 RefSeq mRNAs
that overlap with a variant from the GWAS Catalog. Each RefSeq is hyperlinked to the Genome Browser.
(e) The first link is to NM_001042682.1, a transcript of the gene arginine–glutamic acid dipeptide (RE)
repeats (RERE). The genomic context of RERE shows the eight SNPs from the GWAS Catalog that it
overlaps.
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(d)

(e)

Figure 4.12 (Continued)

UCSC also provides a related tool called the Data Integrator. The Data Integrator has a more
sophisticated intersection function than does the Table Browser, as it can intersect data from up
to five separate tracks, and output fields from both the selected tracks and related tables. Thus,
for example, output from the Data Integrator could include the gene symbol in addition to the
accession number for each transcript on the RefSeq track, along with the dbSNP identifier for
the variants in the GWAS Catalog. However, the Data Integrator does not allow for filtering,
so it is not possible to restrict the output to only RefSeq mRNA genes.

ENSEMBL Genome Browser

The Ensembl Genome Browser (Cunningham et al. 2019) got its start in 1999 (Hubbard et al.
2002) with the display of the human genome assembly. Like the UCSC Genome Browser, it has
grown significantly over the years. The main Ensembl site focuses on vertebrates and includes
assemblies from almost 90 species. Ensembl has also created specialized sibling databases for
other groups of organisms, including EnsemblPlants (nearly 50 species), EnsemblMetazoa
(nearly 70 species), EnsemblProtist (more than 100 species), and EnsemblFungi (more than
800 species), and the very large EnsemblBacteria, with around 44 000 species. The amount of
available genome data and annotations varies by organism, but the general browser navigation
principles are the same for all. An additional resource is Pre!Ensembl, which displays genomes
that are in the process of being annotated. Genomes on this site have an assembly and BLAST
interface but, for the most part, no gene predictions.

Like the UCSC Genome Browser, the Ensembl Browser makes available multiple versions
of genome assemblies. Integrated into the assemblies may be gene, genome variation, gene
regulation, and comparative genomics annotation. Annotations are organized as sets of tracks.
Ensembl incorporates data from a variety of public sources, including NCBI, UCSC, model
organism databases, and more, and updates data and software in a formal release process,
which can be tracked by release number. Importantly, previous Ensembl releases are archived
on the web site and are available for view. Thus, even after a genome assembly or annotation
set has been updated, it is possible to view the older data using all the regular functions of
the Ensembl web site. This archive process sets Ensembl apart from UCSC, where the genome
assembly remains stable, but the annotations may change on a weekly basis. Each Ensembl
page has a link at the bottom called View in archive site. The archive site provides links to older
versions of that page, including previous annotation sets on the same genome assembly, as
well as prior genome assemblies.

The Ensembl Browser provides many of the same types of resources and tools as does the
UCSC Genome Browser. Sequences can be aligned to the assembled genomes using either
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BLAT or BLAST, and data can be returned in various tabular formats using BioMart (Kinsella
et al. 2011). Data and software can be retrieved from the Downloads menu, available from
most browser pages. In the Tools menu, Ensembl provides a number of additional tools to
manipulate data, including the Variant Effect Predictor (VEP) (McLaren et al. 2016), which
predicts functional consequences of known and unknown variants, File Chameleon, which
reformats files available on the Ensembl FTP site, and Assembly Converter, which is like
UCSC’s liftOver and is used to convert coordinates between genome assemblies. The Help &
Documentation menu provides substantial written and video-based information about how
to navigate and interpret the Ensembl site, far beyond the level of detail presented in this
chapter.

Ensembl also provides ways for users to upload their data into the browser. Properly format-
ted tracks can be added to the display by selecting the Custom tracks option from the left side of
any species-specific page. The data can be uploaded to Ensembl from a file on the user’s com-
puter or, if it is saved on a web server, the browser can read it from a URL. Users who create an
account at Ensembl can save track data to the Ensembl database server and view them later
from any computer. To share custom tracks or even a customized view of the Genome Browser

Figure 4.13 The home page of the Ensembl Genome Browser, showing a query for the human gene PAH. The browser suggests results
based on the search term submitted. By default, the search box interfaces with the most recent version of the genome assembly, GRCh38,
at the time of this writing. A link to the previous human genome assembly, GRCh37, is provided at the bottom of the page. Older assemblies
from other organisms are available in the Ensembl archives.
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Figure 4.14 The Gene tab for the human PAH gene. This landing page provides links to many gene-specific resources.

with colleagues, click on the Share this Page link on the left sidebar. Ensembl also supports
Track Hubs, both public ones that are registered on the EMBL-EBI Track Hub Registry as well
as private ones.

Like the UCSC Genome Browser home page, the home page of Ensembl is a stepping-off
point for many Ensembl resources. Links to commonly used tools, such as BLAST and BLAT,
are provided on the top and middle sections of the page, and recent data updates are high-
lighted in the right column. The home page for each genome can be accessed by selecting the
organism name in the pull-down menu in the Browse a Genome section in the center of the
page. A search box at the top of the page provides access to Ensembl. To search for the human
PAH gene, select Human from the pull-down menu and type the term PAH in the search box.
Ensembl will provide several suggested hits, including a direct link to the human PAH gene
(Figure 4.13).

Ensembl data displays are organized in tabs. The Gene tab (Figure 4.14) has links to a
number of gene-specific views and resources. For example, from the index on the left side of
the Gene tab view, the Comparative Genomics → Orthologues link lists the computationally
predicted orthologs of the selected gene that Ensembl has identified among the available
genome assemblies (Herrero et al. 2016; Figure 4.15). The Location tab provides a graphical
view of the genomic context of the gene, similar to the view available at UCSC. The link to the
Location tab is at the top of the Gene tab view in Figure 4.14. The Location tab view is shown
in Figure 4.16 and depicts, at three different zoom levels, the genomic context of the PAH gene
on the GRCh38 genome assembly. The PAH gene has been mapped to chromosome 12, and
the top panel shows a cartoon of that chromosome, with the region surrounding the PAH gene
outlined in a red box. This red box is expanded in the middle panel of the figure, which shows
∼1 Mb of chromosome 12 around the PAH gene. The genes are shown as colored blocks, with
their identifiers noted below them. The region outlined in red in this middle section is further
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Figure 4.15 Computationally predicted orthologs of the human PAH gene, from the Comparative Genomics → Orthologues link in Figure 4.14.
Ensembl provides a detailed analysis of the orthologs calculated for each gene. Orthologs are grouped by species, such as primates, rodents,
and sauropsids. Links to individual orthologs are shown at the bottom of the page.

expanded in the large bottom panel, which zooms in on the PAH gene itself. Individual tracks
are visible in this view. Note the track called Contigs, a blue bar that represents the underlying
assembled contigs. By convention, any transcripts shown above this track are transcribed
from left to right. Transcripts drawn below the Contigs track, such as the PAH transcripts, are
transcribed on the opposite strand, from right to left.

The default human gene set used by Ensembl is the GENCODE Comprehensive set
(Box 4.2). Ensembl displays 18 PAH isoforms, each with a slightly different pattern of exons
(Figure 4.16). Coding exons are depicted as solid blocks, non-coding exons as outlined blocks,
and introns are the lines that connect them. The transcripts are color coded to indicate their
status: gold transcripts are protein coding and have been annotated by both the Ensembl
and HAVANA team at the WTSI, red transcripts are protein coding and have been annotated
by either Ensembl or HAVANA, and blue transcripts are processed transcripts that are
non-protein coding. Clicking on a transcript pops up a box with additional information about
that feature, including its accession number, and, for a transcript, the transcript type and gene
prediction source (Box 4.4; Figure 4.16).
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Figure 4.16 The Location tab for the human PAH gene. The Location tab is divided into three sections. The top section shows a cartoon of
human chromosome 12, with the region surrounding the PAH gene outlined in a red box. Other red and green lines on the cartoon indicate
assembly exceptions, or regions of alternative sequence that differ from the primary assembly because of allelic sequence or incorrect
sequence, as determined by the Genome Reference Consortium. The Region in detail shows a zoomed-in view of the region outlined by the
red box in the top section of the page. Genes are indicated by rectangles, colored as described in the gene legend below the graphic. The
gene identifiers, along with the direction of transcription, are shown below the rectangles. The bottom section shows a zoomed-in view
of the region surrounded by the red box in the Region in detail. The blue bar represents the genomic contig in this region. In the Genes
track, genes above the bar are transcribed from left to right; those below the contig are transcribed from right to left. A few of the PAH
transcripts, which are transcribed from right to left, are visible in this view. Gold transcripts are merged HAVANA/Ensembl transcripts; red
are Ensembl protein-coding transcripts; blue transcripts are non-protein-coding processed transcripts. The pop-up display, activated when
clicking on a particular transcript, shows the details for the first transcript in the Genes track, PAH-215.

Box 4.4 Ensembl Stable IDs

Ensembl assigns accession numbers to many data types in its database. Each identifier
begins with the organism prefix; for human, the prefix is ENS; for mouse, it is ENSMUS; and
for anole lizard, it is ENSACA. Next comes an abbreviation for the feature type: G for gene,
T for transcript, P for protein, R for regulatory, and so forth. This is followed by a series of
digits, and an optional version. The version number increments when there is a change
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in the underlying data. The gene version changes when the underlying transcripts are
updated, and the transcript and protein versions increment when the sequence changes.

For example, the human PAH gene has the following identifiers:

ENSG00000171759.9: the identifier of the human PAH gene
ENST00000553106.5: the identifier of one transcript of the human PAH gene,

transcript PAH-215
ENSP00000448059.1: the identifier of the protein translation of

transcript PAH-215, ENST00000553106.5
ENSR00000056420: the identifier of a promoter of several PAH transcripts

Navigation controls between the second and third panels of the Location tab allow the
display to be zoomed or moved to the left or right. The blue bar at the top of the Region in
detail allows users to toggle between Drag and Select. When the Drag option is highlighted,
click on the graphical view window and drag it to the left or right to change the location.
When the Select option is highlighted, click on a region of interest in the graphical view,
then, holding the mouse button down, scroll to the left or right to highlight the region
(Figure 4.17a). The highlight can be left on for visualization purposes or, alternatively,
select Jump to region to zoom in to the selected region. Figure 4.17b shows the results of
zooming in to the last exon of transcript PAH-203; since the gene is transcribed from right
to left, the last exon is on the left. Note the track called All phenotype-associated short
variants (SNPs and indels) that contains those variants that have been associated with a
phenotype or disease. SNPs are color coded by function, with dark green indicating coding
sequence variants. Select the dark green SNP, highlighted with a red box near the left end
of the window, and follow the link for additional information. The resulting Variant tab
provides links to SNP-related resources. For example, the Phenotype Data for this SNP
(rs76296470; Figure 4.18a) shows that this variant is pathogenic and is associated with
the disease phenylketonuria. The most severe consequence for this SNP is a stop gained.
Further details about the consequences are available under the Genes and regulation link
(Figure 4.18b) on the left sidebar. This variant is found in 10 transcripts of the PAH gene.
In five of those transcripts, it alters one nucleotide in a codon, changing an arginine to a
stop codon, thus truncating the PAH protein. In the other five transcripts, either the variant
is downstream of the gene or the transcript is non-coding.

Ensembl makes available many annotation tracks through the Configure this page link on the
left sidebar. There are over 500 tracks available for display on GRCh38, with the majority falling
in the categories of Variation, Regulation, and Comparative Genomics. The Ensembl Regula-
tory Build includes regions that are likely to be involved in gene regulation, including pro-
moters, promoter flanking regions, enhancers, CCCTC-binding factor (CTCF) binding sites,
transcription factor binding sites (TFBS), and open chromatin regions (Zerbino et al. 2016).
A summary Regulatory Build track is turned on by default in the Location tab, and the display
of individual features can be adjusted in the Configure this page menu. In the UCSC Genome
Browser, the GTEx track shows that the PAH gene is highly expressed in liver and kidney
(Figure 4.10); the epigenetic factors that may be controlling this activity can be viewed in
Ensembl Regulatory Build. To view these factors, navigate to Regulation → Histones & poly-
merases on the Configure this page menu, mouse over the HepG2 human liver carcinoma line,
and select All features for HepG2 (Figure 4.19a). In addition, navigate to Regulation → Open
chromatin & TFBS and confirm that the DNase1 track is in its default state for HepG2; the dark
blue indicates that the track is shown. Close the Configure this page menu by clicking on the
check mark in the upper right corner of the pop-up window. Notice that the Regulatory Build
track has now expanded to include the selected gene regulatory marks in the HepG2 cell line.
Zoom in on the first exon of transcript PAH-215 to see the promoter region of this gene, being
mindful of the orientation of the gene (Figure 4.19b). The solid red rectangle in the Regulatory
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(a)

(b)

Figure 4.17 Zooming in on the bottom section of the Location tab from Figure 4.16. (a) Highlight a region of interest, the final exon of PAH
transcript PAH-203, by clicking the mouse and then scrolling to the left or right. In order to highlight the region, the Drag/Select toggle in
the blue bar at the top of the section must first be set to Select. (b) To zoom in to the highlighted region, select Jump to region. It may take
a few iterations to create the view in this figure. At the bottom of the window is a track labeled All phenotype-associated – short variants
(SNPs and indels). In this track, the SNP rs76296470 has been manually highlighted in red.
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(a)

(b)

Figure 4.18 The Ensembl Variant tab. (a) To get more details about SNP rs76296470, click on the dark
green SNP that is highlighted in red in the All phenotype-associated – short variants (SNPs and indels) track
in Figure 4.17b. On the pop-up menu, click on more about rs76296470. The Phenotype Data section of the
Variant tab is available from the link in the blue sidebar. This variant is pathogenic for phenylketonuria.
(b) The Genes and regulation section of the Variant tab shows the location and function of the variant
in the transcripts that overlap it. Depending on the transcript, the SNP can change a codon to a stop
codon (stop gained), map downstream of a gene, or map to a non-coding transcript. The transcripts in
this view represent alternatively spliced forms of the gene PAH.
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(b)

(a)

Figure 4.19 The Ensembl Regulatory Build track. (a) Go to Configure this page on the left side of the
Location tab and select Regulation → Histones & polymerases. Scroll to the right to find the HepG2 (human
liver cancer) cell type. Mouse over the text HepG2 and turn on all features. Clicking on the box under the
cell type will change the track style; leave that set to the default of Peaks. Click on the black check mark
on the upper right corner of the configuration window to save the settings and exit the setup. To turn on
the DNase1 (DNaseI hypersensitive sites track), select Regulation → Open chromatin & TFBS and ensure
that the DNase1 box in the HepG2 column is colored dark blue so that it is in the Shown configuration.
Click on the black check mark on the upper right corner of the configuration window to save the settings
again. (b) Back on the Region in detail section of the Location tab, zoom in to the first exon of transcript
PAH-215. Note that the first exon is on the right end of the transcript, as the gene is transcribed from
right to left. The resulting display shows the details of the Regulatory Build track. The figure legend (not
shown) explains that the solid red box is a promoter. The DNaseI hypersensitive site and histone marks
are also shown as colored boxes.
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Build track shows the location of the PAH promoter. The presence of a DNaseI hypersensitive
site along with the activating histone marks of H3K27Ac, H3K4me1, H3K4me2, H3K4me3,
H3K79me2, and H3K9Ac may help to explain why this gene is highly expressed in liver cells
(Box 4.3). Detailed information about features in the Regulatory Build track, such as the source
of the data, is available under the Regulation tab. Click on the feature and select its identifier
(the letters ENSR, followed by numbers) to open this tab.

The left sidebar of the Location tab links to a number of additional useful resources. One
of those, Comparative Genomics → Synteny displays blocks of synteny between the human
chromosome featured in the Location tab and chromosomes from about 30 different organ-
isms. In these syntenic blocks, the order of genes and other sequence features is conserved

(a)

Figure 4.20 The Synteny view at Ensembl. (a) An overview of the syntenic blocks shared between human chromosome 12 and the mouse
genome. The human chromosome is drawn in the middle of the display as a thick white box. The syntenic mouse chromosomes are repre-
sented by thinner white boxes along the side. The colored rectangles highlight regions of synteny between the human and mouse. A red
outline illustrates the position of the PAH gene on the blue region of human chromosome 12 and on the blue region of mouse chromosome
10. (b) The Location tab for the PAH gene showing both the human and mouse syntenic regions. This is similar to the three-panel location
tab shown in Figure 4.16, except that both the human and mouse genomes are depicted. The top panel (not shown) displays the full length
human chromosome 12 and mouse chromosome 10. The second panel shows an overview of the genes in the region. The third panel
focuses in on the PAH gene. Note that the regions in human and mouse appear to be presented in opposite orientations; in human, the
PAH and IGF1 genes are both transcribed from right to left, while in mouse they are transcribed from left to right.
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(b)

Figure 4.20 (Continued)

across the genomes being compared. Figure 4.20a shows the synteny between human chro-
mosome 12 and the mouse genome. A cartoon of the human chromosome 12 is shown in the
center of the display as a thick white rectangle, and mouse chromosomes are drawn on the sides
as thinner white rectangles. Colored rectangles indicate regions of synteny between the human
and mouse. For example, the light blue region on human chromosome 12 is syntenic to the
light blue region on mouse chromosome 10. The region surrounding the PAH gene is outlined
in red on both human chromosome 12 and mouse chromosome 10. Below the cartoon is a
list of the human genes and corresponding mouse orthologs in the region of PAH. Selecting
Region Comparison next to one of the genes opens a new Location tab that depicts the syntenic
human and mouse chromosomes stacked on top of each other so that surrounding features
can be compared directly (Figure 4.20b). The upper panel shows the genomic context of the
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Figure 4.21 Ensembl BLAST output, showing an alignment between the human ADAM18 protein and
the lizard genome translated in all six reading frames. On the BLAST/BLAT page at Ensembl, paste the
FASTA-formatted sequence of human ADAM18, accession NP_001307242.1, into the Sequence data box.
This sequence can be found at www.ncbi.nlm.nih.gov/protein/NP_001307242.1/?report=fasta. Select
Genomic sequence from the anole lizard as the DNA database. On the results page, select the Alignment
link next to the highest scoring hit in order to view the sequence alignment. The human protein sequence
is on top, and the translated lizard genomic sequence is below. Lines indicate identical amino acids.

http://www.ncbi.nlm.nih.gov/protein/NP_001307242.1/?report=fasta
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PAH gene on human chromosome 12 (top) and mouse chromosome 10 (bottom). Note that the
genes are transcribed in opposite directions, so the order of the surrounding genes is flipped.
The bottom panel is zoomed in on the PAH gene itself. The Regulatory Build track on the mouse
assembly shows several regulatory features in this region. Further inspection of the regulatory
feature that overlaps with the 5′ end of the mouse Pah gene reveals activating histone marks
in liver and kidney cells, but not in other cell types (not shown), implying that the mouse Pah
gene has similar expression patterns to its human ortholog. To reset the settings back to the
default view, go to Configure this page in the left sidebar and select Reset configuration.

The Ensembl sequence data can also be queried via a BLAT or BLAST search by following
the link at the top of any page. Earlier in this chapter, Figure 4.11 outlined how to use BLAT
to look for a lizard homolog of the human ADAM18 gene. Ensembl data can be searched by
the more sensitive BLAST algorithm, including the TBLASTN program that is used to com-
pare a protein query with a nucleotide database translated in all six reading frames. Copy
and paste the FASTA-formatted protein sequence of NCBI RefSeq NP_001307242.1 into the
Sequence data box on the BLAST page and carry out a TBLASTN search against the anole
lizard genomic sequence. The sequence alignment of the top hit is shown in Figure 4.21. The
human protein query is on the top line, and the translated lizard genomic sequence on the
second. The sequences share only 32% sequence identity, but the alignment spans 650 amino
acids, and some key sequence features are conserved; note the alignment of almost every cys-
teine residue. Thus, this lizard genomic sequence is indeed a homolog of human ADAM18.
The BLAST algorithm, although about two orders of magnitude slower than BLAT for the
same query, is able to find a lizard ortholog of the human protein.

Ensembl Biomart

The BioMart tool at Ensembl is akin to the Table Browser at UCSC, in that it provides a
web-based interface through which to access the data underlying the Ensembl Genome
Browser. Results are returned as text or HTML-formatted tables. Ensembl hosts several mart
databases that are described in the online documentation. The Ensembl Genes database
contains the Ensembl gene set and integrates Ensembl genes, transcripts, and proteins with
a number of resources, including external references, protein domains, sequences, variants,
and homology data. After choosing a Database (e.g. Genes) and Dataset (genome assembly,
e.g. Homo sapiens), the user specifies the Filters (basically, the input data) and the Attributes
(the output data). Users can choose from among seven types of filters, including Region and
Gene. A Region could be a chromosomal position, while a Gene could be an accession number,
gene name, or even microarray probeset. The list of possible Attributes is long, and includes
Ensembl data such as gene and transcript identifiers and positions, links to external data
sources including RefSeq, UCSC, Pfam (protein families), and Gene Ontology (GO) terms, as
well as mapping to orthologs in the Ensembl genome databases.

In this example, we will identify the mouse orthologs of the human mRNA reference
sequences that are associated with common diseases or traits. To do this, we will start with
the output of the UCSC Table Browser, the mRNA reference sequences that overlap with a
variant from the GWAS Catalog, pull out the corresponding Ensembl gene and transcript
identifiers, and then link to the mouse orthologs. The initial step is to retrieve the RefSeq
accession numbers that overlap with a variant from the GWAS Catalog by reproducing the
search shown in Figure 4.12d, this time changing the output format to sequence. Copy
and paste the output from the Table Browser into your favorite text editor to create a list that
contains only the accession numbers. Note that BioMart does not accept the accession.version
format used by NCBI, so an accession number like NM_001042682.1 would need to be
rewritten as NM_001042682.

At BioMart, the first step is to enter these accession numbers as Filters into the Human Genes
(GRCh38.p10) Dataset. RefSeq mRNA accession numbers are entered in the filter called Gene
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(a)

(b)

(c)

Figure 4.22 Using BioMart to retrieve the mouse orthologs of the human RefSeqs from the GWAS Cat-
alog. (a) Enter the input RefSeq accession numbers into BioMart. First, create a list of RefSeq accession
numbers from the UCSC Table Browser output in Figure 4.12d. BioMart does not accept the acces-
sion.version format, so all of the text after the accession number itself will need to be removed. This step
can be implemented using a text editor that can perform a wildcard search and replace. For example,
to remove the period and all following text from each line, replace ..* with an empty string. Although
the resulting list of accession numbers will contain duplicates, as some RefSeqs have been mapped to
alternate loci, any redundancy will be removed from the final BioMart results. At BioMart, click on Filters
in the left sidebar, open the Gene menu, and click on Input external references ID list. In the pull-down
menu, select RefSeq mRNA IDs as the type of identifier. Paste in the list of accession numbers, which
should be of the form NM_001042682. Although BioMart instructions recommend limiting the number
of access numbers to 500, the interface will process the 3000+ RefSeq accession numbers from the
UCSC Table Browser output. (b) Set the BioMart Attributes (fields to be included in the output). Click on
the Attributes in the left sidebar, select Features at the top of the page, then open the Gene menu. Gene
stable ID and Transcript stable ID should be selected by default, and will return the Ensembl gene (ENSG)
and transcript (ENST) identifiers. Also select Gene name to return the gene symbols (e.g. ADAM18). (c) Set
additional Attributes. Close the Gene menu and open the External menu. Navigate to External References
and select RefSeq mRNA ID. This step is needed to return the input RefSeq accession numbers so that
they can be correlated later with the Ensembl identifiers. (d) BioMart output, including the identifiers
requested above. Click on the Results button at the top of the page to retrieve the output. Check the box
Unique results only to ensure that duplicated RefSeqs are returned only once. The order of the columns
in the results file depends on the order in which the items were added to the list of Attributes. The net
result is that each human RefSeq accession from the Table Browser is correlated with its Ensembl Gene
and Transcript ID, as well as a gene symbol. (e) BioMart output, with human Ensembl Gene ID and gene
symbol, as well as the orthologous mouse Ensembl Gene ID and gene symbol. Start a new query by
clicking the New box at the top of the BioMart window. Select the same Database, Dataset, and Filters
as before. Under Attributes, select the Homologues radio button. The human Ensembl Gene ID and gene
symbol are in the Gene →Ensembl menu, called Gene stable ID and Gene name. The mouse Ensembl Gene
ID and gene symbol are in the Orthologues → Mouse Orthologues menu, called Mouse gene stable ID
and Mouse gene name. This step outputs the orthologous mouse Ensembl Gene ID and symbol for each
human Ensembl Gene ID and symbol. The BioMart output from (d) and (e) can be merged to list the
mouse ortholog of each human RefSeq from the GWAS Catalog (Figure 4.12d).
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(d)

(e)

Figure 4.22 (Continued)

→ Input external references ID list (Figure 4.22a). The Attributes could be the Ensembl Gene
and Transcript identifiers, as well as the Gene name, in the Features → Gene → Ensembl section
(Figure 4.22b). To correlate the output with the RefSeq accession numbers entered as Filters,
it is necessary to also select the RefSeq accession as an attribute, in the Features → Gene →

External References section (Figure 4.22c). After the Filters and Attributes have been set, click
on the Results button in the upper left to return the BioMart output (Figure 4.22d). Data can be
returned as a text file or as a formatted page in the web browser, with hyperlinks to Ensembl
resources. Because of the differences in gene annotation strategies, the mapping of NCBI Ref-
Seq accession numbers to Ensembl gene and transcript identifiers is not one to one; some
RefSeq accessions map to more than one Ensembl gene and/or transcript, and some Ensembl
genes map to more than one RefSeq identifier.

Retrieving the mouse orthologs of the NCBI reference sequences must be done as a sepa-
rate step, as it is not possible to return an external identifier (i.e. the starting RefSeq accession
number) and an ortholog in the same BioMart query. Starting with the same Filter and human
RefSeq accession numbers as before, choose the Homologues section of the Attributes and select
the human Ensembl gene identifier and gene name under Gene → Ensembl, as well as the
mouse Ensembl gene identifier and gene name under Orthologues → Mouse Orthologues. The
results are shown in Figure 4.22e. Note that not all of the human gene identifiers have been
mapped to a corresponding mouse ortholog. The goal of this exercise was to identify the mouse
orthologs of the human RefSeq accession numbers from the GWAS Catalog. Using the human
Ensembl gene identifiers as a key, the human RefSeq accession numbers can be added to the
list of mouse orthologs. This can be carried out by using the VLOOKUP function in Microsoft
Excel, or by writing a script in your favorite programming language, and is left as an exercise
for the reader.

JBrowse

While the UCSC and Ensembl Genome Browsers provide user-friendly interfaces for viewing
genomic data from well-characterized organisms, there are fewer applications for displaying
genome assemblies and annotations for newly sequenced organisms or non-standard assem-
blies. The source code and executables for the UCSC Genome Browser are freely available for
academic, non-profit, and personal use, and can be set up to display custom data, not just
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those provided by UCSC. Thus, one option is for researchers to host their own UCSC Genome
Browser and use it to share custom genomes with the bioinformatics community. An alternate
method for sharing novel genome assemblies is to set up an Assembly Hub. Researchers host
the specially formatted genomic sequence and data tracks on their own web site, and anyone
with the URL can view the assembly though the UCSC Genome Browser.

Another way to share novel genome assemblies is to use JBrowse (Buels et al. 2016), a
web-based genome browser that is part of the Generic Model Organism Database (GMOD)
project, a suite of tools for generating genomic databases. JBrowse can handle data in a
variety of formats, and is relatively easy to install on a Linux- or Mac OS X-based web server
(Skinner and Holmes 2010). JBrowse browsers support plant genomes (e.g. Phytozome),
animal genomes (e.g. the Rat Genome Database), and disease-related databases of human
data (e.g. the COSMIC Genome Browser).

An example of using JBrowse to view a customized genome assembly and associated anno-
tations is at the Mnemiopsis Genome Project (MGP) Portal at the National Human Genome
Research Institute (NHGRI) of the US National Institutes of Health (NIH). Mnemiopsis leidyi is
a type of ctenophore, or comb jelly, a phylum of gelatinous zooplankton found in all the world’s
seas. The members of this phylum are called comb jellies because of their highly ciliated comb
rows, providing their primary means of locomotion, and these early branching metazoans have
proven to be an important model organism for understanding the diversity and complexity
seen in the early evolution of animals. The Mnemiopsis data featured in this portal are the
first set of whole genome sequencing data on any ctenophore species to be published and
made available to the scientific community (Moreland et al. 2014). The portal provides not
only genomic and protein model sequence data, but also a BLAST search interface, pathway
and protein domain analysis, and a customized genome browser, implemented in JBrowse, to
display the annotation data.

The Mnemiopsis genome was assembled into 5100 scaffolds using next generation sequence
data from the Roche 454 and Illumina GA-II methods of sequencing (Ryan et al. 2013). The
Mnemiopsis protein-coding gene models were predicted by integrating the results of ab initio
gene prediction programs with RNA-seq transcript data and sequence similarity to other
protein datasets. A view of one of those scaffolds is shown in Figure 4.23. As with the UCSC
and Ensembl Genome Browsers, data are organized in horizontal tracks, and exons are shown
as colored boxes. The first track, SCF, is the scaffold. The gene model track, labeled 2.2,
displays the exons of the predicted gene models. The next track, called PFAM2.2, highlights
Pfam domains found in the gene model. The Mnemiopsis RNA-seq reads were assembled into
transcripts using the Cufflinks program (Trapnell et al. 2010), and the CL2 track shows the
alignment of those transcripts to the genomic scaffold. The MASK track highlights repetitive
regions. The EST and GBNT tracks show, respectively, the alignment of publicly available
Mnemiopsis EST and other RNA sequences from GenBank. These two tracks are empty in this
region, so the gene in the gene model track is a novel gene prediction. The overlap between
the exons on the Pfam and gene model tracks shows that the predicted gene contains known
protein domains. The CL2 track lends further support to the gene prediction, as the exons of
the experimentally derived Mnemiopsis transcripts overlap the exons on the gene model track.

Navigation in JBrowse is fairly straightforward, especially for those already accustomed to
using the UCSC or Ensembl Genome Browsers. Tracks can be added or removed from display
by using the checkboxes on the left side of the window. On the display window, click on a
track name and drag it to move the track up or down. To shift the focus of the display window
upstream or downstream, click on the display and drag it to the left or right. The left and right
arrows at the top of the page also move the display window. JBrowse provides multiple ways
to zoom in and out. One option is to use the plus and minus magnifying glasses at the top of
the page. Alternatively, place the mouse in the sequence coordinates above the top track and
click and drag to highlight a region and zoom in on it. Double clicking on a region also zooms
in. Clicking on a track feature opens a window with additional information about that feature.
For example, on the MGP Portal, clicking on a gene model in the 2.2 track opens the Gene Wiki
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Figure 4.23 JBrowse display of a predicted Mnemiopsis gene (ML05372a) from the Mnemiopsis Genome Project Portal at the National Human
Genome Research Institute. Seven tracks are shown on this display: SCF , assembled genomic regions are solid black and intermittent gaps
are shaded bright pink; 2.2, consensus Mnemiopsis gene models; PFAM2.2, non-redundant Mnemiopsis protein domains derived from Pfam;
CL2, RNA-seq reads derived from Mnemiopsis embryos, assembled into transcripts using Cufflinks (Trapnell et al. 2010); MASK, genomic
regions that have been repeat-masked using VMatch are shaded in light blue; EST , Mnemiopsis expressed sequence tags (ESTs) from
GenBank; GBNT , Mnemiopsis mRNAs and other non-EST RNAs from GenBank.

for that model, a detailed page that includes nucleotide and protein sequences, pre-computed
BLAST searches, and annotated Pfam domains. Note that although the general look and feel
of JBrowse will remain similar across different genomes, individual JBrowse developers will
create tracks and customizations that are specific to their genome project.

Summary

The UCSC and Ensembl Genome Browsers are sophisticated tools that provide free, web-based
access to genome assemblies and annotations. This chapter has focused on examples from
the human genome and a subset of the annotation tracks available for it. By adding tracks
to the default view, users are able to view annotated genes, sequence variants, gene regulatory
regions, gene expression data, and much more. The displays are highly customizable, and users
can choose which data to view, the display style, and, in some cases, even change the colors of
the annotated features. Both browsers can be accessed not only by text-based queries, such as
gene symbol or chromosomal position, but also by searches with either nucleotide or protein
sequences. The UCSC Genome Browser supports the BLAT search engine, while Ensembl sup-
ports both BLAT and BLAST, depending on the analysis type. Furthermore, the UCSC Table
Browser and Ensembl’s BioMart provide alternate entry points into the underlying data at each
site, in which queries can be constructed using a web-based interface and data returned as text
that can be downloaded and further manipulated. Although the examples illustrated in this
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chapter all derive from the GRCh38 assembly of the human genome, both UCSC and Ensembl
host assemblies from many other organisms. The genomes may be assembled in shorter scaf-
folds, rather than chromosomes, and the variety of annotation types may be much smaller, but
the basic look and feel of the genome browser will remain the same across different species.

With new developments in sequencing technology, even smaller laboratories are now able
to generate whole genome sequencing data, including ChIP-Seq and RNA-seq, exome and
genome sequencing, and even novel genome assemblies. Starting in 2015, genomic data shar-
ing policies now require that all NIH-funded research that generates large-scale genomic data
be submitted to a public database in a timely manner. While human data must be submitted to
an NIH-designated data repository, as of this writing, non-human data may be made available
through any widely used data repository. Viewing and sharing these data with the larger com-
munity of biologists may best be done with a genome browser. Both the UCSC and Ensembl
Genome Browsers provide the option for users to upload their own annotations and view
them in the context of the public genome data. Using Sessions or Track Hubs, users can share
these data with colleagues. The Assembly Hubs feature at UCSC now allows users to share
novel genomes using the Genome Browser framework. Furthermore, the source code for the
UCSC Genome Browser is publicly available, so others are free to set up their own browsers to
host their own annotations, or even their own genomes. Alternatively, researchers who want
to host their own genome browser should consider JBrowse. This freely available software
tool can be easily installed on a web server and used to host custom genomes and annotations.

The UCSC and Ensembl teams start with the same source of data, a genome assembly, often
provided by the GRC. Each team then layers on its own annotations from different sources,
including the location of genes, from GENCODE, RefSeq, and other gene prediction pipelines,
and variants, from NCBI’s dbSNP. Both browsers also include the location of experimentally
determined epigenetic marks, including histone modifications, as well as DNaseI hypersen-
sitive sites, both of which can inform predictions of gene regulatory regions. The regulatory
tracks at UCSC come from the ENCODE project, while Ensembl provides a Regulatory Build,
which includes data from ENCODE as well as other sources. Although individual researchers
may have personal preferences about which interface is easier to use, or which site provides
information that is more relevant to the biological question they are studying, most members
of the bioinformatics community will undoubtedly use a genome browser at some point in
their research career.

Internet Resources

UCSC Genome Browser
Main page genome.ucsc.edu
Genome Browser User’s Guide genome.ucsc.edu/goldenPath/help/hgTracksHelp.html
Table Browser User’s Guide genome.ucsc.edu/goldenPath/help/hgTablesHelp.html
Displaying custom annotation data genome.ucsc.edu/goldenPath/help/customTrack.html
Data file formats for custom annotation genome.ucsc.edu/FAQ/FAQformat.html
Sessions User’s Guide genome.ucsc.edu/goldenPath/help/hgSessionHelp.html
Using UCSC Genome Browser Track
Hubs

genome.ucsc.edu/goldenPath/help/hgTrackHubHelp.html

Assembly Hubs wiki genomewiki.ucsc.edu/index.php/Assembly_Hubs
Contact information genome.ucsc.edu/contacts.html

Ensembl Genome Browser
Main page www.ensembl.org
Ensembl Stable IDs www.ensembl.org/info/genome/stable_ids
Ensembl Archives www.ensembl.org/info/website/archives
BioMart www.ensembl.org/biomart/martview

https://genome.ucsc.edu/
https://genome.ucsc.edu/goldenPath/help/hgTracksHelp.html
https://genome.ucsc.edu/goldenPath/help/hgTablesHelp.html
https://genome.ucsc.edu/goldenPath/help/customTrack.html
http://genome.ucsc.edu/FAQ/FAQformat.html
https://genome.ucsc.edu/goldenPath/help/hgSessionHelp.html
https://genome.ucsc.edu/goldenPath/help/hgTrackHubHelp.html
http://genomewiki.ucsc.edu/index.php/Assembly_Hubs
http://genome.ucsc.edu/contacts.html
http://www.ensembl.org
http://www.ensembl.org/info/genome/stable_ids
http://www.ensembl.org/info/website/archives
http://www.ensembl.org/biomart/martview
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pre!Ensembl pre.ensembl.org
Help & Documentation www.ensembl.org/info
BioMart documentation www.ensembl.org/info/data/biomart
Displaying custom annotation data www.ensembl.org/info/website/upload
Data file formats for custom annotation www.ensembl.org/info/website/upload/index.html#formats
Contact information www.ensembl.org/info/about/contact

JBrowse
JBrowse Genome Browser jbrowse.org
COSMIC Genome Browser cancer.sanger.ac.uk/cosmic/browse/genome
Mnemiopsis
Genome Project Portal (MGAP)

research.nhgri.nih.gov/mnemiopsis

Phytozome phytozome.jgi.doe.gov
Rat Genome Database rgd.mcw.edu

Other genome resources
GENCODE www.gencodegenes.org
Genome Reference Consortium www.ncbi.nlm.nih.gov/grc
GWAS Catalog www.ebi.ac.uk/gwas
National Center for Biotechnology
Information (NCBI) Genome Data
Viewer

www.ncbi.nlm.nih.gov/genome/gdv

National Institutes of Health (NIH)
Genomic Data Sharing Policyies

osp.od.nih.gov/scientific-sharing/policies

NIH Genotype-Tissue Expression
(GTEx) Portal

www.gtexportal.org

Track Hub Registry www.trackhubregistry.org

Further Reading

The best way to learn about the data and tools available in the UCSC and Ensembl Genome
Browsers is to read the relevant sections of the online documentation that accompanies each
browser. The documentation on both sites is extensive and up to date, and will likely answer the
user’s questions. Alternatively, specialized questions can be addressed by contacting the web site
development teams. URLs are listed in the Internet Resources section of this chapter.

The Database issue of Nucleic Acids Research, published in January of each year, usually
includes articles that provide a broad overview of each Genome Browser as well as a description of
new data and resources. The references for 2019 are listed below, and additional information can
be found in Chapter 1.
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Genome Annotation
David S. Wishart

Introduction

Thanks to rapid advances in DNA sequencing technology and DNA analysis software, genome
projects that used to take years and cost millions of dollars to finish can now be completed in
just weeks at a cost of a few thousand dollars. The typical workflow for a modern genome
sequencing project involves performing whole genome DNA sequencing of selected organ-
isms using a next generation DNA sequencer, running a variety of programs to assemble a
reference genome, and using software to locate and identify all of the protein-coding ribo-
somal RNA (rRNA) and transfer RNA (tRNA) genes within the genomic sequence. This last
process is called genome annotation and it is the primary subject of this chapter. Strictly speak-
ing, genome annotation is not genome prediction. Gene or genome prediction is a subfield of
genome annotation. In particular, gene prediction uses mathematical or probabilistic models
to analyze DNA sequences and to identify gene boundaries and gene structures. On the other
hand, genome annotation uses gene (and genome) prediction results along with other lines of
evidence such as gene expression data, protein expression data, sequence homology to other
annotated genomes, and even literature assessments to generate a set of genome annotations.
These annotations include not only the location of the genes on each chromosome but also
their names (based on homology), calculated properties (such as sequence length, amino acid
composition, and molecular weight), expression levels (if available), and probable functions.

Depending on the type of organism that has been sequenced, the task of genome annotation
can be either quite easy or quite difficult. Prokaryotes (including bacteria and archaea) have
relatively small genomes, typically no more than 5 million base pairs, consisting of one or
two circular chromosomes and perhaps one or two small plasmids. The gene structure for
prokaryotes is very simple, with each gene being a contiguous open reading frame (ORF).
Furthermore, the coding density for prokaryotes is very high, with at least 85–90% of their
DNA coding for proteins, tRNAs, and rRNAs (Hou and Lin 2009). This makes the identification
of genes in prokaryotes relatively simple. On the other hand, eukaryotic gene identification
is often quite difficult. This is because eukaryotes have very large genomes (often billions of
base pairs), with very low (often <2%) coding densities (Hou and Lin 2009). Eukaryotic gene
structure is also much more complex than prokaryotic gene structure. In particular, eukaryotic
genes are split into exons and introns, and most eukaryotic genes are separated by very large
stretches of non-coding DNA (called intergenic regions).

While the cellular machinery in eukaryotic cells is able to recognize and process gene sig-
nals with remarkable accuracy and precision, our understanding of the molecular mechanisms
by which eukaryotic sequence signals are recognized and processed remains incomplete. As a
result, currently available eukaryotic gene prediction methods are not very accurate. Therefore,
in the absence of additional experimental or extrinsic information (e.g. gene expression data),
one should assume that eukaryotic gene predictions are only approximate. Even with consid-
erable experimental data at hand, it is still quite difficult to fully annotate the best-studied
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eukaryotic genomes. For instance, the DNA sequence for the human genome has been known
since 2001, but the actual number of genes encoded within our own genome has still not been
fully determined (Pennisi 2003; Ezkurdia et al. 2014).

This chapter briefly reviews some of the computational methods and algorithms underly-
ing computational gene prediction for both prokaryotes and eukaryotes. It also describes how
experimental evidence and database comparisons can be integrated into these gene prediction
tools to improve gene prediction performance and to ensure more complete genome annota-
tion. Methods for assessing the performance of computational gene finders are also described.
Finally, a number of genome annotation pipelines are highlighted, along with several tools for
visualizing the resulting annotations.

Gene Prediction Methods

Different methods for gene prediction have been developed separately for prokaryotes and
eukaryotes because of important differences in their overall gene organization. Gene-finding
programs, whether for prokaryotes or eukaryotes, fall into two general categories: intrinsic
(or ab initio) gene predictors and extrinsic (or evidence based) gene finders (Borodovsky et al.
1994).

Ab initio gene prediction approaches attempt to predict and annotate genes solely using
DNA sequence data as input and without direct comparison with other sequences or sequence
databases. Ab initio approaches involve searching for sequence signals that are potentially
involved in gene specification and/or looking for regions that show compositional bias that
has been correlated with coding regions. This combined approach to gene finding is called
searching by signal and searching by content. GeneMark (Borodovsky and McIninch 1993),
GLIMMER (Delcher et al. 1999, 2007), EasyGene (Larsen and Krogh 2003), and GENSCAN
(Burge and Karlin 1997) are well-known examples of intrinsic or ab initio gene-finding pro-
grams. In contrast, extrinsic gene-finding methods involve both homology-based and compar-
ative approaches, in which the gene structure is determined through comparison with other
sequences whose characteristics are already known. BLASTX is an example of an extrinsic
gene-finding program that has been frequently applied for gene identification in prokaryotic
genomes (Borodovsky et al. 1994). Extrinsic gene prediction methods depend on having exper-
imental evidence (such as messenger RNA (mRNA) or RNA-seq data) and/or a large body of
pre-existing experimental sequencing data to perform sequence comparisons and gene identi-
fications. We will discuss these extrinsic methods and their role in genome annotation a little
later in this chapter. To begin with, we will focus on the intrinsic or ab initio gene prediction
methods.

Ab Initio Gene Prediction in Prokaryotic Genomes

A prokaryotic gene typically begins with a start codon (e.g. ATG), ends with one of three stop
codons (e.g. TAG, TAA, or TGA), and is usually at least 100 bases long (Figure 5.1). These
protein-coding genes are called ORFs. Most of the genes in prokaryotic genomes are organized
into operons, which are gene clusters consisting of more than one ORF that are under the con-
trol of a shared set of regulatory sequences. These regulatory sequences can include enhancers,
silencers, terminators, operators, or promoters. Regulatory sequences typically constitute the
10–15% of the prokaryotic genome that is not coding for protein sequences. A prokaryotic
gene promoter is a small segment of DNA that initiates transcription of a particular gene. Pro-
moters are located near the transcription start sites (TSSs) of genes, on the same strand and
upstream of the gene or ORF. In prokaryotes, the promoter contains two short sequence ele-
ments approximately 10 bases and 35 nucleotides upstream from the TSS. The element located
10 bases upstream is called the TATA box in archaea or the Pribnow (TATAAT) box in bacteria
(Pribnow 1975). These abbreviations or letters actually indicate the consensus DNA sequences
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ATGACAGATTACAGA......TGCAGTTACAGGATAG

TATA box
Start codon Stop codon

ORF

Figure 5.1 A simplified depiction of a prokaryotic gene or open reading frame (ORF) including the start
codon (or translation initiation site), the stop codon (TAG), and the TATA or Pribnow box.

seen for these regions. In addition to the TSS, almost all prokaryotic genes have a ribosome
binding site (RBS) that is 8–10 bases upstream of the start (ATG) codon. The start codon is
also called the translation initiation site (TIS). The RBS exhibits a specific nucleotide pattern
(AGGAGG) called a Shine–Dalgarno (SD) consensus sequence (Shine and Dalgarno 1975).
The SD sequence enables interactions between mRNA and the cell’s translational machin-
ery. In bacteria and archaea, translation initiation is generally thought to occur through the
base-pairing interaction between the 3′ tail of the 16S rRNA of the 30S ribosomal subunit and
the site in the 5′ untranslated region (UTR) of an mRNA that carries the SD consensus.

Consensus sequences, while providing a useful reminder or mnemonic, are never really
used in modern gene signal or gene site (i.e. TIS, RBS, TSS, and terminator) identification.
Instead, most gene signals can be identified by using positional weight matrices (PWMs) or
position-specific scoring matrices (PSSMs; see also Chapter 3). These scoring matrices are cal-
culated from carefully aligning a set of known functional signals and determining the adjusted
frequency with which specific bases may appear in certain positions. An example of how to
calculate a PSSM is given in Box 5.1. Once calculated for a given signal, signal-specific PSSMs
can be used to rapidly compute, along the length of a sequence of interest, the position and
likelihood of the selected gene signals. A simplified gene prediction protocol for prokaryotes
involves the following steps.

• Start at the beginning of the genome sequence at the 5′ end of one DNA strand and find an
ATG start codon that makes the longest ORF (minimum 150 bases), then move to the next
ATG downstream of the previously identified ORF and repeat the process for the rest of the
genome sequence.

• Repeat the above process for the opposite DNA strand.
• For all identified ORFs, score the quality of the TSS and RBS signals using site-specific

PSSMs to refine the ORF predictions and produce a final list of genes.

Box 5.1 Position-Specific Scoring Matrices

Position-specific scoring matrices (PSSMs), which are also called positional weight matri-
ces (PWMs) or positional specific weight matrices (PSWMs), are usually derived from a set
of aligned sequences that are believed to be functionally related. In this example, five dif-
ferent DNA sequences consisting of 10 bases each, which are believed to be functionally
related (as promoter regions), are aligned.

A T T T A G T A T C
G T T C T G T A A C
A T T T T G T A G C
A A G C T G T A A C
C A T T T G T A C A

From this alignment, a simple positional frequency matrix (PFM) can be generated.
In this matrix the frequency of the As, Cs, Gs, and Ts is tabulated (based on the above
alignment) for each of the 10 base positions. So in the first position there are three As,
one C, one G, and no Ts (see column 1). The PFM for the above alignment is:

(Continued)
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Box 5.1 (Continued)

A 3 2 0 0 1 0 0 5 2 1
C 1 0 0 2 0 0 0 0 1 4
G 1 0 1 0 0 5 0 0 1 0
T 0 3 4 3 4 0 5 0 1 0

The PFM can now be converted to a positional probability matrix (PPM). A PPM is a
matrix consisting of a set of decimal values based on the percentage or frequency of
occurrences of each base in each position in the sequence alignment. In other words, we
must normalize the frequencies by dividing the nucleotide count at each position by the
number of sequences in the alignment. So if there are five sequences in the alignment
and three As in the first position, then the positional probability for A in the first position
is 3/5 = 0.6. Likewise, if there is one C in the first position, its positional probability is
1/5 = 0.2. One G corresponds to a positional probability of 0.2, and no Ts corresponds to a
positional probability of 0 (see column 1). Performing this same calculation across all 10
positions of the alignment, the full PPM would appear as follows:

A .6 .4 0 0 .2 0 0 1 .4 .2
C .2 0 0 .4 0 0 0 0 .2 .8
G .2 0 .2 0 0 1 0 0 .2 0
T 0 .6 .8 .6 .8 0 1 0 .2 0

The probabilities in the above PPM can be multiplied together to calculate the probabil-
ity that a given DNA sequence is closely related to the original five sequences. For instance,
if we wanted to know if the new sequence ATTTTGTATA is closely related, we could mul-
tiply the values for each sequence position to calculate that sequence’s probability:

p = 0.6 × 0.6 × 0.8 × 0.6 × 0.8 × 1 × 1 × 1 × 0.2 × 0.2 = 0.0055

Note that if we had performed this same calculation on an almost identical sequence
such as ACTTTGTATA (which differs by only one base) we would get p = 0. We get a 0 prob-
ability because C was not observed in the second position of our training set. Building a
PPM with only five sequences means you are very likely to underestimate (or overesti-
mate) the true fractional frequencies of each base, leading to problems in calculating
probabilities similar to what we just saw. To account for the small size of our multiple
sequence alignment (MSA) we should introduce pseudocounts. Pseudocounts are used to
avoid issues that result from matrix entries having a value of 0. Pseudocounting is equiv-
alent to multiplying each column of the PPM by a Dirichlet distribution, thereby allowing
the probability to be calculated for the “unseen” or unused sequences. A simple way of
doing this is to normalize the data to match the overall base composition of the genome(s)
being considered and to add a correction factor that scales as the square root of the num-
ber of sequences in the MSA. Hence, the following formula can be used to rescore each
base position in the PPM:

score (Xi) = (Qx + Px)∕(N + B)

where Qx is the number of counts of base type X at position i, Px is the number of
pseudocounts of base type X , which is equal to B× the frequency of base type X , N
is the total number of sequences in the MSA, and B is the number of pseudocounts
(assumed to be

√
N). For the genome or genomes of interest the frequency of As is 0.32,

Ts is 0.32, Cs is 0.18, and Gs is 0.18. Using this information the value for A in the first
position is (3+ (

√
5× 0.32))/(5+

√
5) = 0.51. The value for C in the second position is

(1+ (
√

5× 0.18))/(5+
√

5) = 0.19, and so on. The pseudocount corrected PPM is now:

A .51 .38 .09 .09 .24 .09 .09 .79 .38 .24
C .19 .06 .06 .33 .06 .06 .06 .06 .19 .61
G .19 .06 .19 .06 .06 .75 .06 .06 .19 .06
T .09 .51 .65 .51 .65 .09 .79 .09 .24 .09
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Ideally each of the columns should sum to 1 but, because of rounding, the sums in
this example are sometimes slightly above or below 1. With this rescored matrix, you will
notice that there are now no zero entries. However, the calculation of probabilities through
multiplication is tedious (given the number of significant digits) and difficult. A simpler
way is to convert the PPM to a different type of matrix by taking the negative log10 of each
number in the PPM. This converts two-digit decimals to single-digit decimals and it also
allows one to add rather than multiply to calculate probabilities. If we take the −log10 of
the above PPM, we get:

A 0.3 0.4 1.0 1.0 0.6 1.0 1.0 0.1 0.4 0.6
C 0.7 1.2 1.2 0.5 1.2 1.2 1.2 1.2 0.7 0.2
G 0.7 1.2 0.7 1.2 1.2 0.1 1.2 1.2 0.7 1.2
T 1.1 0.3 0.2 0.3 0.2 1.0 0.1 1.0 0.6 1.0

This modified matrix is called a log likelihood scoring matrix or a PSSM. Using the above
PSSM, we can now calculate the score (or the log likelihood) for the query sequence
ATTTTGTATA: 0.3+ 0.3+ 0.2+ 0.3+ 0.2+ 0.1+ 0.1+ 0.1+ 0.6+ 0.6 = 2.8. The sequence
score gives an indication of how different the sequence is from a random sequence. The
higher the score, the more likely the sequence is a promoter/functional site and not a
random sequence. A score of 2.8 is very high. The sequence score can also be interpreted
in terms of the binding energy for that sequence.

However, such a simplified algorithm would only likely be 75–80% correct (Besemer et al.
2001). This is because prokaryotic genes are not always so simple to identify. For instance, the
ATG start codon is not always used for all bacterial genes. Among the 4284 genes identified
in Escherichia coli, 83% use ATG, 14% use GTG and 3% use TTG start codons (Blattner et al.
1997). Likewise, using a simple rule to identify only long ORFs may miss many short ORFs
or misidentify ORFs that have an unusual codon bias (indicating they are unlikely to code for
a gene). Indeed, the length distributions of ORFs known to code for proteins compared with
ORFs that occur by chance differ quite significantly. More specifically, coding ORFs have a
length distribution that resembles the gamma distribution (see Glossary), while non-coding
ORFs have a length distribution that resembles a simple exponential function (Lukashin and
Borodovsky 1998). In addition to these complications, it has recently been found that certain
prokaryotic genes have very unusual gene start signals because of a phenomenon called lead-
erless transcription (Slupska et al. 2001). In leaderless transcription, RNA transcripts have very
short 5′ UTRs, with a length < 6 bases. These regions are so short that they are unable to host
the RBS. This places the TSS at or very near to the TIS. In these cases, the promoter signal has
to be used for more accurate TIS identification.

Given the variations in the length and character of many prokaryotic gene signals, PSSMs are
not the most effective signal recognition tools available. More advanced methods of gene signal
recognition exist, such as Markov models (Box 5.2), hidden Markov models or HMMs (Box 5.3),
artificial neural networks, and support vector machines. These machine learning methods do a
far better job of handling variable lengths and conditional sequence dependencies that cannot
be captured with simple PSSMs.

Box 5.2 Markov Models

A Markov chain, model, or process refers to a series of observations in which the prob-
ability of an observation depends on a number of previous observations. The number of
observations defines the “order” of the chain. For example, in a first-order Markov model,
the probability of an observation depends only on the previous observation. In a Markov
chain of order 5, the probability of an observation depends on the five preceding obser-
vations. A DNA sequence can be considered to be an example of a Markov model because
the likelihood of observing a particular base at a given position may depend on the bases

(Continued)
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Box 5.2 (Continued)

preceding it. In particular, in coding regions, it is well known that the probability of a
given base depends on the five preceding bases, reflecting observed codon biases and
dependencies between adjacent codons. In non-coding regions, such dependence is not
observed. When scanning an anonymous genomic region, one can compute how well the
local nucleotide sequence conforms to the fifth-order dependencies observed in coding
regions and assign appropriate coding likelihood scores.

Box 5.3 Hidden Markov Models in Gene Prediction

Hidden Markov models (HMMs) are used to provide a statistical representation of real
biological processes. They have found widespread use in many areas of bioinformatics,
including multiple sequence alignment, the characterization and classification of protein
families, the comparison of protein structures, and the prediction of gene structure.

In this chapter, all of the gene-finding methods that are described have two things in
common: they use a raw nucleotide sequence as their input and, for each position in the
sequence, they attempt to predict whether a given base is most likely found in an intron,
an exon, or within an intergenic region. In making these predictions, the algorithm applied
(HMM or otherwise) must take into account what is known about the structure of a gene,
showed in a simplified fashion in Figure 5.2.

Working from the 5′ to 3′ end of the gene, the method must take into account the
unique characteristics of promoter regions, transcription start sites, 5′ UTRs, start codons,
exons, splice donors, introns, splice acceptors, stop codons, 3′ UTRs, and polyA tails. In
addition to any conserved sequences or compositional bias that may characterize each of
these regions (Box 5.1), the method also needs to take into account that each of these
elements appears with a controlled syntax; for example, the promoter (and its TATA box)
must appear before the start codon, an initial exon must follow the start codon, introns
must follow exons, introns can only be followed by internal or terminal exons, stop codons
cannot interrupt the coding region, and polyA signals must appear after the stop codon.
Finally, an ORF must be maintained throughout to produce a protein once all is said and
done.

Each of the elements – exons, introns, and so forth – are referred to as states. The
sequence characteristics and syntactical constraints described above allow a transition
probability to be assigned, indicating how likely a change of state is as one moves through

Transcribed region

Exon 1 Exon 2 Exon 3Intron 1 Intron 2

Start codon

5′ UTR 3′ UTR

Stop codon

Downstream
intergenic
region

Upstream
intergenic
region

Figure 5.2 A simplified depiction of a eukaryotic gene illustrating the multi-intron/exon structure,
the location of the start and stop codons, the untranslated regions (UTRs), and the intergenic
regions that surround the transcribed gene.
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the sequence, base by base. Although the user “sees” the nucleotide sequence being
analyzed, the user does not actually “see” the states that the individual bases are
in – hence the term hidden. Put otherwise, each state emits a particular kind of
nucleotide sequence, with its own emission probability; the state emitting the nucleotide
sequence is hidden, but the sequence itself is visible. The transition and emission proba-
bilities are derived from training sets, sequences for which the correct gene structure is
already known. The goal here is to develop a set of parameters that allow the method to
be fine-tuned, maximizing the chances that a correct prediction is generated on a new
sequence of interest. As alluded to in the text, these parameters differ from organism to
organism, and the success of any given HMM-based method depends on how well these
parameters have been deduced from the training set.

The most advanced ab initio prokaryotic gene-finding programs incorporate all of the
above-mentioned caveats and conditions. In particular, they handle alternate start codons,
they accommodate differential codon bias, they model gene length distributions, they
calculate typical and atypical GC content, they deal with leaderless transcription, and they
incorporate machine learning-based or advanced signal recognition techniques to identify
key gene signals. GeneMarkS (Borodovsky and Lomsadze 2011), GLIMMER (Delcher et al.
2007), EasyGene (Larsen and Krogh 2003), and Prodigal (Hyatt et al. 2010) are all examples of
very advanced prokaryotic gene-finding programs. They are remarkably accurate (>97% on
average) at detecting validated protein-coding ORFs (Besemer et al. 2001; Delcher et al. 2007;
Hyatt et al. 2010). However, to get this kind of performance these prokaryotic gene-finding
programs need to be trained on well-annotated genomes from bacterial species that are
already similar in sequence to the genome being analyzed. If the programs are not specifically
trained, they do not do quite as well (90–95% accuracy).

Ab Initio Gene Prediction in Eukaryotic Genomes

A diagram of how eukaryotic genes are organized is shown in Figure 5.2. As can be seen from
this figure, eukaryotic genes are somewhat more complex than prokaryotic genes. In partic-
ular, the density of protein-coding regions for eukaryotic genomes (and especially vertebrate
genomes) is 90–100 times lower than it is for prokaryotic genomes. These sparse protein-coding
regions are separated by long stretches of intergenic DNA while their coding sequences (the
exons) are interrupted by large, non-coding introns. Genes are recognized and transcribed by
eukaryotic RNA polymerases, and the resulting long RNA transcripts are then cut by various
small ribonuclear proteins (snRNPs) to remove the introns (Will and Lührmann 2011). The
remaining exons are then spliced together to form the much smaller protein-coding transcript.
The snRNPs recognize specific cut sites at the exon/intron junctions to ensure that the splicing
is always performed precisely.

In the human genome, just 1.1% of the genome is composed of exons, 24% is composed of
introns, and 75% of the genome constitutes intergenic DNA. On average there are 5.48 exons
per gene with each exon encoding a peptide fragment of 30–36 amino acids (Sakharkar et al.
2002). The longest exon in the human genome is 11 555 bases, while the shortest is just two
bases long (Sakharkar et al. 2002). Not only are exons “rare,” they vary tremendously in length.
What is more, they can be alternately spliced to produce very different combinations of final
gene (transcript) products. This makes gene prediction significantly more difficult for eukary-
otes than for prokaryotes.

Computational gene prediction for eukaryotes essentially involves mimicking the biological
transcriptional and splicing process. In the biological process, various proteins and protein
complexes within the cell scan through the DNA sequence, recognize and bind to specific DNA
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sites, transcribe the gene, and then cut and splice the transcript to form a final gene product.
In the computational process, the proteins are replaced with various algorithms that:

• identify and score suitable splice sites and start and stop signals along the query sequence
• determine the location of the candidate exons, as deduced through the detection of these

signals
• score and identify the best exons as a function of both the signals used to detect the exons

as well as the coding statistics computed on the putative exon sequence itself
• assemble (or “splice”) a subset of these exon candidates into a predicted gene structure. The

assembly is produced in a way that maximizes a particular scoring function that is dependent
on the score of each of the individual exon candidates.

The way in which each of these tasks is actually implemented varies from program to pro-
gram. Rather than discuss each program in detail, we will describe the three major processes
common to almost all ab initio eukaryotic gene prediction programs: predicting exon-defining
signals, predicting and scoring exons, and, finally, exon assembly.

Predicting Exon-Defining Signals

Just as prokaryotic genes have DNA signals, eukaryotic genes have distinct DNA signals
as well. Some of these elements are similar to prokaryotes, while others are quite different
(Figure 5.3). For instance, many eukaryotic genes have promoter elements that also share
some sequence similarity to prokaryotic genes. The most extensively studied core promoter
element in eukaryotes is known as the TATA box or the Goldberg–Hogness box (Lifton
et al. 1978), found 25–30 base pairs upstream from the TSS. The TATA box is also found
in archaea and bacteria and it appears to be a very ancient DNA signal. The TATA box in
eukaryotes has the consensus sequence TATA(A/T)A(A/T) and is often coupled to another
regulatory sequence called the CCAAT box (consensus: GGCCAATCT), located ∼150 base
pairs upstream of the TATA box. Only about 25–35% of mammalian genes contain TATA
boxes, while the rest contain other kinds of core promoter elements. Eukaryotic genes also
contain regulatory sequences beyond the core promoter, including enhancers, silencers,
and insulators. These regulatory sequences can be spread over a large genomic distance,
often hundreds of kilobases from the core promoters. In addition to having a wide variety of
promoter or enhancer signals, eukaryotic genes also have very specific DNA signals to define
the location of exons and introns.

More specifically, there are four basic DNA signals involved in defining exons: the TIS, the
5′ (or donor) splice site, the 3′ (or acceptor) splice site, and the translational stop codon. In
eukaryotes, the TIS is defined by the Kozak consensus sequence, often given as ACCATGG
(Kozak 1987), where the central ATG is the start codon. The 5′ donor splice site is typically
defined by a consensus sequence given as GG/GT, while the 3′ acceptor splice site has a con-
sensus sequence of CAG/G, where the slash indicates the cut sites for splicing (Figure 5.4). The
translational stop codons include the usual TAG, TAA, or TGA.

GC box
~200 bp

CCAAT box
~100 bp

TATA box
~30 bp

Gene

Transcription
start site

Exon ExonIntron

Figure 5.3 A schematic illustration of the upstream regions of a eukaryotic gene with the GC box located
∼200 bp upstream, the CCAAT box located∼100 bp upstream, and the TATA box located∼30 bp upstream
of the transcription start site.
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Figure 5.4 A schematic illustration of the splice site regions around exons and introns including the 5′

and 3′ splice sites and their consensus sequences.

The first methods used to identify exon-defining signals were simple PWMs or PSSMs.
These proved to be rather poor at identifying short DNA signals, such as splice sites. As a
result, these simple models have since given way to much more advanced pattern recognition
techniques such as HMMs (Box 5.3). These powerful pattern recognition approaches allow
very complex sequence patterns to be “learned” from large datasets consisting of well-known
or well-annotated exon-defining signals. An HMM is a statistical Markov model in which
the system being modeled is assumed to be a Markov process with unobserved (i.e. hidden)
states. HMMs are commonly used in many real-life applications such as speech, handwriting,
and gesture recognition. The application of HMMs in bioinformatics began in the early 1990s
(Krogh et al. 1994) and led to a significant advance in gene prediction accuracy. HMMs make it
possible to define highly complex patterns of variable lengths, including many exon-defining
signals such as protein-coding regions (discussed below), donor, acceptor, and lariat sites, as
well as translational start and end sites.

Predicting and Scoring Exons

In addition to the identification of exon-defining signals, the accurate prediction of exons also
depends on content-based features. Exons can be divided into three basic types:

• initial exons: ORFs delimited by a start site and a donor site
• internal exons: ORFs delimited by a 5′ (donor) site and a 3′ (acceptor) site
• terminal exons: ORFs delimited by a 3′ (acceptor) site and a stop codon.

Most transcribed genes are composed of one initial exon, multiple internal exons, and a
single terminal exon. Zhang (2002) provides a more comprehensive discussion of these types
of eukaryotic exons.

Exons, by definition, are protein-coding regions. Protein-coding regions are known to
exhibit characteristic compositional bias when compared with non-coding regions. These
include somewhat richer GC content and a distinctly non-random codon (triplet) frequency
preference. The observed codon bias results from the uneven distribution of amino acids
in proteins, the uneven use of synonymous codons, and natural selection for translational
optimization in coding regions. To discriminate protein-coding regions from non-coding
regions, a number of DNA content-based measures were developed in the 1990s (Fickett and
Tung 1992; Gelfand 1995; Guigó 1999). These content measures, which are also referred to
as coding statistics, reflect the likelihood that a given DNA sequence codes for a protein or
protein fragment. Many methods for the computation of content-based measures have been
published over the years. Some of the first methods measured patterns seen in codon triplet
frequencies. However, more information was found in the frequencies of pairs of triplets (i.e.
hexamers). As a result, hexamer frequencies, usually in the form of codon position-dependent
fifth-order Markov models (Box 5.2; Borodovsky and McIninch 1993), seem to offer the best
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discriminative power to identify protein-coding regions in exons. Currently, these hexamer
frequencies lie at the core of all modern eukaryotic gene predictors.

Exon Assembly

Once the exons are predicted (using a combination of hexamer frequencies and HMMs to iden-
tify key gene signals and exon/intron boundaries), they need to be assembled into some sort of
multi-exon gene structure. The main difficulty in exon assembly lies in simple combinatorics:
the number of possible exon assemblies grows exponentially with the number of predicted
exons for any given gene. To address this problem, a number of dynamic programming tech-
niques have been developed. Dynamic programming is an optimization technique that allows
one to solve a complex problem by breaking it down into a collection of simpler subproblems.
Each of those subproblems is solved just once, and their solutions are stored. The next time
the same subproblem occurs, instead of recomputing its solution, one simply looks up the pre-
viously computed solution (Bellman 1957; see also Appendix 6.A for a detailed discussion).
For the optimal exon assembly problem, dynamic programming has been shown to find the
solution quite efficiently, without having to enumerate or consider each and every possible
combination of exons (Gelfand and Roytberg 1993). Nearly all modern eukaryotic gene predic-
tion tools now use some kind of dynamic programming method (called the Viterbi algorithm
by Markov modelers, but also known as the Needleman–Wunsch algorithm by most people
doing sequence alignment). By combining HMM-based exon signal identification with dif-
ferent HMM-derived scores for exons and then using dynamic programing to assemble the
exons, it is possible to generate robust eukaryotic gene predictions. Some early examples of
HMM-based gene prediction methods that use dynamic programming include GENIE (Kulp
et al. 1996) and HMMgene (Krogh 1997). Perhaps the most popular example of an HMM-based
eukaryotic gene predictor is GENSCAN (Burge and Karlin 1997), an ab initio gene predictor
that has been widely used to annotate hundreds of eukaryotic genomes.

Given the popularity of GENSCAN, it is perhaps worthwhile explaining how this program
works in a bit more detail and providing an example of how it can be used. For any given query
sequence, GENSCAN determines the most likely gene structure given an underlying HMM. To
model donor splice sites, GENSCAN introduced a method called maximal dependence decom-
position. In this method, a series of weight matrices (instead of just one) are used to capture
dependencies between positions in these splice sites. In addition, GENSCAN uses parameters
that account for many higher order properties of genomic sequences (e.g. typical gene den-
sity, typical number of exons per gene, and the distribution of exon sizes for different types of
exons). Separate sets of gene model parameters can be used to adjust for the differences in gene
density and G+C composition seen across genomes. Models have also been developed for use
with maize and Arabidopsis sequences. This leads to higher scores for exons exhibiting simi-
larity to known proteins, but decreased scores for predicted exons having little to no similarity
with known proteins.

A typical GENSCAN output is shown in Figure 5.5, using the human uroporphyrinogen
decarboxylase (URO-D) gene (U30787) as the query. Each exon in the prediction is shown in
a separate line. The columns, going from left to right, represent the gene and exon number
(Gn.Ex), the type of prediction (Type, either the exon type or an identified polyA signal),
the strand on which the prediction was made (+ or –), the beginning and endpoints for the
prediction, the length of the predicted exon, its reading frame, several scoring columns, and
a probability value (P). GENSCAN exons having a very high probability value (p> 0.99) are
97.7% accurate when the prediction matches a true, annotated exon. These high-probability
predictions can be used in the rational design of polymerase chain reaction primers for comple-
mentary DNA (cDNA) amplification, or for other purposes where extremely high confidence
is necessary. GENSCAN exons that have probabilities in the range of 0.50–0.99 are deemed to
be correct most of the time. The best-case accuracies for p values higher than 0.90 is on the
order of 88%. Any predictions having p< 0.50 should be deemed unreliable, and those data
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Figure 5.5 Sample output from a GENSCAN analysis of the uroporphyrinogen decarboxylase gene. See the text for a more detailed descrip-
tion of the output.

are not given in the data table. The predicted amino acid sequence is given below the gene
predictions. In the example shown here, GENSCAN correctly predicted nine of the 10 exons
in URO-D. Only the initial exon was missed.

How Well Do Gene Predictors Work?

The accuracy of gene prediction programs is usually determined using controlled, well-defined
datasets, where the actual gene structure has been determined experimentally. Accuracy can
be computed at either the nucleotide, exon, or gene level, and each provides different insights
into the accuracy of a predictive method. In the field of prokaryotic gene prediction, the results
are almost always reported at the gene level and given in terms of a percentage – that is, the
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Figure 5.6 Schematic representation of measures of gene prediction accuracy at the nucleotide level.
The actual gene structure is illustrated at the top with confirmed exons identified with light blue bars and
confirmed introns in black lines. The predicted gene structure is illustrated at the bottom with predicted
exons identified with red bars and predicted introns in black lines. The four possible outcomes of a
prediction are shown: true positives (TP), true negatives (TN), false positives (FP), and false negatives
(FN). The equations for sensitivity and specificity are also shown using appropriate combinations of TP,
TN, FP, and FN.

number of correct gene predictions divided by the total number of known or validated genes in
the test set. In some cases, the number or percentage of over-predicted genes (false positives)
is also reported. In the field of eukaryotic gene prediction, performance reporting tends to be
somewhat more convoluted. This is because the evaluation problem is more complex and the
overall performance is often much worse. As a general rule, two basic measures are used: sen-
sitivity (or Sn), defined as the proportion of coding nucleotides, exons, or genes that have been
predicted correctly; and specificity (or Sp), defined as the proportion of coding and non-coding
nucleotides, exons, or genes that have been predicted correctly (i.e. the overall fraction of the
prediction that is correct). A more detailed explanation of sensitivity, specificity, and a number
of other evaluation metrics used in gene (and protein structure) prediction is given in Box 5.4.
Also introduced in this box are the concepts of true positives (TPs), true negatives (TNs), false
positives (FPs), and false negatives (FNs).

An example of a eukaryotic gene prediction with the four possible outcomes is shown in
Figure 5.6. This figure schematically illustrates the differences between a gene prediction and
the known (or observed) gene structure. Neither sensitivity nor specificity alone provides a
perfect measure of global accuracy, as high sensitivity can be achieved with little specificity
and vice versa. An easier to understand measure that combines the sensitivity and specificity
values is called the Matthews correlation coefficient (MCC or just CC), which is described
more formally in Box 5.4. The MCC ranges from −1 to 1, where a value of 1 corresponds to
a perfect prediction; a value of −1 indicates that every coding region has been predicted as
non-coding, and vice versa. Other accuracy measures are sometimes used as well; however,
the above-mentioned ones have been most commonly employed in the large assessment
projects on eukaryotic genome prediction such as the human ENCODE Genome Annotation
Assessment Project (EGASP; Guigó and Reese 2005), the RNA-seq Genome Annotation
Assessment Project (RGASP; Steijger et al. 2013) and the Nematode Genome Annotation
Assessment Project (nGASP; Coghlan et al. 2008).

Box 5.4 Evaluating Binary Classifications or Predictions in Bioinformatics

Many predictions in bioinformatics involve essentially binary or binomial (i.e. true/false)
classification problems. For instance, prokaryotic gene prediction can be framed as a
binary classification problem where one tries to distinguish open reading frames (ORFs)
from non-ORFs. Similarly, eukaryotic gene prediction can be posited as a binary classifica-
tion problem of predicting exons and non-exons (introns) or genes and intergenic regions.
Protein membrane helix prediction (discussed in Chapter 7) can be put in a similar binary
classification frame, where one distinguishes between membrane helices and non-helices
(or non-membrane regions). Binary classification problems can also be found in medicine,
where one tries to predict or diagnose sick patients versus healthy patients, or quality
control tasks in high-throughput manufacturing (pass versus fail).
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The evaluation of binary classifiers or predictors normally follows a very standard prac-
tice with a common set of metrics and definitions. Unfortunately, this practice is not always
followed when bioinformaticians evaluate their own predictors or predictions. This is why
we have included this very important information box, one that is referred to frequently
throughout this book.

As shown in the diagram below, a binary classifier or predictor can have four combina-
tions of outcomes: true positives (TP or correct positive assignments), true negatives (TN or
correct negative assignments), false positives (FP or incorrect positive assignments), and
false negatives (FN or incorrect negative assignments). In statistics, the false positives are
called type I errors and the false negatives are called type II errors (see Chapter 18).
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Once a binary classifier has been run on a set of data, it is possible to calculate specific
numbers for each of these four outcomes using the above 2× 2 contingency table. So
a gene predictor that predicted 1000 genes in a genome that had only 900 genes may
have 850 TPs, 200 TNs, 60 FPs, and 40 FNs. From this set of 4 outcomes it is possible to
calculate 8 ratios. These ratios can be obtained by dividing each of the four numbers
(TP, TN, FP, FN) by the sum of its row or column in the 2× 2 contingency table. The most
important ratios and their names or abbreviations are listed (along with their formulae)
below. Also included are several other binary classifier evaluation metrics that are used
by certain subdisciplines in bioinformatics or statistics.

Name Formula

Sensitivity (Sn)
Recall
True positive rate (TPR)

TP
TP + FN

Specificity (Sp)
True negative rate (TNR)

TN
TN + FP

Precision
Positive predictive value (PPV)

TP
TP + FP

False positive rate (FPR) FP
FP + TN

False discovery rate (FDR) FP
FP + TP

Negative predictive value (NPV) TN
TN + FN

Accuracy (ACC), Q2
TP + TN

TP + FP + TN + FN

F1 score
F score
F measure

2TP
(2TP + FP + FN)

Matthews correlation
coefficient (MCC)

TP × TN − FP × FN
√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(Continued)
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Box 5.4 (Continued)

Sensitivity (Sn, recall, or TPR) measures the proportion of actual positives that are cor-
rectly identified as such, while specificity (Sp or TNR) measures the proportion of actual
negatives that are correctly identified as such. Precision (PPV) is the proportion of positive
results that are true positive results, while NPV is the proportion of negative results that
are true negative results. FDR is the binary (not the multiple testing) measure of false
positives divided by all positive predictions. Accuracy or ACC (for binary classification) is
defined as the number of correct predictions made divided by the total number of pre-
dictions made. ACC is one of the best ways of assessing binary test or predictor accuracy.
The F1 score is another measure of test accuracy and is defined as the harmonic average
of precision (PPV) and recall (Sn). MCC is a popular measure of test or predictor accuracy.
It is essentially a chi-squared statistic for a standard 2× 2 contingency table. In effect, MCC
is the correlation coefficient between the observed and predicted binary classifications.

Different fields of science have different preferences for different metrics owing to dif-
ferent traditions or different objectives. In medicine and most fields of biology (including
bioinformatics), sensitivity and specificity are most often used to assess a binary classi-
fier, while in machine learning and information retrieval, precision and recall are usually
preferred. Likewise, different prediction tasks within bioinformatics tend to report perfor-
mance with different measures. Gene predictors generally report Sn, Sp, and ACC, while
protein structure predictors generally report ACC and MCC. The accuracy (ACC) score in
protein secondary structure prediction has also been termed Qn, where n is the number
of secondary structure classes (usually n = 3). In gene prediction, the ACC score is given
as Q2 since only two classes are identified (either exon/intron or ORF/non-ORF). Each of
the above ratios (except for MCC) can take on values from 0 to 1. For a perfect prediction,
Sn = 1, Sp = 1, PPV = 1, NPV = 1, ACC = 1, F1 = 1, MCC = 1, FPR = 0, or FDR = 0, whereas
a completely incorrect prediction would yield Sn = 0, Sp = 0, PPV = 0, NPV = 0, ACC = 0,
F1 = 0, MCC = −1, FPR = 1, or FDR = 1.

The performance of any binary predictor has to be assessed based on the existing bias
in the numbers within different classes (i.e. uneven class distribution). For example, an
ACC of 0.95 may seem excellent, but if 95% of the dataset belongs to just one class, then
the same ACC score could be easily achieved by simply predicting everything to be in that
class. This is the situation with many mammalian genomes, which have large intergenic
regions. Therefore predicting every nucleotide as being “intergenic” would easily create
a nucleotide-based gene predictor that would be >95% accurate. Such a predictor would,
of course, be completely useless.

Assessing the accuracy of gene prediction methods requires sets of reliably annotated genes
verified by experimental or computational evidence derived from complementary sources of
information. Experimental evidence can be provided by mass spectrometry-based proteomics
or by structural biology methods such as nuclear magnetic resonance spectroscopy or X-ray
crystallography (Chapter 12) that provide direct, visual confirmation of the protein sequences.
Computational evidence can appear in the form of similarity of the derived protein sequence
to the primary structures of proteins whose functions were verified experimentally. Extensive
gene prediction assessments have been done for both prokaryotic and eukaryotic organisms.

Assessing Prokaryotic Gene Predictors

The evaluation of prokaryotic gene predictors has been ongoing for many years, with each
publication that describes a new program (or a new version of an existing program) providing
a detailed performance assessment (Larsen and Krogh 2003; Delcher et al. 2007; Hyatt et al.
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2010; Borodovsky and Lomsadze 2011). One of the most recent and comprehensive assess-
ments of prokaryotic gene predictors was conducted by Hyatt et al. in 2010. In this paper the
authors compared five different programs: Prodigal 1.20 (Hyatt et al. 2010), GeneMarkHMM
2.6 (Borodovsky and Lomsadze 2011), GLIMMER 3.02 (Delcher et al. 2007), EasyGene 1.2
(Larsen and Krogh 2003), and MED 2.0 (Zhu et al. 2007) on two different tasks. The first task
involved predicting experimentally verified genes with experimentally verified TISs from 10
different bacterial and archaeal genomes. In this case, only 2443 (out of a possible 35 000+)
genes were considered experimentally verified. Hyatt et al. found that all five of the programs
were able to achieve a 98–99.8% level of accuracy (at the gene level) for the 3′ end of these ver-
ified genes and an 87–96.7% level of accuracy (at the gene level) for the complete genes (both
the 5′ and 3′ ends being correctly predicted). The second task involved predicting GenBank
(mostly manually) annotated genes from seven different bacterial genomes. In this case, a total
of 23 648 genes were evaluated. All of the programs were able to achieve a 95–99% level of accu-
racy (at the gene level) for the 3′ end of these genes. However, their performance for the full
gene prediction task (both 5′ and 3′ being correctly predicted) was much more variable, with
accuracy values ranging from 69% to 91% correct. The overall prediction average for all five
programs over all genes in this second task was about 80%. It is also notable that all five pro-
grams generally over-predicted the number of genes annotated in GenBank by about 4–5%,
with some programs (MED 2.0) over-predicting by as much as 40%.

Based on the data provided by Hyatt et al. (2010), the two best-performing prokaryotic gene
prediction programs were Prodigal and GeneMark, while the other three programs were only
marginally worse. Their results also show that the task of predicting the 3′ ends of prokaryotic
genes is essentially solved, while the challenge of predicting the 5′ ends of prokaryotic genes
needs more work. It is also evident that some prokaryotic genomes are harder to predict than
others, with the full-gene prediction performance on the E. coli genome often hovering about
90% while the performance for less studied genomes (such as Halobacterium salinarum) often
is around 70%. These results reflect the fact that ab initio gene predictors (both prokaryotic and
eukaryotic) require very extensive training on a large number of high-quality gene models.
Once trained, these tools can perform very impressively, especially in well-studied genomes
for which ample training data are available. However, the level of training required to reach
very high accuracy is often hard to achieve for newly assembled bacterial genomes.

Assessing Eukaryotic Gene Predictors

The assessment of eukaryotic gene predictors has been going on for more than 20 years. In
the early days, most eukaryotic gene prediction evaluations were conducted on single genes
whose exon/intron structure had been well characterized. This reflected the fact that very few
(if any) eukaryotic genomes had been fully sequenced and only a small number of eukaryotic
genes had their exon/intron structure fully determined. It also made the gene prediction tasks
much simpler, as the coding (exon) density is much higher (25–50%) than what would be found
over an entire genome (which is often <2%). This also led to overly optimistic performance
ratings. More recently, the field has evolved to assessing gene prediction performance over
entire genomes.

Burset and Guigó (1996) published one of the first systematic evaluations of eukaryotic gene
predictors. Their study evaluated seven programs, using a set of 570 vertebrate single-gene
sequences. The average CC at the nucleotide level for these programs ranged from 0.65 to 0.80.
Later, Rogic et al. (2001) performed a similar analysis of seven gene prediction programs, using
a set of 195 single-gene sequences from human and rodent species. The programs tested in the
Rogic et al. study showed substantially higher accuracy than those reported on in the Burset
and Guigó study, with the average CC at the nucleotide level ranging from 0.66 to 0.91. This
increase in the upper part of the range illustrates the significant advances that occurred in the
development of gene prediction methods over a relatively short period of time.



132 Genome Annotation

The early evaluations put forth by Burset and Guigó (1996), Rogic et al. (2001), and others all
suffered from the same limitation: the gene finders were tested using controlled datasets com-
prising short genomic sequences encoding a single gene with simple gene structures. These
datasets are obviously not representative of genomic sequences as a whole. Complete genome
sequences contain long stretches with low coding density, stretches coding for multiple or
incomplete genes (or both), and stretches having very complex or alternative gene structures.
As a result, two large-scale studies were conducted to assess the performance of ab initio
eukaryotic gene predictors on real-world mammalian genomic data. The first was based on an
analysis of human chromosome 22 (Parra et al. 2003) and the second was based on an analysis
of the human ENCODE regions (Guigó et al. 2006), covering about 1% of the human genome.

When human chromosome 22 was sequenced, it was subjected to very extensive manual
analyses, experimental confirmation, and detailed annotation by many experts (Dunham et al.
1999). This was done to provide a useful gold standard (at the time) for assessing genome
prediction and genome annotation tools. As a result, Parra et al. used the manually annotated
data for chromosome 22 to assess the performance of GENSCAN (Burge and Karlin 1997),
GenomeScan (Yeh et al. 2001), TBLASTX (Gish and States 1993), GeneID (Blanco et al. 2002),
and SGP-2 (Parra et al. 2003) at the nucleotide, exon, and whole gene/transcript level. The
results were quite disappointing. At the nucleotide level the programs had an average sensitiv-
ity/specificity ([Sp+ Sn]/2) value ranging from 0.62 to 0.75 and a CC value ranging from 0.54 to
0.73. At the exon level, the programs had an average sensitivity/specificity value ranging from
0.54 to 0.62 and at the gene/transcript level the average sensitivity/specificity value ranged
from 0.05 to 0.11. The latter values are the numbers of greatest interest as they reflect the true
level of gene prediction performance. Interestingly, GENSCAN and GenomeScan performed
somewhat worse than GeneID and SGP-2. Indeed, SGP-2 consistently performed better than
all of the “pure” ab initio predictors as it also made use of comparative genomic data from
mouse chromosome 22. The inclusion of experimental sequence data technically made SGP-2
an extrinsic gene finder rather than a pure ab initio gene predictor.

A similar level of very high-quality manual annotation was achieved in 2005–2006 during
the first phase of the Encyclopedia of DNA Elements (ENCODE) project. The ENCODE project
is a long-term, multi-phase project that started in 2003 with the goal of identifying all of the
functional elements within the human genome sequence. During its pilot phase, a number of
regions from the human genome (approximately 1%) were selected for detailed investigation.
The availability of this “gold standard” dataset led to a second, much larger evaluation that
looked at the predictive performance of pure ab initio predictors, as well as gene finders that
used additional extrinsic data such as sequence homology and experimental sequencing data
(Guigó et al. 2006). For the Guigó et al. study, four ab initio predictors were tested: AUGUSTUS
(Hoff and Stanke 2013), GeneMark-A (Besemer and Borodovsky 2005), GeneMark-B (Besemer
and Borodovsky 2005), and GeneZilla (Allen et al. 2006). Once again, the results were quite dis-
appointing. At the nucleotide level, the programs had a CC value ranging from 0.53 to 0.76. At
the exon level the programs had an average sensitivity/specificity value ranging from 0.40 to
0.57, and at the gene or transcript level the average sensitivity/specificity value ranged from
0.05 to 0.14. Overall, AUGUSTUS performed significantly better than the other ab initio pro-
grams but not at a level that would allow one to use it to automatically annotate a eukaryotic
genome. However, the most important findings from this study were that significant improve-
ments (up to two times better at the exon level and up to four times better at the gene level)
could be made to the quality of eukaryotic gene annotations if comparative genomic data or
other experimental/extrinsic evidence were employed in the prediction process.

It was because of these studies that a significant change in the gene prediction community
occurred. In particular, the developers of gene predictors moved from reluctantly using experi-
mental or extrinsic data to wholeheartedly embracing experimental data. In other words, gene
prediction began to change to gene finding and genome prediction began to evolve toward
genome annotation. In doing so, genome analysis became a more holistic, evidence-based
process that combined ab initio gene prediction with extrinsic gene-finding methods. These
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extrinsic gene-finding methods combined many other computational tools and other lines of
evidence including gene expression data, proteomic data, sequence homology to other anno-
tated genomes, and even literature-derived data.

Evidence Generation for Genome Annotation

Genomic evidence is any information that can be used to identify or inform the structure
of a gene in an organism – be it a prokaryotic or a eukaryotic organism. Some of the most
useful evidence comes from experimental work such as transcriptional data (mRNA or
DNA data derived from RNA-seq experiments) or protein sequence data gathered about the
organism of interest or a closely related organism. Other kinds of evidence can be collected
through running various bioinformatic programs that identify genomic features such as
sequence repeats, tRNA and rRNA genes, pseudogenes, transcription factor binding sites,
retroviruses, prophages, and so on. In the following sections, we will briefly review some
of the evidence-generating approaches used for both extrinsic gene finding and genome
annotation.

Gene Annotation and Evidence Generation Using RNA-seq Data

RNA sequencing (RNA-seq) is a next-generation DNA sequencing (NGS) technique that
involves converting RNA (mRNA, tRNA, and rRNA) transcripts into double-stranded cDNA
fragments, then sequencing them using low-cost NGS sequencing methods (Wang et al. 2009).
Over the last decade, RNA-seq has helped to revolutionize genome annotation methods for
both eukaryotes and prokaryotes (Trapnell et al. 2009; Sallet et al. 2014). A typical RNA-seq
experiment generates thousands of short DNA sequence reads corresponding to gene-coding
regions (also known as coding sequence or CDS segments). These sequences can then be
aligned to the reference genome sequence using gapped, short-read aligners to determine
which genome regions were being transcribed. Some of the more popular gapped short-read
aligners include TopHat2 (Kim et al. 2013), Stampy (Lunter and Goodson 2011), and GSNAP
(Wu et al. 2016). These alignments can be further processed into putative transcripts using
tools such as Cufflinks (Trapnell et al. 2012), StringTie (Pertea et al. 2015), or Trinity (Grabherr
et al. 2011). In this way, RNA-seq provides experimental evidence (through DNA sequencing)
regarding the location of gene-coding regions.

The improvement in gene-finding performance and gene annotation quality when RNA-seq
data are used is quite substantial. In RGASP (Steijger et al. 2013), a diverse set of 14 genome
annotation approaches were compared (including intrinsic/ab initio methods, extrinsic meth-
ods, and hybrid extrinsic/intrinsic methods). The gold standard for comparison was the refer-
ence human genome annotations from the GENCODE project, consisting of computationally,
manually, and experimentally determined gene annotations (Harrow et al. 2012). It turned
out that the best-performing programs for the task of identifying protein-coding genes were
gene annotation tools that used RNA-seq data. Examples of gene annotation programs that
incorporate RNA-seq data into their gene finders include AUGUSTUS (Hoff and Stanke 2013),
mGENE (Schweikert et al. 2009), Trembly, and Transomics (Sperisen et al. 2004).

As noted earlier, when processing RNA-seq data for genome annotation, one can either
splice-align the raw reads against the genome or, alternatively, transcript fragments can first
be assembled de novo and then aligned to the genome via BLASTN. This “mapping-first”
approach was shown to lead to more accurate annotations in the RGASP assessment and so it
is highly recommended. Spliced alignment can be done with tools such as GSNAP (Wu et al.
2016), Stampy (Lunter and Goodson 2011), TopHat2 (Kim et al. 2013), or STAR (Dobin et al.
2013). Integrating coverage information from RNA-seq data into a gene annotation tool can
typically be done by increasing the score of candidate exons that are covered by RNA-seq by
a certain factor that depends on the local coverage of each covered exonic region. Rewarding
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individual splice sites, supported by RNA-seq evidence, is relatively easy for HMMs. Some
gene annotation tools integrate evidence for complete introns (i.e. splice site pairs) from
RNA-seq data.

Newer technologies that produce longer RNA-seq reads (10 000+ bases) have greatly
improved the ability to predict alternatively spliced transcripts in comparison with short reads
(100–400 bases), which mostly help to find local alternative splice variants. Long reads are
often near-complete transcripts and each spliced alignment gives the structure of a transcript,
albeit only approximately owing to the relatively high sequencing error rate. Gene finders
such as AUGUSTUS can integrate evidence from long-read alignments to further improve
their performance.

While RNA-seq has greatly improved the performance of many eukaryotic gene find-
ers, there is still a long way to go. According to the RGASP assessment (Steijger et al.
2013), the best-performing methods identified ∼59% of protein-coding transcripts from
the Caenorhabditis elegans genome (AUGUSTUS, mGene, and Transomics), 43% from the
Drosophila melanogaster genome (AUGUSTUS), and just 21% from the Homo sapiens genome
(Trembly). So, RNA-seq data have not (yet) been the key to “solving” the problem of accurate
and automatic eukaryotic genome annotation. Important issues still remain, including the
fact that a significant fraction of genes or splice forms may not be expressed in any RNA-seq
sample, that transcribed sequences may not be protein coding and, if they are, the correct
protein-coding ORFs remain to be identified, and that transcript assemblies and mapping
of the transcripts to the genome are notoriously error prone. These errors typically are seen
around exon boundaries, with the assemblies often extending into introns and, at times,
missing whole exons. Several programs have been developed to help address these mapping
problems, including Exonerate (Slater and Birney 2005) and GeneWise (Birney et al. 2004).
Both programs are “splice-aware” tools that can be used to polish BLAST alignments. These
polished alignments can then be used to improve the annotation of the exons, introns, splice
sites, and 5′ and 3′ UTRs.

Gene Annotation and Evidence Generation Using Protein Sequence Databases

Just as RNA-seq data can be used as evidence for the existence of genes, so too can sequence
homology be used to locate or identify new genes in newly sequenced organisms. In
homology-based gene finding, the DNA sequence of the newly sequenced organism is trans-
lated into putative protein sequences and these putative sequences are then compared against
databases of known proteins. Homologous matches at the protein level can then be used to
annotate, identify, and locate the genes at the DNA level. A key advantage of homology-based
gene finding over ab initio gene prediction is that homology-based methods provide not only
the identification and location (as ab initio approaches do) but also the probable gene name
and probable gene function as inferred by the sequence similarity of the newly identified gene
to previously annotated proteins in the protein sequence databases.

Translated nucleotide searches such as BLASTX searches (Gish and States 1993) constitute
one of the simplest homology-based gene prediction approaches. These searches are partic-
ularly useful when comparing ORFs in prokaryotic genomes. However, when dealing with
the split nature of eukaryotic genes, BLASTX-like searches do not resolve exon splice bound-
aries particularly well. One useful approach is to use both the results of translated nucleotide
searches along with those produced through the use of ab initio methods. Examples of this
hybrid approach include programs such as GenomeScan (Yeh et al. 2001), GeneID (Blanco
et al. 2002), and AUGUSTUS (Hoff and Stanke 2013). GenomeScan is an extension of GEN-
SCAN that incorporates sequence similarity to known proteins using BLASTX.

A more sophisticated approach to eukaryotic gene prediction via sequence homology
involves aligning the genomic query against a protein target that is presumed to be homol-
ogous to the protein encoded in the genomic sequence that is being annotated. In these
alignments, often referred to as spliced alignments, large gaps corresponding to introns in the
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query sequence are only allowed at “legal” splice junctions. Examples of programs using this
approach include PROCRUSTES (Gelfand et al. 1996), GeneWise (Birney and Durbin 1997),
Exonerate (Slater and Birney 2005), BLAT (Kent 2002), and GenomeThreader (Gremme et al.
2005).

The spliced alignment approach does not exploit all the information typically available for
homology-based gene prediction. In fact, for any given protein, a whole family of related pro-
teins is often available. Such an ensemble of sequences carries more information than just a
single protein. For instance, a well-constructed MSA shows which regions are well conserved
and which ones are prone to insertions or deletions. Using an MSA, it is possible to calculate
the probability that a certain amino acid occurs at a certain site. Using these data, it is possible
to calculate PWMs or PSSMs and to create what is called an MSA profile. While the task for
creating MSAs for prokaryotic genomes is relatively easy, the task of creating MSAs for eukary-
otic genomes is particularly challenging owing to the presence of repeats, as well as large-scale
genome rearrangements, duplications, and deletions.

So, rather than trying to find genes or exons with a set of individual protein sequences,
one may use MSAs of aligned protein families to do the job. These MSAs can be found in
orthology databases such as OrthoDB (Waterhouse et al. 2013). Several excellent software tools
have been developed to search the gene structures of members of a protein family given an
MSA profile representation of that family. These include GeneWise (Birney and Durbin 1997)
and AUGUSTUS-PPX (Keller et al. 2011), where PPX stands for Protein Profile eXtension.
AUGUSTUS-PPX has been shown to improve gene prediction accuracy over spliced align-
ment methods, especially when dealing with genes having large numbers of exons. However,
the MSA approach is limited to the availability of homologous families and by the degree of
sequence similarity. Therefore, MSA gene finding is best used in situations involving medium
to high sequence similarity.

More recently, this MSA concept has been extended to cover situations with more remote
sequence similarity through the development of BUSCO (Simão et al. 2015). BUSCO stands
for Benchmarking Universal Single-Copy Orthologs. These single-copy orthologs correspond
to a relatively small set of proteins that are highly conserved and that are found as single-copy
genes across many different phyla in the tree of life. The BUSCO dataset currently includes
3023 genes for vertebrates, 2675 for arthropods, 843 for metazoans, 1438 for fungi, 429 for
eukaryotes, and 40 universal marker genes for prokaryotes. Using HMMER (Eddy 2009), the
BUSCO gene set can be rapidly searched against any given query genome. The presence or
absence of these BUSCO genes in a given organism provides a good measure of the complete-
ness of a genome assembly. It also provides a good measure of the completeness of a given
genome annotation or a given genome prediction.

Gene Annotation and Evidence Generation using Comparative
Gene Prediction

Another approach to homology-based gene prediction exploits the fact that there is a large and
growing number of completely sequenced and well-annotated genomes now available. This
has given rise to a technique called comparative gene prediction. The rationale behind com-
parative gene prediction is that functional regions (the protein-coding regions) tend to be more
conserved than non-protein-coding regions. This observation provides the basis for identifying
protein-coding regions in newly sequenced genomes. Comparative gene prediction methods
exploit sequence homology but at a far more global scale than the protein sequence similar-
ity methods described above. In comparative gene prediction, the “known” and “unknown”
genomes are from different species, but the species are assumed to be so closely related that
their entire genomes can be aligned. Because these genomes are so long (millions to billions
of bases), the pairwise alignment or MSA is typically broken down into many local alignments
of syntenic (homologous) regions.
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Early methods for comparative gene finding typically used just two genomic sequences as
input, such as DOUBLESCAN (Meyer and Durbin 2002), TWINSCAN (Korf et al. 2001), SLAM
(Alexandersson et al. 2003), or SGP-2 (Parra et al. 2003). SLAM is an HMM-based method
in which gene predictions and sequence alignments are performed simultaneously. TWIN-
SCAN and DOUBLESCAN are extensions of GENSCAN, whereas SGP-2 is an extension of
GeneID. Later on, comparative gene-finding methods were developed that could use more
than two genomic sequences to predict genes in a new genome, but they only did so for a sin-
gle target genome. These methods include programs such as N-SCAN (Gross and Brent 2006),
CONTRAST (Gross et al. 2007), and Mugsy-Annotator (Angiuoli et al. 2011). More recently, a
method called clade annotation has been developed and implemented in a version of AUGUS-
TUS known as “comparative AUGUSTUS” (König et al. 2016). Clade annotation allows the
simultaneous alignment and annotation of multiple target genomes. For example, compara-
tive AUGUSTUS can be used to simultaneously annotate the genomes of multiple (up to 20)
different mouse strains.

Evidence Generation for Non-Protein-Coding, Non-Coding, or Foreign Genes

One of the best ways of determining the location of a protein-coding gene is to determine where
it is not. In other words, knowing that a DNA segment cannot possibly code for a protein allows
one to exclude it from the gene/protein-finding process. Prokaryotic genomes contain many
genes that do not code for proteins. These include tRNA and rRNA genes, along with many
foreign prophage genes that may or may not code for real phage proteins. Likewise, eukaryotic
genomes are filled with repeat regions, pseudogenes, retrotransposons, and retroviral genes,
along with an assortment of tRNA and rRNA genes. These non-protein-coding or non-coding
elements can account for 20–30% of a given prokaryotic genome (Casjens 2003) and more than
90% of a eukaryotic genome (Li et al. 2004).

tRNA and rRNA Gene Finding

Both prokaryotes and eukaryotes have a significant portion of their genome occupied by tRNA
and rRNA genes. Prokaryotes (including bacteria and archaea) typically contain 70–80 copies
each of tRNA genes and between three and 45 copies of rRNA genes. tRNA molecules are
L-shaped adaptor RNA molecules, typically 76–90 nucleotides in length, that are essential for
the translational process (Figure 5.7). In principle, a total of 61 tRNA genes are needed to per-
mit the translation of all 61 coding (sense) codons. However, because of a phenomenon known
as base wobble, many organisms are able to have a single tRNA serving two or more codons.
As a result, most prokaryotes have 35–40 unique tRNA genes, but one or two copies of each.
rRNA molecules are the principal constituents (>60% by mass) of the ribosome, the transla-
tional engine of all cells. In prokaryotes the ribosome consists of two subunits, the small and
the large subunit, which pair up to form the ribosome. The rRNAs present in prokaryotes are
the 5S and 23S rRNAs in the large subunit and the 16S rRNA in the small subunit. Genes
encoding these rRNAs are typically arranged into an operon (the rrn operon), with an inter-
nally transcribed spacer between the 16S and 23S rRNA genes. The number of rrn operons in
prokaryotes ranges from one to 15 per genome.

tRNA and rRNA genes in eukaryotes share many similarities (in both structure and size)
with those in prokaryotes. There are, however, some minor differences. For instance, eukary-
otes typically have many more copies of tRNA genes than prokaryotes. There are 275 tRNA
genes in Saccharomyces cerevisiae, 620 copies of tRNA genes in C. elegans, and 497 copies of
tRNA genes in humans. All eukaryotes have 22 mitochondrial tRNA genes. Like prokaryotes,
eukaryotic rRNA genes are also divided according to their location in the large or small subunit
in the ribosome. However, instead of just two large subunit rRNAs, there are three rRNAs in
the eukaryotic large subunit: 5S, 5.8S, and 28S. Just as with prokaryotes, eukaryotes have one
rRNA gene (18S rRNA) for their small ribosomal subunit, but they also encode rRNA genes
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Figure 5.7 The typical L-shaped struc-
ture of a tRNA molecule. This depicts
the three-dimensional structure of the
yeast phenylalanine tRNA molecule at
1.93 Å resolution (Protein Data Bank
(PDB) accession code: 1EHZ).

for their mitochondrial ribosomes (12S and 16S rRNA genes). Unlike prokaryotes, eukaryotes
generally have many copies of the rRNA genes organized into tandem repeats. In humans,
approximately 300–400 rRNA repeats are present in five clusters, located on five separate chro-
mosomes. Unlike prokaryotic tRNA genes, some tRNA genes in eukaryotes are interrupted
with introns.

The structure of tRNAs is highly conserved across all major kingdoms of life and there are
a large number of tRNA sequences that are known for both prokaryotes and eukaryotes. As a
result, most methods for identifying tRNA genes take advantage of common sequence motifs
(recognizable via HMMs) and employ some kind of sequence homology or database compar-
ison to identify tRNA genes. The best performing and most popular methods are RNAMotif
(Macke et al. 2001), tRNAfinder (Kinouchi and Kuoakawa 2006), and tRNAscan-SE (Lowe and
Eddy 1997). These programs are able to identify tRNA genes in both prokaryotes and eukary-
otes with very high accuracy (>95%). In addition to these programs, there are several dedicated
databases of tRNA sequences to assist with comparative tRNA identification approaches; these
include tRNAdb and tRNADB-CE (Jühling et al. 2009; Abe et al. 2014). Currently the identifi-
cation of tRNA genes is considered to be a “solved” problem.

Just like tRNA genes, rRNA genes also exhibit a very high level of sequence conservation,
and there are a number of rRNA motifs that can be described by HMMs. These HMMs have
been integrated into the program (and web server) called RNAmmer (Lagesen et al. 2007).
RNAmmer is able to identify all rRNAs from prokaryotes and eukaryotes, with the exception
of 5.8S rRNA. Owing to the complexity, size, and relatively poor annotation of rRNA genes, the
performance for rRNA prediction is not yet at the same level as tRNA prediction. In addition to
the RNAmmer predictor, there is also an RNA database called Rfam (Kalvari et al. 2018) that
contains >2600 RNA families (including rRNA and tRNA sequence families). Each sequence
family in Rfam is represented by an MSA, a consensus secondary structure, and a covariance
model. Rfam can be used for rRNA (and other RNA gene) identification via sequence com-
parisons or MSAs. Regardless of their current shortcomings, the use of tRNA and rRNA gene
identification tools invariably improves the accuracy of any protein-coding gene-finding or
gene prediction effort. It also enhances the quality of the overall genome annotation.

Prophage Finding in Prokaryotes

Prokaryotes are subject to constant attack by bacterial viruses called bacteriophages, which
kill or disable susceptible bacteria. Bacteriophages are the most abundant biological entities
on the planet and they play a major role in the bacterial ecosystem and in driving microbial
genetic variation or genetic diversity. This genetic diversity is brought on through a particularly
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unique part of the bacteriophage life cycle called lysogeny. Lysogeny involves the integration
of the phage genome (often consisting of 10–20 genes) into the host bacterial chromosome at
well-defined insertion points. The genetically integrated phages are called prophages. In some
cases, prophages can become permanently embedded into the bacterial genome, becoming
cryptic prophages (Little 2005). These cryptic prophages often serve as genetic “fodder” for
future evolutionary changes of the host microbe (Bobay et al. 2014). Furthermore, prophages
and cryptic prophages tend to introduce pathogenic elements or pathogenic islands that exhibit
a very different base composition than the host genome. Prophages and cryptic prophages can
account for up to 20% of the genetic material in some bacterial genomes (Casjens 2003), with
some prophage genes coding for expressed proteins and others not.

Given their high abundance, the identification of these phage-specific genetic elements can
be quite important, especially when it comes to annotating bacterial genomes. Prophage and
cryptic prophage sequences exhibit certain sequence features (such as the presence of inte-
grases and transposases, attachment sites, and an altered base composition) that can be used
to distinguish them from “normal” bacterial genes. When combined with HMMs to improve
the sequence feature recognition tasks, it is possible to identify prophage and cryptic prophage
sequences with relatively good accuracy. The accuracy can be improved further if compara-
tive genome analyses to databases of known phage sequences are performed. Several bacterial
prophage-finding programs have been developed and deployed over the past decade, includ-
ing Phage_Finder (Fouts 2006) and Prophage Finder (Bose and Barber 2006). More recently,
phage finding has moved from stand-alone programs to web servers. In particular, two new
web servers have been released that provide somewhat greater speed and improved accuracy
for prophage finding over existing tools. These are known as PHAST (Zhou et al. 2011) and
PHASTER (Arndt et al. 2016). Both web servers are between 85% and 95% accurate (depending
on the test being conducted) and both provide rich graphical output, as well as detailed annota-
tions of the prophage sequences and the surrounding bacterial genomic sequences (Figure 5.8).
Regardless of the method chosen, the annotation of prophage and cryptic prophage genes cer-
tainly enhances the quality of a prokaryotic genome annotation and it usually improves the
accuracy of any prokaryotic gene predictions.

Repetitive Sequence Finding/Masking in Eukaryotes

Unlike prokaryotes, eukaryotic genomes contain considerable quantities of repetitive DNA.
These repetitive sequences include retrotransposons and DNA transposons, both of which are
referred to as dispersed repeats, as well as highly repetitive sequences, typically called tandem
repeats. The most abundant repeat sequences in eukaryotes are retrotransposons. Retrotrans-
posons are genetic elements that can amplify themselves using a “copy-and-paste” mecha-
nism similar to that used by retroviruses. To replicate and amplify, they are transcribed into
RNA, then converted back into identical DNA sequences using reverse transcription and then
inserted into the genome at specific target sites. In contrast to retrotransposons, DNA trans-
posons do their copying and pasting without an RNA intermediate, instead using the protein
called transposase. Approximately 52% of the human genome is made up of retrotransposons,
while DNA transposons account for another 3% (Lander et al. 2001; Wheeler et al. 2013). In
plants, retrotransposons are much more abundant, accounting for between 60% and 90% of
the DNA in any given plant genome (Li et al. 2004).

Within the retrotransposon family are two subfamilies: long terminal repeat retrotrans-
posons (LTR retrotransposons) and non-LTR retrotransposons. LTR retrotransposons are
retrovirus-like sequences that contain LTRs that range from ∼100 bp to over 5 kb in length. In
fact, a retrovirus can be transformed into an LTR retrotransposon simply through inactivation
or deletion of certain genes (such as the envelope protein) that enable cell-to-cell viral
transmission. Most LTR retrotransposons are non-functional endogenous retroviruses that
are also called proviruses. In this regard, eukaryotic LTR retrotransposons can be thought
of as the equivalent of prokaryotic prophages or cryptic prophages. Human endogenous
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Figure 5.8 A screenshot montage of the PHASTER web server showing the website homepage along with examples of some of PHASTER’s
output.
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retroviral sequences, all of which appear to be defective or non-replicative, account for about
8% of the human genome (Taruscio and Mantovani 2004).

Non-LTR retrotransposons consist of two subtypes: long interspersed nuclear elements
(LINEs) and short interspersed nuclear elements (SINEs). LINEs are typically 7000 bp long
and encode several genes to cover all the functions needed for retrotransposition. These
include reverse transcriptase and endonuclease genes, as well as several genes needed to
form a ribonucleoprotein particle. More than 850 000 copies of LINEs exist in the human
genome, covering 21% of all human DNA (Cordaux and Batzer 2009). However, more than
99% of LINEs are genetically “dead,” having lost their retrotransposition functions. In contrast
to LINEs, SINEs are much smaller, typically consisting of DNA stretches spanning just
80–500 bp. SINEs are very abundant (in the millions of copies), accounting for about 10% of
the DNA in the human genome. The most common SINEs in humans are the Alu repeats
(Häsler and Strub 2006). Alu repeats are about 300 bp long. They are highly conserved in
primates and are subject to frequent DNA methylation events.

In addition to transposable elements (or dispersed repeats), eukaryotes also contain large
numbers of tandem repeats, including minisatellite DNA, microsatellite DNA (also known as
short tandem repeats [STRs] or simple sequence repeats [SSRs]), and telomere repeats. Min-
isatellite DNA consists of repeats of 10–60 bp in length that stretch for about 2 kb and are
scattered throughout the genome. Microsatellite DNA consists of repeats of 1–6 bp, extend-
ing for hundreds of kilobases, particularly around the centromeres. Telomere repeats consist
of a highly conserved 6 bp sequence (TTAGGG) that is repeated 250–1000 times and found
exclusively at the ends of eukaryotic chromosomes. Mini- and microsatellite DNA account for
about 5% of the DNA in the human genome (Subramanian et al. 2003).

The fact that eukaryotes have so many repeat sequences, combined with the fact that these
repeats account for such a large portion of their genomes (often >50%), has led to concerted
efforts by genome annotators to identify, remove, or mask these sequences. This is because
repeat sequences can seriously hinder gene identification and genome annotation activities.
For instance, retrotransposons and DNA transposons can be easily be mistaken as exons by
ab initio gene predictors. Likewise, STRs can lead to spurious alignments when comparative
genomics approaches are used in gene finding. STRs (which are also called low-complexity
regions) can often be dealt with through two techniques: soft or hard masking. Soft masking
is done by changing the case of the letters in the sequence file from upper case to lower case,
while hard masking changes the offending sequence to Ns, thereby removing them completely
from consideration. Soft masking prevents the masked region from seeding alignments but pre-
serves sequence identity so that off-target alignments are minimized. Soft masking is routinely
done by the programs SEG and DUST (Wootton and Federhen 1993), which are found in most
versions of the BLAST sequence alignment suite.

While tandem repeats are relatively easy to deal with, repeat transposable elements (such as
retrotransposons) are much harder to handle. This is because these sequences are far larger
and far more complex. The Repbase (Jurka et al. 2005) database contains a comprehensive
collection of repeat and transposable elements from a wide range of species. This resource is
frequently used to identify repeat elements via comparative sequence analysis. However, if the
transposon sequences are highly divergent from those found in RepBase, then other methods
or other databases may need to be used. Dfam (Wheeler et al. 2013) is an example of a more
advanced repetitive element database. In Dfam, the original Repbase sequences have been con-
verted to HMMs. The use of these HMMs has allowed many more transposable elements to be
identified (up to 54.5% vs. 44% in humans) with much improved accuracy (Wheeler et al. 2013).
In addition to Dfam (which is available as both a server and a downloadable resource), there
are several stand-alone programs and web servers that have been developed to specifically
identify retrotransposons, including RECON (Bao and Eddy 2002), RepeatScout (Price et al.
2005), RetroPred (Naik et al. 2008), LTR_FINDER (Xu and Wang 2007), LTRharvest (Elling-
haus et al. 2008), and MITE-Hunter (Han and Wessler 2010). These programs identify and label
either LTR or non-LTR retrotransposons. While this information may be useful to some, many



Genome Annotation Pipelines 141

genome annotators are simply interested in removing retrotransposons from consideration. In
this regard, RepeatMasker (Tarailo-Graovac and Chen 2009) has become the tool of choice as
it simply hard masks (i.e. removes) all detectable retrotransposon sequences from the genome
of interest.

As a general rule, hard masking of transposable elements is often the first step performed in
a eukaryotic genome annotation. Hard masking with tools such as Dfam or programs such as
RepeatMasker not only removes “uninteresting” genetic data, it also accelerates the gene iden-
tification process and improves annotation accuracy. Because coding exons tend not to overlap
or to contain repetitive elements, ab initio gene prediction programs tend to predict fewer
false-positive exons when using hard-masked sequences. For instance, when chromosome 22
was analyzed using different ab initio gene predictors, it was found that a significant reduction
in false-positive gene predictions occurred (Parra et al. 2003). In particular, GENSCAN initially
predicted 1128 protein-coding genes without using sequence masking, but when sequence
masking was used the number of predicted genes dropped to 789. When GeneID was used,
the number fell from 1119 to 730. The actual number of protein-coding genes in chromosome
22, according to the latest GENCODE annotation, is 489.

Finding and Removing Pseudogenes in Eukaryotes

A particular challenge with eukaryotic genome annotation is differentiating between pre-
dictions identifying “real” genes from those that correspond to non-functional pseudogenes.
Database searches may not help to provide any clearer picture, as many pseudogenes are
similar to functional, paralogous genes. The absence of an RNA transcript from an RNA-seq
experiment cannot be used as a criterion either, because RNA transcripts do not always exist
for actual genes because of variations in tissue expression or developmental stages. In general,
intronless gene predictions for which multi-exon paralogous genes exist in the same genome
are suspicious, as they may indicate sequences that have arisen through retrotransposition.
Multi-exon predictions, however, can also correspond to pseudogenes arising through a recent
gene duplication event. If homologs in another organism exist, one solution is to compute
the synonymous versus non-synonymous substitution rate (Ka/Ks; Fay and Wu 2003). Ka/Ks
values approaching 1 are indicative of neutral evolution, suggesting a pseudogene. Support
for multi-exon gene predictions can come from assessing the conservation of the overall gene
structure in close homologs. For instance, the prediction or identification of homologous
genes in two modestly related organisms (e.g. mouse and human) most likely indicates that
the gene is real and is not a pseudogene (Guigó et al. 2003).

Genome Annotation Pipelines

In the early days of genome annotation, when it would often take years just to sequence a sin-
gle organism, teams of researchers and bioinformaticians would gather and work together for
many months, or even years, to assemble the genome, perform the initial ab initio gene predic-
tions, manually collate the experimental or literature-derived evidence, conduct comparative
sequence analysis, and then synthesize the data into a consensus genome annotation. This
was routinely done for both bacterial and eukaryotic genomes (Lander et al. 2001; Winsor et al.
2005; Riley et al. 2006). Indeed, it is still being done for the GENCODE project, which has been
preparing and updating the reference human genome annotation since 2003 (Harrow et al.
2012). However, these efforts have required (and continue to require) enormous resources and
time. With the appearance of very high-throughput NGSs and the ability to routinely sequence
an entire genome in a few days, these manual approaches to genome annotation have become
unsustainable. Now, most genome annotations are done through automated pipelines that
help users to synthesize multiple pieces of evidence and data to generate a consensus genome
annotation.
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The choice of a pipeline tool depends on the type of organism (eukaryote vs. prokaryote), the
computational resources available, the available evidence (RNA-seq or no RNA-seq data), and
the similarity of the organism to previously annotated organisms. For instance, if one is anno-
tating a genome with a closely related, previously annotated species, a simple comparative
analysis or sequence projection should be sufficient. If the organism of interest has no closely
related annotated species, a pipeline that uses RNA-seq or experimentally acquired protein
sequence data will generate more accurate annotations. The most advanced genome annota-
tion pipelines require many programs and perform complex analyses that need supercomput-
ers such as large multi-core machines or massive computing clusters (maintained locally or
available via the Cloud). For example, to annotate the loblolly pine genome (which contains
22 billion bases – seven times more than the human genome) required 8640 central processing
units (CPUs) running for 14.6 hours (Wegrzyn et al. 2014). In the following sections we will
briefly describe some commonly used annotation pipelines for prokaryotes and eukaryotes.

Prokaryotic Genome Annotation Pipelines

Annotation pipelines for prokaryotes typically do not require the same computational
resources as for eukaryotes. Indeed, most bacterial genomes can be annotated in less than
30 minutes, whether on a web server or on a desktop computer. However, the recent shift
toward metagenomics or community bacterial genomics is beginning to lead to significantly
greater computational demands that will be discussed in more detail in Chapter 16. Some of
the more popular publicly available prokaryotic genome annotation pipelines include Prokka
(Seemann 2014), Rapid Annotation using Subsystem Technology (RAST; Overbeek et al.
2014), and the Bacterial Annotation System (BASys; Van Domselaar et al. 2005). Prokka is an
open-source Perl program that runs with a command-line interface (on UNIX). Prokka can
be used to annotate pre-assembled bacterial, archaeal, and viral sequences. With Prokka, a
typical 4 million base pair bacterial genome can be fully annotated in less than 10 minutes
on a quad-core computer. Prokka is also capable of producing standards-compliant output
files for further analysis or viewing. Prokka’s appeal lies in its speed and ability to perform
“private” annotations on local computers. In contrast to Prokka, RAST and BASys are genome
annotation web servers. Web servers are generally easier to use but they do not offer the
privacy of a locally installed program. RAST is a registration-based web server that accepts
standard, pre-assembled DNA sequence files and then identifies protein-encoding, rRNA, and
tRNA genes, assigns functions to the genes, and finally uses this information to reconstruct a
metabolic network for the organism. In contrast to RAST, BASys is an open access web server.
BASys accepts pre-assembled FASTA-formatted DNA or protein files from bacteria, archaea,
and viruses and performs many of the same annotation functions as RAST. However, BASys
provides a much greater depth of annotation (covering more than 50 calculable properties)
and produces colorful, easily viewed genome maps (Figure 5.9) using a program called
CGView (Stothard and Wishart 2005).

Eukaryotic Genome Annotation Pipelines

Given the complexity of eukaryotic genomes, their corresponding annotation pipelines must
do somewhat more than those used for prokaryotic genomes. In particular, eukaryotic genome
annotation pipelines must combine not only the ab initio gene predictions (or multiple gene
predictions from multiple sources) but also many other pieces of evidence, including exper-
imental data. As a result, almost all modern eukaryotic genome annotation pipelines use a
technique called “evidence clustering” to identify gene regions and then use the aligned RNA
(from RNA-seq) and protein evidence to improve the accuracy of the gene predictors. Some
pipelines go even further and make use of a “combiner” algorithm to select the combination
of exons that are best supported by the evidence. Two combiner programs in particular are
very good at this: JIGSAW (Allen and Salzberg 2005) and EVidenceModeler, or EVM (Haas
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Figure 5.9 A screenshot of a BASys bacterial genome annotation output for the bacterium Salmonella enterica. The BASys image can be
interactively zoomed-in to reveal rich annotations for all of the genes in the genome.

et al. 2008). These programs assess different types of evidence based on known error profiles
and various kinds of user input and then choose the best combination of exons to minimize
the error. In particular, EVM combines aligned protein and RNA transcript evidence with ab
initio gene predictions into weighted consensus gene models, while JIGSAW uses non-linear
models or weighted linear combiners to choose a single best consensus gene model.

Among the most widely used eukaryotic genome annotation pipelines, all of which
use some kind of combiner algorithm, are MAKER2 (Holt and Yandell 2010), Ensembl
(Fernández-Suárez and Schuster 2010), the National Center for Biotechnology Information
(NCBI) Eukaryotic Annotation Pipeline (Thibaud-Nissen et al. 2016), PASA (Haas et al. 2008),
and BRAKER1 (Hoff et al. 2016). The MAKER2 annotation pipeline is a highly parallelizable,
stand-alone program that aligns and polishes protein sequence and transcriptome (RNA-seq)
data with BLAST; it also provides evidence-based hints to various gene predictors and it
creates an evidence trail with various quality metrics for each annotation. Some of MAKER2’s
quality metrics include the number of splice sites confirmed by RNA-seq evidence, the
number of exons confirmed by RNA-seq data, and the lengths of 5′ and 3′ UTRs. MAKER2
also uses a quality metric called the Annotation Edit Distance, or AED (Eilbeck et al. 2009).
The AED value ranges between 0 and 1, with higher quality annotations being associated
with lower AEDs. MAKER2 uses these AED values to choose the best gene predictions
from which to build its final annotation. Like the MAKER2 pipeline, the Ensembl genome
annotation pipeline builds its gene models from aligned and polished protein sequence- and
RNA-seq-derived transcriptome data. To complete the annotation process, Ensembl merges
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identical transcripts, and a non-redundant set of transcripts is reported for each gene. Both
MAKER2 and Ensembl supply hints to indicate intron/exon boundaries using protein and
RNA-seq alignments to their internal gene predictors. This helps to generate gene models
that better represent the aligned evidence. This approach also helps improve gene prediction
accuracy for poorly (or insufficiently) trained gene finders. Like the Ensembl and MAKER2
pipelines, the NCBI Annotation Pipeline aligns and polishes protein and transcriptome data.
It also generates gene predictions using the Gnomon gene-finding program (Souvorov et al.
2010). The NCBI system typically assigns higher weights to manually curated evidence over
computationally derived models or computationally generated evidence. The PASA genome
annotation pipeline is one of the oldest annotation pipelines and was one of the first to
use a combiner or evidence-clustering algorithm (EVM). PASA aligns RNA transcripts to
the reference genome using BLAT (Kent 2002) or GMAP (Wu et al. 2016). PASA is capable
of generating annotations based on RNA transcriptome data, on pre-existing gene models,
or on ab initio gene predictions. PASA, along with the MAKER2 and Ensembl annotation
pipelines, are able to add UTRs to their genome annotations via RNA-seq data to further
increase their accuracy. One of the latest additions to publicly available eukaryotic genome
annotation pipelines is the BRAKER suite of programs (Hoff et al. 2016). BRAKER1 (and most
recently BRAKER2) combines the strengths of GeneMark-ET with AUGUSTUS – both of
which use RNA-seq data to improve their gene annotation accuracy. In the BRAKER pipeline,
GeneMark-ET is used first to train and generate initial gene structures, then AUGUSTUS
makes use of the initially predicted genes for further training and integrates RNA-seq data
into the final gene predictions. BRAKER1 has been shown to be 10–20% more accurate than
MAKER2 in terms of gene and exon sensitivity/specificity.

Even with an exon accuracy of >90% (rarely achieved by even the best eukaryotic genome
annotation pipelines), most genes in a genome will have at least one incorrectly annotated
exon. Incorrectly identified genes or mistaken gene annotations can have very serious
consequences for experimentalists who are designing experiments to study gene functions.
Indeed, many failed molecular biology or gene-cloning experiments can be traced back to
incorrect gene annotations. Furthermore, incorrect annotations can propagate, leading to a
cascade of errors that affect many other scientists. This happens when an incorrect annotation
is innocently passed on to another genome project and then used as evidence in still more
genome annotation efforts which eventually end up in public databases. To help prevent these
errors or to reduce the magnitude of these mistakes, most annotation pipelines include some
kind of quality metrics which are attached to each and every gene annotation. Most of these
metrics are based on a score that measures the agreement of a given gene annotation to an
aligned RNA/protein sequence or on the basis of the homology and synteny of the gene to
closely related species. Some pipelines use a simple star rating (ranging from zero to five). Zero
stars corresponds to an annotation where none of the exons is supported by aligned evidence,
while a five-star rating corresponds to a situation where every exon is supported and every
splice site is confirmed by a single full-length cDNA. Other pipelines use more sophisticated
metrics, such as the AED score (mentioned above). Protein family domains can also be good
indicators of annotation quality and annotation completeness. Certainly, any annotation that
contains an identifiable protein domain is more likely to encode a functional protein than one
that does not. Domain matching has been used to rescue a number of gene annotations that
would have otherwise received a “failing” quality score owing to a poor sequence alignment.
Both Ensembl and MAKER2 report the fraction of annotations containing a protein family
domain as a quality measure. Interestingly, this fraction (0.69) appears to be quite constant
across genomes; the closer a given genome is to this fraction, the more confidence one has in
its quality. In addition to the domain-matching fraction, the presence or absence of BUSCO
genes can also be used to provide a measure of the completeness of a genome annotation
(Simão et al. 2015). Another excellent route to ensure good quality annotations is through
manual inspection with genome visualization and editing software. This is discussed in more
detail below.
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Visualization and Quality Control

While automated or semi-automated pipelines for genome annotation have become the norm,
there is still a need for a human factor in annotating genomes and assessing their quality.
Having a knowledgeable biologist or some kind of “domain expert” carefully look through a
genome annotation is essential to ensure that the annotations make sense. This manual review
process also allows one to catch and correct suspicious annotations or fill in missing annota-
tions. However, to perform these manual reviews or curatorial tasks, it is necessary to visualize
and interactively edit the annotations. Certainly two of the best known genome browsers are
the University of California Santa Cruz Genome Browser (Casper et al. 2018) and Ensembl’s
Genome Browser (Fernández-Suárez and Schuster 2010), both of which have been thoroughly
reviewed in Chapter 4. While these tools are excellent for visualizing genome annotations,
there are also a number of other tools that support both visualizing and editing genome anno-
tations, including Web Apollo (Lee et al. 2013), GenomeView (Abeel et al. 2012), and Artemis
(Carver et al. 2012).

Web Apollo is both a visualization tool and a genome editor. More specifically, it is a
web-based plug-in for JBrowse (Westesson et al. 2013) that provides an editable, user-created
annotation track. All edits in Web Apollo are visible in real time to all members of the
annotation team. This feature is particularly helpful when undertaking a community anno-
tation project or when many investigators are involved in a particular genome analysis.
GenomeView is an open-source, stand-alone genome viewer and editor that allows users
to dynamically browse large volumes of aligned short-read data. It supports dynamic navi-
gation and semantic zooming, from the whole genome level to the single nucleotide level.
GenomeView is particularly noted for its ability to visualize whole genome alignments of
dozens of genomes relative to a reference sequence. It also supports the visualization of
synteny and multi-alignment data. Artemis is a genome browser and annotation tool that
allows users to easily visualize, browse, and interpret large NGS datasets. It supports multiple
sequence read views and variant displays, along with a comprehensive set of read alignment
views and read alignment filters. It also has the ability to simultaneously display multiple
different views of the same dataset to its users. Artemis can read EMBL and GENBANK
database entries, FASTA sequence formats (indexed or raw), and other features in EMBL and
GENBANK formats.

When reviewing an annotated genome (regardless of whether it is from a prokaryote or a
eukaryote), it is always useful to randomly select a specific region and to use the chosen visual-
ization/editing tools to carefully analyze the annotations together with the evidence provided.
This evidence may include the ab initio predicted genes, the spliced RNA-seq alignments, or
any homologous protein alignments. While browsing through the selected region, one may
notice certain genes or clusters of genes that seem to contradict the displayed evidence. For
instance, the RNA-seq data may support additional or different splice forms. Alternately, cer-
tain cross-species proteins may map to genomic regions where no gene has been previously
predicted. Visual inspection can also reveal certain systematic problems with the annotation
process, such as a tendency to miss genes with known database homologs or the appearance
of repeats that overlap or mask many protein-coding genes. These problems may be addressed
by changing parameter settings on the genome annotation pipeline, performing the necessary
edits manually, or by choosing another tool. Multiple, iterative rounds of manual reviewing
and manual editing followed by automated pipeline annotation are often necessary to com-
plete a full and thorough genome annotation.

Summary

Genome annotation has evolved considerably over the past two decades. These changes have
been driven, in part, by significant improvements in computational techniques (for gene pre-
diction) and in part by a significant expansion in the number of known and annotated genomes
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from an ever-growing number of diverse species. The availability of improved gene predic-
tion tools, along with significantly expanded databases of well-annotated genes, proteins, and
genomes, has moved genome annotation away from pure gene prediction to a more integrated,
holistic approach that combines multiple lines of evidence to locate, identify, and function-
ally annotate genes. When combined with experimental data such as RNA-seq data or pro-
tein sequence data (from structural proteomics or expression-based proteomics), it is possible
to obtain remarkably accurate and impressively complete annotations. This comprehensive
blending of evidence is the basis for many newly developed, semi-automated or automated
genome annotation pipelines and to many of the newer genome browsers and editors. How-
ever, not all genome annotation efforts can yield the same quantity or quality of informa-
tion. Certainly prokaryotic genome annotation is faster, easier, and much more accurate than
eukaryotic genome annotation. Indeed, the challenge of prokaryotic genome annotation is
essentially a “solved problem,” while the challenge of eukaryotic genome annotation has to be
considered as a “work in progress.”
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Internet Resources

Ab Initio Prokaryotic Gene Predictors
EasyGene (server) www.cbs.dtu.dk/services/EasyGene
GeneMark.hmm (server) opal.biology.gatech.edu/GeneMark/gmhmmp.cgi
GeneMarkS (server) opal.biology.gatech.edu/GeneMark/genemarks.cgi
GLIMMER (program) www.cs.jhu.edu/~genomics/Glimmer
Prodigal (program) github.com/hyattpd/Prodigal

Ab Initio Eukaryotic Gene Predictors
GeneID (server) genome.crg.es/geneid.html
GeneMark-ES (program) opal.biology.gatech.edu/GeneMark
GeneZilla (program) www.genezilla.org
GenomeScan (server) hollywood.mit.edu/genomescan.html
GENSCAN (server) hollywood.mit.edu/GENSCAN.html
HMMgene (server) www.cbs.dtu.dk/services/HMMgene
SNAP (program) korflab.ucdavis.edu/software.html

Hybrid/Extrinsic Eukaryotic Genome Finders
AUGUSTUS (server) bioinf.uni-greifswald.de/augustus
AUGUSTUS-PPX (program) bioinf.uni-greifswald.de/augustus
CONTRAST (program) contra.stanford.edu/contrast
GeneID (server) genome.crg.es/software/geneid
GeneWise (server) www.ebi.ac.uk/Tools/psa/genewise
GenomeThreader (program) genomethreader.org
GSNAP (program) research-pub.gene.com/gmap
mGENE (program) www.mgene.org

http://www.cbs.dtu.dk/services/EasyGene
http://opal.biology.gatech.edu/GeneMark/gmhmmp.cgi
http://opal.biology.gatech.edu/GeneMark/genemarks.cgi
http://www.cs.jhu.edu/~genomics/Glimmer
https://github.com/hyattpd/Prodigal
http://genome.crg.es/geneid.html
http://opal.biology.gatech.edu/GeneMark/
http://www.genezilla.org
http://www.cbs.dtu.dk/services/HMMgene
http://korflab.ucdavis.edu/software.html
http://bioinf.uni-greifswald.de/augustus/
http://bioinf.uni-greifswald.de/augustus/
http://contra.stanford.edu/contrast/
https://www.ebi.ac.uk/Tools/psa/genewise/
http://genomethreader.org/
http://research-pub.gene.com/gmap/
http://www.mgene.org
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Hybrid/Extrinsic Eukaryotic Genome Finders
Mugsy-Annotator (program) mugsy.sourceforge.net
SGP-2 (program) genome.crg.es/software/sgp2
STAR (program) code.google.com/archive/p/rna-star
Transomics (program) linux1.softberry.com/berry.phtml?topic=transomics

tRNA and rRNA Finders
Rfam (server) rfam.xfam.org
RNAmmer (server) www.cbs.dtu.dk/services/RNAmmer
RNAMotif (program) casegroup.rutgers.edu/casegr-sh-2.5.html
tRNAdb (server) trnadb.bioinf.uni-leipzig.de/DataOutput/Welcome
tRNADB-CE (server) trna.ie.niigata-u.ac.jp/cgi-bin/trnadb/index.cgi
tRNAfinder (server) ei4web.yz.yamagata-u.ac.jp/~kinouchi/tRNAfinder
tRNAscan-SE (server) lowelab.ucsc.edu/tRNAscan-SE

Phage-Finding Tools
Phage_Finder (program) phage-finder.sourceforge.net
PHAST (server) phast.wishartlab.com
PHASTER (server) phaster.ca

Repeat Finding/Masking Tools
Dfam (server) www.dfam.org
LTR_FINDER (server) tlife.fudan.edu.cn/tlife/ltr_finder
LTRharvest (program) genometools.org/index.html
MITE-Hunter (program) target.iplantcollaborative.org/mite_hunter.html
Repbase (server) www.girinst.org/repbase
RepeatMasker (program) www.repeatmasker.org
RepeatScout (program) bix.ucsd.edu/repeatscout
RetroPred (program) www.juit.ac.in/attachments/RetroPred/home.html

Prokaryotic Genome Annotation Pipelines
BASys (server) www.basys.ca
Prokka (program) www.vicbioinformatics.com/software.prokka.shtml
RAST (server/program) rast.nmpdr.org

Eukaryotic Genome Annotation Pipelines
BRAKER1 (program) bioinf.uni-greifswald.de/bioinf/braker
EVM (program) evidencemodeler.github.io
JIGSAW (program) www.cbcb.umd.edu/software/jigsaw
MAKER2 (program) www.yandell-lab.org/software/maker.html
PASA (program) github.com/PASApipeline/PASApipeline/wiki

Genome Browsers and/or Editors
Artemis (program) www.sanger.ac.uk/science/tools/artemis
Ensembl (program) uswest.ensembl.org/downloads.html
GenomeView (program) genomeview.org
JBrowse (program) jbrowse.org
UCSC Genome Browser hgdownload.cse.ucsc.edu/downloads.html
Web Apollo (program) genomearchitect.github.io

http://mugsy.sourceforge.net/
https://code.google.com/archive/p/rna-star/
http://linux1.softberry.com/berry.phtml?topic=transomics
http://rfam.xfam.org/
http://www.cbs.dtu.dk/services/RNAmmer
http://casegroup.rutgers.edu/casegr-sh-2.5.html
http://trnadb.bioinf.uni-leipzig.de/DataOutput/Welcome
http://trna.ie.niigata-u.ac.jp/cgi-bin/trnadb/index.cgi
http://ei4web.yz.yamagata-u.ac.jp/~kinouchi/tRNAfinder/
http://lowelab.ucsc.edu/tRNAscan-SE/
http://phage-finder.sourceforge.net/
http://phast.wishartlab.com/
http://phaster.ca/
http://www.dfam.org
http://tlife.fudan.edu.cn/tlife/ltr_finder/
http://genometools.org/index.html
http://target.iplantcollaborative.org/mite_hunter.html
http://www.girinst.org/repbase
http://www.repeatmasker.org
https://bix.ucsd.edu/repeatscout/
http://www.juit.ac.in/attachments/RetroPred/home.html
http://www.basys.ca
http://www.vicbioinformatics.com/software.prokka.shtml
http://rast.nmpdr.org/
http://bioinf.uni-greifswald.de/bioinf/braker/
https://evidencemodeler.github.io/
http://www.cbcb.umd.edu/software/jigsaw
http://www.yandell-lab.org/software/maker.html
https://github.com/PASApipeline/PASApipeline/wiki
https://www.sanger.ac.uk/science/tools/artemis
https://uswest.ensembl.org/downloads.html
http://genomeview.org/
https://jbrowse.org/
http://hgdownload.cse.ucsc.edu/downloads.html
http://genomearchitect.github.io/


148 Genome Annotation

Further Reading

Hoff, K.J. and Stanke, M. (2015). Current methods for automated annotation of protein-coding
genes. Curr. Opin. Insect Sci. 7, 8–14. A well-written and up-to-date summary of some of the
latest developments in genome annotation with some very practical advice about which
annotation tools should be used.

Nielsen, P. and Krogh, A. (2005). Large-scale prokaryotic gene prediction and comparison to
genome annotation. Bioinformatics. 21, 4322–4329. A very readable assessment of prokaryotic
gene prediction and genome annotation.

Yandell, M. and Ence, D. (2012). A beginner’s guide to eukaryotic genome annotation. Nat. Rev.
Genet. 13, 329–342. A nice, easy-to-read introduction to the processes involved in eukaryotic
genome annotation along with useful descriptions of the available computational tools and best
practices.

Yoon, B. (2009). Hidden Markov models and their applications in biological sequence analysis.
Curr. Genomics 10, 402–415. A comprehensive tutorial on HMMs that provides many useful
examples and explanations of how different HMMs are constructed and used in gene prediction
and gene sequence analysis.
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Predictive Methods Using RNA Sequences
Michael F. Sloma, Michael Zuker, and David H. Mathews

Introduction

RNA is a versatile biopolymer that plays many roles beyond simply carrying and recognizing
genetic information as messenger RNA (mRNA) and transfer RNA (tRNA), respectively. It
has been known for decades that RNA sequences can catalyze RNA cleavage and ligation
(Doudna and Cech 2002) and that RNA is an important component of the signal recognition
particle (SRP) (Walter and Blobel 1982) that directs the export of proteins out of the cell. More
recently, additional roles for RNA have been discovered. Ribosomal RNAs (rRNAs) catalyze
peptide bond formation during protein synthesis (Nissen et al. 2000; Hansen et al. 2002),
small nuclear RNAs (snRNAs) and self-splicing introns catalyze pre-mRNA splicing reac-
tions, microRNAs (miRNAs) and small interfering RNAs (siRNA) regulate gene expression
by binding to mRNAs, and mRNAs regulate their own expression by binding metabolites
via RNA structures called riboswitches. RNA plays roles in other crucial processes including
development (Lagos-Quintana et al. 2001; Lau et al. 2001) and the immune system (Cullen
2002). Furthermore, RNA can be made to evolve in vitro to catalyze reactions that do not
occur in nature (Bittker et al. 2002).

RNA is also an important target and agent for the pharmaceutical industry. In the ribosome,
RNA is the target of several classes of antibiotics. mRNA is the target of drugs that work on the
antisense principle (Dias and Stein 2002) or by RNA interference, also known as RNAi (Cas-
tanotto and Rossi 2009). Recent work has shown that RNA can be targeted specifically by small
molecules (Disney et al. 2016).

To fully understand the mechanism of action or to target an RNA sequence, the structure
of the RNA under investigation needs to be understood. RNA structure has three levels
of organization, as shown in Figure 6.1 (Tinoco and Bustamante 1999). The first level – the
primary structure (Figure 6.1a) – is simply the linear sequence of nucleotides in the RNA
molecule. The secondary structure (Figure 6.1b) is defined by the base-pairing interactions
(both Watson–Crick pairs and G-U pairs) that take place within the RNA polymer. Finally,
the tertiary structure (Figure 6.1c) is the three-dimensional arrangement of the atoms in the
RNA sequence and, therefore, includes all the non-canonical contacts.

Often, the secondary structure of an RNA sequence is solved before its tertiary structure
because there are accurate experimental and computational methods for determining the sec-
ondary structure of an RNA sequence and because knowledge of the secondary structure is
often helpful in designing constructs for tertiary structure determination. A typical RNA sec-
ondary structure, illustrated in Figure 6.2, is composed of both helical and loop regions. The
helical regions are composed of canonical base pairs. The loop regions take different forms,
depending on the number of closing base pairs and the distribution of unpaired nucleotides.
They can be hairpin loops, in which the backbone makes a 180∘ bend; internal loops, in which
a helix is interrupted with two strands of unpaired nucleotides; bulge loops, in which a helix
is interrupted with a single strand of unpaired nucleotides; and multibranch loops (also called
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Figure 6.1 The three levels of organization of RNA structure. (a) The primary sequence, (b) the secondary
structure (Cannone et al. 2002), and (c) the tertiary structure (Cate et al. 1996) of a domain of the group I
intron from Tetrahymena. The secondary structure illustrates the canonical base pairs and the tertiary
structure captures the three-dimensional arrangement of atoms. Reproduced with permission of AAAS.

helical junctions), from which more than two helices exit. Although secondary structure dia-
grams often do not explicitly illustrate nucleotide interactions in loop regions, these regions
are responsible for the non-canonical interactions that stabilize the structure.

In the absence of a tertiary structure, the “gold standard” for predicting the placement
of loops and helices is comparative sequence analysis, which uses evolutionary evidence
found in sequence alignments to determine base pairs (Pace et al. 1999) (see also Chapter 8
for information on multiple sequence alignment methods). Base pairs predicted by compar-
ative sequence analysis for large (LSU) and small subunit (SSU) rRNA were 97% accurate
when compared with high-resolution crystal structures (Gutell et al. 2002).

RNA structure prediction is a large field, with hundreds of computational tools available
for predicting the structure of an RNA molecule. This chapter presents some of the most
popular methods used to deduce RNA secondary structure based on sequence. This chapter
also presents ways in which additional information can be used to improve structure pre-
diction accuracy, including methods that find a common structure for multiple homologous
sequences and methods that use experimental data. To that end, RNA folding thermodynamics
and dynamic programming are introduced. The Mfold and RNAstructure web servers, com-
monly used tools for predicting RNA secondary structure, are described in detail. Alternative
software tools are also mentioned. This chapter concludes with a brief introduction to the
methods used for RNA tertiary structure prediction. Additional resources with more in-depth
information on specific tools are provided for the interested reader.
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Figure 6.2 The RNA secondary structure of the 3′ untranslated region of the Drosophila sucinea R2 ele-
ment (Lathe and Eickbush 1997; Mathews et al. 1997). Base pairs in non-helical regions, known as loops,
are colored by type of loop, which is labeled.

Overview of RNA Secondary Structure Prediction Using
Thermodynamics

Many methods for RNA secondary structure prediction rely on a nearest neighbor model for
predicting the stability of an RNA secondary structure, in terms of the Gibbs free energy change
at 37 ∘C (ΔG∘

37) (Box 6.1) (Xia et al. 1998, 1999; Mathews et al. 1999a, 2004; Turner 2000;
Turner and Mathews 2010). The rules for predicting stability use a nearest neighbor model
because the stability of each base pair depends only on the most adjacent pairs and the total
free energy is the sum of each contribution. In-depth reviews of the determination of nearest
neighbor parameters from experiments are available (Schroeder and Turner 2009; Andronescu
et al. 2014).

Box 6.1 Gibbs Free Energy

The Gibbs free energy of formation for an RNA structure (ΔG∘) quantifies the equilib-
rium stability of that structure at a specific temperature. For example, consider an RNA
structure A that is at equilibrium with the random-coil (i.e. unstructured) conformation.

(Continued)
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Box 6.1 (Continued)

The relative concentration of each conformation is governed by the equilibrium con-
stant, Keq, as illustrated in Figure 6.3a. Keq is related to the Gibbs free energy by the
relationship:

Keq = [Conformation A]
Random coil

= e−ΔG∘∕RT (6.1)

where R is the gas constant (1.987 cal mol−1 K−1) and T is the absolute temperature (in
Kelvin).

Furthermore, for multiple alternative conformations, A and B, for which there is an
equilibrium distribution of conformations, K′

eq, as shown in Figure 6.3b, describes the
distribution of strands between the structures. In this case, the free energy of each con-
formation relative to the random coil also describes the population of each conformation:

K′
eq = [Conformation A]

[Conformation B]
= e−(ΔG∘A−ΔG∘B )∕RT (6.2)

This generalizes to any number of conformations. Therefore, the lowest free energy
conformation is the most probable conformation for an RNA molecule at equilibrium. This
is commonly called the minimum free energy structure.

Free energies are expressed in units of joules per mole (J mol−1) in SI units. Commonly,
for RNA folding stability, these are still frequently expressed in units of kilocalorie per
mole (kcal mol−1), where a calorie= 4.184 J. A difference in the Gibbs free energy change of
1.42 kcal mol−1 at 37 ∘C (human body temperature; 310.15 K) changes the equilibrium con-
stant by a factor of 10, which can be shown by plugging 1.42 kcal mol−1 in for ΔG∘A −ΔG∘B
in Eq. (6.2).

Random coil

(unstructured)
Conformation A

Keq

(a)

Random coil

(unstructured)

Conformation A

K′eq

Conformation B

(b)

Figure 6.3 An illustration of the equilibria of RNA
structures in solution. (a) The equilibrium between
conformation A and the random coil structure. Keq,
which is related to the standard state free energy
change at 37 ∘C (ΔG∘37), describes the equilibrium.
(b) The equilibrium between two conformations, A and
B, and the random coil. K′

eq, which is related to the
free energy of folding for both A and B, describes the
population of conformation A versus conformation B.

An example of a nearest neighbor stability calculation is shown in Figure 6.4. Terms for heli-
cal stacking, loop initiation, and unpaired nucleotide stacking contribute to the total conforma-
tional free energy. Favorable free energy increments are always less than zero. The free energy
increments of base pairs are counted as stacks of adjacent pairs. The consecutive CG base
pairs, for example, contribute −3.3 kcal mol−1 (Xia et al. 1998). Note that the loop regions have
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Figure 6.4 Prediction of conformational free energy for a conforma-
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ing free energy increment is labeled. The total free energy is the sum
of the increments. For this estimated stability of −5.2 kcal mol−1,
there is a population of 4600 folded strands to every one unfolded
(Keq = 4600; Box 6.1).
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unfavorable increments called loop initiation energies that largely reflect an entropic cost for
constraining the nucleotides in the loop. For example, the hairpin loop of four nucleotides has
an initiation free energy change of 5.6 kcal mol−1 (Mathews et al. 2004). Unpaired nucleotides
in loops can provide favorable energy increments either as stacked nucleotides or as mis-
matched pairs. The 3′-most G shown in Figure 6.4, called a dangling end, stacks on the terminal
base pair and provides −1.3 kcal mol−1 of stability. The first mismatch in the hairpin loop with
this sequence context contributes −1.1 kcal mol−1 of stability.

The nearest neighbor free energy parameters utilize sequence-dependent terms for predict-
ing the free energy increments of loop regions (Mathews et al. 1999a) to reflect experimen-
tal observations. For example, the 2× 2 internal loop (an internal loop with two unpaired
nucleotides on each side of the loop) can vary in stability from −2.6 to +2.8 kcal mol−1 depend-
ing on the sequence of the closing pair and mismatches (Schroeder et al. 1999).

The structure with the lowest ΔG∘ is the most likely structure at equilibrium, but this is not
everything that there is to know about the equilibrium of structures. Another useful quantity,
the partition function Q, provides a description of the structural ensemble (denoted as s, the
set of all structures that the RNA molecule can adopt) of an RNA molecule by summing the
equilibrium constant of each conformation:

Q =
∑

s
e−ΔG∘∕RT (6.3)

The partition function can be used to calculate the probability that an RNA molecule in the
ensemble of structures adopts conformation A:

P(A) = e−ΔG∘A∕RT

Q
(6.4)

When predicting structures, the structure with the lowest ΔG∘ can have a low probability.
However, many of the low free energy structures will contain the same base pairs, and those
pairs can thus have a high probability of forming. The probability of a specific base pair forming
in an RNA structure is given by:

P(i paired to j) = 1
Q

∑

s′∈sij

e−ΔG∘
s′∕RT (6.5)

where sij is the set of structures in which the nucleotide at index i is paired to the nucleotide
at index j.

Partition functions are the basis for many computational methods to study RNA structure,
including methods to identify a common structure for multiple sequences (Harmanci et al.
2011; Will et al. 2012), to identify mutations that alter RNA structure (Halvorsen et al. 2010;
Sabarinathan et al. 2013; Salari et al. 2013), and to estimate accessibility to oligonucleotide
binding (Lu and Mathews 2007; Tafer et al. 2008).

Dynamic Programming

In the previous section, thermodynamic rules were introduced for RNA secondary structure
prediction that require searching the full space of possible structures, either to find the best
scoring structure or to calculate the equilibrium constant for each structure. How is this search
performed? The naive approach would be to explicitly generate every possible conformation,
evaluate the free energy of each, and then choose the conformation that had the lowest (best)
free energy.

One estimate is that there are (1.8)N secondary structures possible for a sequence of
N nucleotides (Zuker and Sankoff 1984) – that is 3× 1025 structures for a modest length
sequence of 100 nucleotides. Given a fast computer that can calculate the free energy for
10 000 structures in a second, this approach would require 1.6× 1014 years! Clearly, a better
solution needs to be implemented for a problem of this size.
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Figure 6.5 A simple RNA pseudoknot. This figure illustrates two representations of the same simple,
H-type pseudoknot. A pseudoknot is defined by two base pairs such that i–j and i′–j′ are two pairs
with ordering i < i′ < j< j′. The base pair between nucleotides i and j defines an enclosed region. The
base pair between nucleotides i′ and j′ spans the enclosed region and an adjacent region, making the
pseudoknot.

The most commonly employed solution for cases such as this is called dynamic
programming, which uses recursion and tabulation of intermediate results to accelerate
the calculation (Nussinov and Jacobson 1980; Zuker and Stiegler 1981). Appendix 6.A
describes this method in detail for the interested reader. The dynamic programming approach
can find both the minimum free energy structure and the partition function much faster
than brute force, with an asymptotic performance that scales with computational time by N3

(denoted as O(N3)) and O(N2) in data storage for sequences of length N when pseudoknots
are excluded from the calculation (Box 6.2). A pseudoknot, illustrated in Figure 6.5, occurs
when there are non-nested base pairs (Liu et al. 2010). For example, the simplest pseudoknot
occurs when there are two base pairs i–j and i′–j′ such that i< i′ < j< j′. It had been assumed
that pseudoknots could not be predicted by a polynomial time dynamic programming until
Rivas and Eddy (1999) presented a polynomial time dynamic programming algorithm that
can predict structures containing a certain class of pseudoknots that is sufficiently rich
to cover all cases of practical importance. However, their algorithm is O(N6) in time and
O(N4) in storage, making the calculation impractical for sequences longer than about 300
nucleotides (Rivas and Eddy 1999; Condon et al. 2004). Other adaptations of the algorithm
have improved scaling, but are still limited in practice to the sequence length on which they
can be applied (Reeder and Giegerich 2004). A partition function algorithm that includes
pseudoknots (Dirks and Pierce 2003) is O(N5) in time and O(N4) in storage, and is likewise
only useful for sequences up to 200 nucleotides in length.

Box 6.2 Algorithm Complexity

In computer science, algorithm complexity describes the scaling of a calculation in the
worst case scenario. It is expressed using the “big-O” notation, which can be read as “order.”
Algorithms that are O(N) in time require a linear increase in computational time as the
size parameter, N, increases. O(N2) and O(N3) algorithms scale by the square and cube of
the parameter N, respectively. Therefore, the dynamic programming algorithm for RNA
secondary structure prediction, which is O(N3), where N is the number of nucleotides,
requires roughly eight times the execution time for a sequence twice as long. This is
a fairly expensive calculation, as compared with sorting a list, which can generally be
accomplished in O(N log(N)) time.

The big-O notation also applies to the scaling of memory (also called storage) used
by an algorithm. Secondary structure prediction requires two-dimensional arrays of size
N ×N. Therefore, in storage, the secondary structure prediction algorithm is O(N2).

Variants of the dynamic programming algorithm for finding the minimum free energy struc-
ture (Mathews et al. 1999a; Wuchty et al. 1999) can also predict structures with free energy
greater than the lowest free energy structure, using an additional constant factor of time and
memory. These are called suboptimal structures (Zuker 1989). Suboptimal structures with
estimated free energy changes close to the lowest free energy structure provide important
alternative hypotheses for the actual structure. This is due to the fact that nearest neighbor
parameters are imperfect; also, ignoring motifs like pseudoknots can result in a suboptimal
structure being more accurate than the lowest free energy structure.
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Accuracy of RNA Secondary Structure Prediction

The accuracy of RNA secondary structure prediction can be assessed by predicting structures
for RNA sequences with known secondary structures. For a collection of structures assembled
to test prediction accuracy, including SSU rRNA (Cannone et al. 2002), LSU rRNA (Cannone
et al. 2002), 5S rRNA (Szymanski et al. 2000), group I introns (Cannone et al. 2002), group II
introns (Michel et al. 1989), RNase P RNA (Brown 1999), SRP RNA (Larsen et al. 1998), and
tRNA (Sprinzl et al. 1998), 73% of base pairs in the known structure were, on average, correctly
predicted (Mathews et al. 2004). For these calculations, the SSU and LSU rRNAs are divided
into domains of fewer than 700 nucleotides based on the known secondary structure (Mathews
et al. 1999a). Although this level of accuracy is sufficient to make hypotheses about a structure
of interest, a more accurate prediction is often desirable. There are two general approaches
to improving the accuracy of a secondary structure prediction, both of which try to reduce
the number of incorrect structures that are considered in the search step. One approach is to
use low-resolution experimental data (Sloma and Mathews 2015) and the other is to predict a
structure common to multiple homologs (Seetin and Mathews 2012a).

Experimental Methods to Refine Secondary Structure Prediction

Low-resolution experimental methods use either enzymatic cleavage or chemical modi-
fication reagents that preferentially react with either double-stranded or single-stranded
nucleotides. Examining the reactivity at each position identifies which nucleotides are in
stems and which are in loops, but gives no information on what the pairing partners of the
double-stranded nucleotides are. Commonly used reagents for these experiments include
RNAse V1, which cleaves RNA molecules in double-stranded regions; RNAse T, which cleaves
RNA molecules after an unpaired guanine nucleotide, and RNase T2, which cleaves after an
unpaired nucleotide of any type; dimethyl sulfate, which modifies unpaired adenine and cyto-
sine nucleotides; and selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE)
reagents, a group of chemicals that modify any unpaired nucleotide. Recent advances have
allowed these methods to be used in concert with massively parallel sequencing to probe
the secondary structure of many different RNA molecules simultaneously inside living cells
(Spitale et al. 2013; Ding et al. 2014; Rouskin et al. 2014; Talkish et al. 2014).

This experimental information can be used in an RNA secondary structure prediction
algorithm in one of two ways. One is to forbid the search step of the dynamic programming
algorithm from considering any structures that are inconsistent with the experimental data.
This often dramatically increases the accuracy for sequences that are poorly predicted without
experimental data. For example, for the 5S rRNA sequence from Escherichia coli, which
is poorly predicted without experimental constraints, the accuracy improves from 26% to
87% using enzymatic cleavage data (Speek and Lind 1982; Mathews et al. 1999a; Szymanski
et al. 2000).

Another way to apply experimental data to improve the prediction is to assign a pseudo-free
energy penalty to structures that do not precisely match the data, rather than forbidding them
entirely. This approach is useful because, while reactivity to enzymes or chemical probes is
strongly correlated with single-strandedness, some double-stranded nucleotides can still be
highly reactive (Sukosd et al. 2013). In these cases, using a soft restraint where inconsistent
structures are merely penalized (instead of forbidden) allows prediction of structures that are
“mostly consistent” with the data. This approach was originally used for SHAPE (Deigan et al.
2009) and has also been applied to both dimethyl sulfate modification (Cordero et al. 2012)
and enzymatic cleavage (Underwood et al. 2010) experimental data.

Predicting the Secondary Structure Common to Multiple RNA
Sequences

An alternative approach to improving RNA secondary structure prediction is to make use
of information provided by evolution. Homologous RNA molecules that perform the same
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function in different organisms are expected to form similar structures, even though their
sequences may have diverged substantially. In particular, compensatory mutations, in which
a mutation at one position would disrupt a base pair but a second mutation at its partner posi-
tion restores base pairing, is strong evidence that a base pair exists. Algorithms can automate
this process by restricting their search space to structures that can be adopted by all of the
homologs, or by weighting more heavily structures that contain compensatory mutations.

The basis of comparative sequence analysis is the detection of conserved structure, as
inferred from sequence differences between species or between sequences discovered by
in vitro evolution (Pace et al. 1999). The assumption of a conserved secondary structure elim-
inates from consideration the many possible secondary structures for a single sequence that
the set of sequences across evolution cannot all adopt. In other words, the multiple sequences
constrain the possible secondary structure. These constraints can also be used as auxiliary
information in the prediction of secondary structure. Manual comparative sequence analysis
can be highly accurate, with over 97% of base pairs inferred for rRNAs present in subsequently
solved crystal structures (Gutell et al. 2002), but it requires significant skill and effort.
Computer algorithms that automate these comparative analyses are still not as accurate as
manual comparative analysis in which the models are refined over time.

RNA secondary structure prediction algorithms that incorporate information from multiple
sequences can be divided between those that are constrained by an initial sequence alignment
and those that are not. In general, those methods that are constrained by an initial alignment
are not as robust because of the limitations in the alignment, but are computationally faster.

Algorithms That Are Constrained by an Initial Alignment

Several programs have been developed for finding the secondary structure common to a set
of aligned sequences (Lück et al. 1996, 1999; Juan and Wilson 1999; Hofacker et al. 2002).
A popular approach, called Alifold, uses a sequence alignment to constrain secondary struc-
ture prediction by free energy minimization or constraining the calculation of the partition
function (Hofacker et al. 2002; Bernhart et al. 2008). Additional energy terms are added to
the conformation free energy to favor compensating base changes and sequence conservation.
This program is available as part of the Vienna RNA Package (Lorenz et al. 2011) and as a web
server.

Another approach for finding a structure common to multiple sequences, called Pfold, uses
a stochastic context-free grammar (Knudsen and Hein 1999). The grammar defines rules for
generating a sequence together with a secondary structure. These rules, encoded as proba-
bility parameters, are estimated from a sequence alignment and known, common secondary
structures of a number of tRNAs and LSU rRNAs. These sequences and structures are referred
to as the training set. A given sequence is folded using a dynamic programming algorithm
that determines a structure with a maximum probability of being generated by the stochastic
context-free grammar.

Algorithms That Are Not Constrained by the Initial Alignment

Dynamic programming can be used to simultaneously predict the sequence alignment and
common secondary structure for multiple RNA sequences (Sankoff 1985). In general, this
approach is O(N1

3N2
3N3

3…) in time, where N1 is the length of the first sequence, N2 the length
of the second sequence, and so forth, making it computationally impractical. Two programs
are available that are based on this approach: FoldAlign (Havgaard et al. 2005) and Dynalign
(Mathews and Turner 2002; Fu et al. 2014). Given the time required to run them, these pro-
grams are limited to two sequences, but both have been extended using pairwise calculations
to work on more than two sequences (Torarinsson et al. 2007; Xu and Mathews 2011). These
programs are the best choices to predict structures when the set of sequences is highly diverged.
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An alternative approach to predicting RNA secondary structure without an input alignment
is to fold the sequences, align sequences, and then combine the information to predict a con-
served secondary structure. Three modern tools that take this approach are LocARNA (Will
et al. 2007, 2012), PARTS (Harmanci et al. 2008, 2009), and TurboFold (Harmanci et al. 2011).
These programs are faster than Dynalign and FoldAlign, but require higher sequence identity
to work well.

Practical Introduction to Single-Sequence Methods

This section introduces two web servers: the Mfold web server and the RNAstructure web
server. Both web servers provide structure predictions of similar accuracy for single sequences,
and either server can be used depending upon the features desired. The Mfold server addition-
ally provides an interface to simulate the melting of bimolecular complexes (Dimitrov and
Zuker 2004). The RNAstructure web server additionally provides methods for determining
conserved secondary structures in multiple homologs, siRNA design, and bimolecular struc-
ture prediction (Bellaousov et al. 2013).

Using the Mfold Web Server

Mfold is an RNA secondary structure prediction package available both as a web server and
as code for compilation on Unix/Linux machines (Mathews et al. 1999a; Zuker 2003). It uses
a set of nearest neighbor parameters for free energies at 37 ∘C (Mathews et al. 1999a). Mini-
mum free energy and suboptimal secondary structures, generated heuristically (Zuker 1989),
are predicted. Suboptimal structures represent alternative structures to the lowest free energy
structure and reflect both the possibility that an RNA sequence may have more than a single
structure (Schultes and Bartel 2000) and the fact that the energy rules contain some uncertainty
(Mathews et al. 1999a; Layton and Bundschuh 2005; Zuber et al. 2017). Mfold also predicts
energy dot plots, which display the lowest free energy conformation possible for each possible
base pair (Zuker and Jacobson 1995). These plots conveniently demonstrate all possible base
pairs within a user-specified increment of the lowest free energy structure and predicted struc-
tures can be color annotated to demonstrate regions in the structure for which many folding
alternatives exist (Zuker and Jacobson 1998).

Figure 6.6a,b shows the top and bottom of the input form on the Mfold server, respectively.
A sequence name can be entered in the box labeled Enter sequence name and the sequence is
typed (or pasted from the clipboard) in the box labeled Enter the sequence to be folded in the
box below. As the caption explains, non-alphabetic characters are ignored and do not interfere
with sequence interpretation. For example, the form shows a tRNA sequence called RD1140
(Sprinzl et al. 1998) pasted into the sequence field. The remainder of the form has default
values that can be changed by advanced users. The next box provides the option of constrain-
ing structure prediction with auxiliary evidence derived from enzymatic cleavage experiments
(Knapp 1989), comparative sequence analysis (Pace et al. 1999), or biological intuition. Next,
the default is for linear RNA sequence folding, although circular sequences can also be folded
by changing the option from linear to circular. Note that the folding temperature is fixed at
37 ∘C using the current parameters. An older, less complete set of parameters allows secondary
structure prediction at other temperatures (Jaeger et al. 1989), but it is recommended that the
current parameters be used for most applications. The older parameters can be used for fold-
ing by following the link at the top of the page to the RNA mfold version 2.3 server (not shown
in Figure 6.6). The percent suboptimality number (5 by default) is the maximum percent dif-
ference in free energy from the lowest free energy structure that is allowed when generating
suboptimal secondary structures. The upper bound on the computed foldings, default at 50, is
the maximum number of suboptimal secondary structures to be predicted. The window param-
eter controls how different each suboptimal structure must be from all others. It defaults to a
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(a)

(b)

Figure 6.6 The input form for the version 3.1 Mfold server. (a) The top and (b) the bottom of the form. Default
parameters are shown with the exceptions as noted in the text. Note that there is a separate server for secondary
structure prediction of DNA, using DNA folding free energies (SantaLucia 1998). This is available by following
the link to the DNA Mfold server (see Internet Resources).
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value based on the length of the sequence that is shown by following the link at Window. For
example, the tRNA used here is 77 nucleotides long and will have a default window of 2. A
smaller window allows more suboptimal structures and a larger window requires more differ-
ences between the predicted structures. The smallest window size allowed is zero. The maxi-
mum number of unpaired nucleotides in bulge or internal loops is limited to 30 by default. The
maximum asymmetry in internal loops, the difference in length in unpaired nucleotides on
each strand, is also 30 by default. The maximum distance allowed between paired nucleotides
is set to no limit. These values can be modified by advanced users.

The remaining options control the server output. Currently, sequences containing 800 or
fewer nucleotides can be folded in a relatively short time and are treated as an immediate job.
Longer sequences must be folded as a batch job, requiring that the default option be changed
from An immediate to A batch job. Batch jobs also require that the user enter an e-mail address
for receiving notification that the calculation is complete. The tRNA in this example is short,
so the default of An immediate job will be used. The remaining options control the way the
server generates output. Each of these options has a link to a web page that describes each
parameter. Fold RNA is clicked to start the calculation.

Figure 6.7 shows the Mfold server output form for the secondary structure prediction of the
RD1140 tRNA. Results are available on the server for 24 hours after computation. The first win-
dow displays the sequence with numbered nucleotide positions. A diagram of each predicted
secondary structure is available in a variety of formats. For this example, only a single struc-
ture is predicted using the default parameters for suboptimal secondary structure prediction.
The commonly used formats, available by links adjacent to Structure 1, are PostScript, which
is a publication-quality output format shown in Figure 6.8a; PNG and JPG, which are image
formats that allow user interaction; and RNAViz CT and XRNA ss formats, which are export
formats for secondary structure drawing tools, explained below.

The energy dot plot is available by links to a Text formatted, Postscript formatted, PNG format-
ted, or JPG formatted file. In the dot plot, each dot represents a base pair between nucleotides
indicated on the x- and y-axes and the dot’s color indicates the lowest energy for a structure that

Figure 6.7 The output page for the Mfold server. Please refer to the text for a detailed description of this page.
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contains that pair. The energy dot plot is divided into two triangles. The upper triangle is the
energy plot including suboptimal pairs and the lower triangle is the location of base pairs in
the predicted minimum free energy structure. The text format is suitable for subsequent analy-
sis using custom scripts. Postscript is a publication-quality output and is shown in Figure 6.8b.
PNG and JPG formats both link to interactive pages that allow the user to zoom to regions,
change the energy increment and number of colors, and click on individual base pairs to deter-
mine the exact energy. The energy dot plot in Figure 6.8b shows that there are alternative
base pairs contained in structures with free energies between −29.8 and −30.0 kcal mol−1, a
separation of less than 1 kcal mol−1 from the lowest free energy structure (−30.6 kcal mol−1).
Therefore, these are base pairs that should be considered as possible alternatives to those in
the lowest free energy structure.

An RNAML formatted output file is available for exchanging information with other
RNAML-compliant programs. This is an XML file format that promises to eventually allow
seamless information exchange between RNA analysis programs (Waugh et al. 2002).

Using the RNAstructure Web Server

RNAstructure is a software package for predicting RNA secondary structure (Reuter and
Mathews 2010; Bellaousov et al. 2013). In addition to implementations of the algorithms
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Figure 6.8 Sample output from the Mfold web server, version 3.1. (a) The secondary structure predicted
for the tRNA, RD1140 (Sprinzl et al. 1998). (b) The energy dot plot (as described in the text).
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(b)

Figure 6.8 (Continued)

for structure prediction and the partition function, RNAstructure includes tools for
multiple-sequence prediction, identifying accessible regions in an RNA structure, and pre-
dicting the structure for two RNA molecules to hybridize. RNAstructure can be used through
a web server or downloaded and used through a graphical user interface for Windows, Mac
OS X, and Linux, or via the command line. This tutorial explains how to use the web server
interface; detailed instructions for predicting secondary structures using the downloadable
program are available in the online help files and elsewhere (Mathews et al. 2016; Xu and
Mathews 2016).

The homepage for the RNAstructure web server offers options to predict a secondary
structure from a single sequence, to predict a conserved structure with multiple homologous
sequences, to predict the structure of two interacting sequences, or to run a specific algorithm
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from the RNAstructure package. To predict a structure for a single sequence, choose Predict
a Secondary Structure. This leads to an input form for the web server that predicts RNA
structures using a selection of methods (Figure 6.9). Like Mfold, the minimum free energy
structure for the input RNA sequence and a selection of suboptimal structures are computed.
Additionally, base-pairing probabilities are calculated using the partition function and used
to annotate the predicted RNA secondary structures, giving the user feedback about what
parts of the predicted structure are most likely to be correct. Highly probable base pairs
(i.e. higher than 0.9 pairing probability) are more likely to be correctly predicted than low
probability (i.e. a pairing probability less than 0.5) (Mathews 2004). RNA secondary structures

(a)

Figure 6.9 RNAstructure web server input form. (a) The top and (b) the bottom of the form. Please refer to the text for a detailed description
of this page.
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(b)

Figure 6.9 (Continued)

are also generated using the maximum expected accuracy method (Lu et al. 2009), which
generates structures directly from the base-pairing probabilities calculated using the partition
function, and can be more accurate than the minimum free energy structures. Additionally,
secondary structures that may contain pseudoknots are generated using the ProbKnot method
(Bellaousov and Mathews 2010).

Returning to the input form for the web server (Figure 6.9), the user can either upload a
sequence file or type a title and sequence into the input box. There is an option above this
box to insert an example sequence. The RNAstructure input form offers the same options as
Mfold, such as number of suboptimal structures to generate, maximum internal loop size, and
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others. Additionally, the user can select a temperature for folding; select a gamma parame-
ter, which can be changed to increase or decrease the number of predicted base pairs by the
maximum expected accuracy method; and the number of iterations and helix length used by
the ShapeKnots method. Default values are provided that are expected to work well in most
cases.

The form also contains an option to upload files that constrain or restrain the calculation
with results from experiments. The user can either use hard constraints to forbid certain pairs
or provide a file with scores from a SHAPE probing experiment that will be converted to
pseudo-free energy changes to restrain structure prediction. Each of these files must be speci-
fied in a specific format, described in the file formats link.

An example output, showing the results for the example sequence, is shown in Figure 6.10.
The structure is predicted using all free energy minimization, maximum expected accuracy
prediction, and ProbKnot. Additionally, predicted secondary structures are color annotated
with probabilities, as calculated with the partition function. Base-paired nucleotides are anno-
tated with base-pairing probability and unpaired nucleotides are annotated with the probabil-
ity of being unpaired.

Practical Introduction to Multiple Sequence Methods

Using the RNAstructure Web Server to Predict a Common Structure for Multiple
Sequences

The RNAstructure web server also provides an interface to predict a secondary structure
using multiple sequences, when sequence homologs are available. Homologs are most often
sequences from multiple species that serve the same function (see Chapter 3 for definitions).
They can be found in genomes using synteny or they can be found using traditional genetic
or biochemical methods. The multiple sequence interface can be accessed by selecting Predict
a Secondary Structure Common to Two Sequences or Predict A Secondary Structure Common
to Three or More Sequences from the web server main page. Selecting the option for three or
more sequences leads to the input form in Figure 6.11, for structure prediction using Multilign
and TurboFold. To provide a sequence, the user can upload a file in the FASTA format or copy
FASTA-formatted data into the box titled Sequences. There is an option above this box to enter
example data.

Multilign uses Dynalign to calculate common structures using pairs of sequences (Xu and
Mathews 2011). Multilign can predict suboptimal structures, and the input form contains the
energy difference, maximum number of structures, and structure window size options that
are by now familiar because they serve the same roles for single-sequence structure prediction
(above). In addition to controlling suboptimal structures, suboptimal sequence alignments are
also considered, using an alignment window size parameter. The minimum alignment win-
dow will generate suboptimal alignments with small variations. By setting this window size to
larger values, the suboptimal alignments are required to show larger changes. The gap penalty
parameter is used by Dynalign to penalize gaps inserted in sequence alignments. The penalty
parameter is in units of kcal mol–1. Two additional parameters, iterations and maxdsvchange,
adjust the way information from Dynalign calculations propagates in Multilign. The default
parameters should work for most calculations, and are available for change by experienced
users (Xu and Mathews 2011).

For TurboFold, the user can specify a number of options. Because TurboFold produces
a matrix of pair probabilities, a user can choose how the pair probabilities will be used to
predict a structure: Maximum Expected Accuracy (Lu et al. 2009), Pseudoknots (Bellaousov
and Mathews 2010; Seetin and Mathews 2012b), or Threshold, that uses a simple cut-off
where the structure will be composed of all the pairs that exceed a user-specified threshold
in base-pairing probability (Mathews 2004). The default is maximum expected accuracy,
which does not predict pseudoknots. If a pseudoknot is expected or if the user would like
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Figure 6.10 Sample output from the RNAstructure web server showing the predicted minimum free energy secondary structure for the
tRNA RD1140 (Sprinzl et al. 1998). The predicted pairs are color annotated with their pairing probability, and the unpaired nucleotides are
annotated with the probability that they are unpaired, as calculated using a partition function.
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(a)

Figure 6.11 Input form for the RNAstructure web server for multiple-sequence predictions. (a) The top and (b) the bottom of the
form. Please refer to the text for a detailed description of this page.
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(b)

Figure 6.11 (Continued)
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Figure 6.12 Sample output from the RNAstructure web server for multiple-sequence predictions that can be accessed by clicking Click here
to add example sequences to the box on the input form (Figure 6.11).
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to know about possible pseudoknots, switching to Pseudoknot, which uses the ProbKnot
method, would be a good choice. The next set of options controls the TurboFold procedure:
the TurboFold Gamma option specifies the relative weight placed on intrinsic and extrinsic
information when folding a single sequence, and the TurboFold Iterations option specifies
how many steps of iterative refinement each set of pair probabilities will undergo.

Entering the example data and selecting Submit Query leads to the output shown in
Figure 6.12, which displays a predicted structure by both Multilign and TurboFold for each
input sequence. These two programs provide alternative hypotheses for the secondary struc-
ture; Multilign is likely to be more accurate when the sequences have little pairwise sequence
identity (<50%) and TurboFold is likely to be more accurate with high pairwise sequence
identities (>60%).

Other Computational Methods to Study RNA Structure

Another widely used RNA structure prediction package is the ViennaRNA package (Lorenz
et al. 2011). ViennaRNA is available as a web server and as a set of locally run command
line tools. The ViennaRNA package programs have a UNIX-style input, accepting data from
standard input and printing results to standard output, making them easy to seamlessly inte-
grate into a UNIX pipeline. In addition to implementations of the usual minimum free energy
and partition function algorithms, ViennaRNA includes a suite of tools for predicting a com-
mon structure for multiple sequences, for drawing structures, for predicting duplex structures
between two RNA chains, and for designing sequences that fold to a desired structure.

Sfold is an implementation of the partition function calculation that predicts secondary
structures using a stochastic sampling procedure (Ding and Lawrence 1999, 2001, 2003). The
sampling procedure guarantees that structures are sampled with true statistical weight. Sfold is
available for use through a web interface. Sfold has been shown to accurately predict unpaired
regions that correlate to regions accessible to antisense oligonucleotide targeting (Ding and
Lawrence 2001). As the secondary structures are sampled statistically, the fraction of occur-
rences that a nucleotide is unpaired in a set of sampled structures is the predicted probability
for being unpaired.

NUPACK (Zadeh et al. 2010) is a software suite (available through a web server and as a
downloadable package) that solves the inverse folding problem, the opposite problem from
RNA structure prediction. Instead of taking a sequence and predicting its structure, NUPACK
takes a structure as input and attempts to find a sequence that will fold to that structure.
Because the sequence space to be searched is enormous (4N for a sequence of length N, so there
are approximately 1.6× 1060 possible sequences for a 100-nucleotide RNA), NUPACK hierar-
chically decomposes the structure into components. Sequences are designed for each compo-
nent. The component sequences are then assembled, and, if any combination of sequences
fails, the components are redesigned. Good candidate sequences are found by optimizing the
ensemble defect, a quantity calculated from the partition function that estimates how many
bases in the sequence are forming the desired structure (Zadeh et al. 2011).

Another important problem is to predict whether two RNA molecules will hybridize
with one another, and the structure of the resulting duplex. Important applications of this
capability are to predict targets of siRNA (Lu and Mathews 2007; Tafer et al. 2008), miRNA, or
DNA oligonucleotides (Mathews et al. 1999b). The most accurate approaches for prediction
of RNA–RNA interactions consider the balance between self-structure and intermolecular
structure because the self-structures can prevent binding by a second sequence. Implemen-
tations of multi-sequence folding include RNAup (Muckstein et al. 2006) and RNAplex
(Tafer and Hofacker 2008), which are part of the ViennaRNA package, and BiFold (Mathews
et al. 1999b), DuplexFold (Mathews et al. 1999b), and AccessFold (DiChiacchio et al. 2016),
which are components of RNAstructure. Web servers are available for RNAup (as part of the
ViennaRNA web server), BiFold (as part of the RNAstructure web server), and DuplexFold
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(as part of the RNAstructure web server). AccessFold and RNAplex are not available through
web servers, but can be downloaded and run locally.

Comparison of Methods

No single program is yet available that can replace manual comparative sequence analysis, but
additional sources of information can dramatically improve prediction accuracy. When exper-
imental data such as SHAPE are available, single-sequence thermodynamic prediction can
often provide accurate secondary structures, correctly predicting 90% or more of the known
base pairs (Deigan et al. 2009; Cordero et al. 2012; Hajdin et al. 2013). If multiple homologs are
available, multiple-sequence predictions of the conserved secondary structure are more accu-
rate than single-sequence predictions (Asai and Hamada 2014; Havgaard and Gorodkin 2014).
Dynalign/Multilign (Fu et al. 2014), FoldAlign/FoldAlignM (Havgaard et al. 2005), LocARNA
(Will et al. 2007), RAF (Do et al. 2008), or TurboFold (Harmanci et al. 2011) can be helpful
for simultaneously predicting secondary structure and aligning sequences that are too dis-
similar to be aligned by primary sequence without using secondary structure (Mathews and
Turner 2002). These programs have similar average accuracy. TurboFold is the fastest, but
Dynalign, Foldalign, LocARNA, or RAF probably perform with higher accuracy when the
sequence identity is low (average pairwise percent sequence identity less than 35%). It might be
worth making predictions with more than one software tool to obtain multiple hypotheses for
the conserved structure. For a set of homologs with high sequence identity (>85%), RNAalifold
is another excellent tool for predicting the structure conserved by multiple homologs (Bernhart
et al. 2008). It requires a multiple sequence alignment as input. The methods, like RNAalifold,
for finding secondary structure in multiple sequence alignments are best used as screening
tools to find common helices, which can be used to anchor portions of a sequence alignment
when making manual revisions for further rounds of analysis.

Predicting RNA Tertiary Structure

Although there are many automated methods for accurate RNA secondary structure predic-
tion, RNA tertiary structure prediction remains a more difficult problem. This is because the
space of possible tertiary structures is much larger than the space of possible secondary struc-
tures, and there is no known algorithm that can search the conformational space as quickly or
completely as can be done for secondary structure prediction.

A pioneering approach to tertiary structure prediction was implemented in the MC-SYM
software (Major et al. 1991, 1993; Parisien and Major 2008). With an approach called fragment
assembly, MC-SYM builds structural models by assembling nucleotides in conformations
collected from known structures. Each possible model is stored until it is shown to contradict
a constraint, based on experimental data, comparative analysis, or secondary structure
prediction. The variations between all compatible models can suggest how accurately the
model has been determined with the data used. An early demonstration of the utility of
MC-SYM was the modeling of the hairpin ribozyme using data about secondary structure,
hydroxyl radical footprinting, photoaffinity cross-linking, and disulfide cross-linking (Pinard
et al. 1999). A subsequent crystal structure verified the existence of a predicted long-range GC
pair, although a predicted base triple, involving an A at that pair, was not observed (Rupert
and Ferré-D’Amaré 2001). More recently, the algorithm was used in concert with an extended
secondary structure prediction method called MC-Fold, which can predict some tertiary
interactions, to accurately predict structures for RNA molecules up to 100 nucleotides in
length (Parisien and Major 2008).

Another RNA fragment assembly approach is based on the Rosetta framework (Cheng et al.
2015), which has been highly successful in protein structure prediction (Simons et al. 1997).
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This is a fragment assembly approach used in concert with a knowledge-based force field that
is used to sample native-like conformations.

Another class of de novo tertiary structure prediction methods is to use physics-based molec-
ular dynamics (MD) simulations to predict structures. However, these MD simulations are
far too slow to allow for structure prediction by themselves. A typical MD simulation might
take weeks to run, even on specialized hardware, and simulate mere microseconds of fold-
ing. In nature, even simple RNA molecules take milliseconds or longer (Turner 2000) to fold,
and complex structures can take seconds (Woodson 2000). In order to bridge this gap, two
broad approaches can be used. One approach is to add constraints to the simulation based
on computational structure prediction, low-resolution experimental data, and sequence com-
parison (Seetin and Mathews 2011; Weinreb et al. 2016). Another is to use coarse-graining;
that is, replacing multiple atoms in the real molecule with a single “pseudo-atom,” therefore
reducing the number of degrees of freedom available for sampling (Flores and Altman 2010;
Krokhotin et al. 2015). This dramatically speeds up simulations, at a cost of detailed atomic
accuracy in the resulting coordinates.

For RNA sequences for which there is already a high-resolution experimental structure for a
closely related sequence, another prediction method, called homology modeling, can be used.
Here, the structure for the homolog and its alignment with the new sequence are used to
generate a structure for the new sequence, making the assumption that the new structure
deviates from the old structure only in relatively minor details. Structure predictions gen-
erated via homology modeling can be highly accurate while remaining fast, because only a
relatively small conformational space – the space of structures highly similar to the model
of the homolog – needs to be sampled. Homology modeling for RNA is implemented in the
ModeRNA program, for which a web server is available (Rother et al. 2011).

A recent multi-group effort, called RNA-PUZZLES, is an attempt to use a friendly competi-
tion to evaluate the progress of RNA tertiary structure prediction methods (Cruz et al. 2012;
Miao et al. 2015). This is a blind RNA structure prediction contest modeled after the Critical
Assessment of Structure Prediction (CASP) challenge, an analogous contest for protein struc-
ture (Moult et al. 2016). The RNA-PUZZLES project recruits structural biologists who solve
novel RNA structures to share their coordinates. The sequence of the RNA molecule that has
been solved is then shared with the computational modelers, who each provide their best guess
as to the three-dimensional structure that the sequence will adopt. Finally, after the experimen-
tal structure is published, the computational models are compared with the experiment and
assessed for accuracy.

The results of the first two rounds of RNA-PUZZLES revealed that modelers can accurately
predict the overall topology of an RNA molecule from its sequence. However, structural details
are often predicted incorrectly, especially loop regions, whose structures are determined by
non-canonical contacts that are poorly predicted. Accurate modeling of loop regions will be
an important step in the improvement of RNA tertiary structure prediction.

Summary

RNA secondary structure can be predicted by free energy minimization using dynamic
programming with an average of 73% accuracy for a single sequence (Mathews et al. 2004).
Several software packages and web servers, including Mfold, the Vienna package, and
RNAstructure, are available to do this calculation (Hofacker 2003; Zuker 2003; Reuter and
Mathews 2010). Calculation of pairing probabilities using a partition function can help in
the identification of base pairs that are not well determined (Mathews 2004). The partition
function can also be used to stochastically sample structures from the ensemble of possible
structures, and this capability is used to predict structures by the Sfold program (Ding and
Lawrence 2003).
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Several methods are available to constrain secondary structure prediction using multiple
sequences and multiple sequence alignment. These are divided among algorithms that are
limited to an initial sequence alignment and those that are not limited to an initial align-
ment. Alifold and Pfold predict a secondary structure common to a set of aligned sequences
(Knudsen and Hein 1999; Hofacker et al. 2002). Dynalign, FoldAlign, LocARNA, and Tur-
boFold are capable of simultaneously predicting a common secondary structure and sequence
alignment (Havgaard et al. 2005; Will et al. 2007; Harmanci et al. 2011; Fu et al. 2014). For long
sequences or alignments of large numbers of homologs, TurboFold and LocARNA implement
fast algorithms that provide good accuracy.

An important recent development has been the experimental methods used to probe RNA
secondary structure, in a high-throughput fashion, inside living cells (Spitale et al. 2013; Ding
et al. 2014; Rouskin et al. 2014; Talkish et al. 2014). These methods, used in concert with com-
putational structure prediction methods (Deigan et al. 2009; Hajdin et al. 2013), will surely
continue to yield new insights into RNA structure and function.

An important need in the field of RNA secondary structure prediction is improved
methods to predict RNA–RNA interactions. Tools such as AccessFold (DiChiacchio et al.
2016) and RNAup (Muckstein et al. 2006) are an improvement over their predecessors, but
still lack sufficient accuracy to solve many practical problems.

RNA tertiary structure prediction is rapidly improving, but still remains difficult. In particu-
lar, while the helical regions and the overall topology of a molecule can be correctly modeled,
many atomic details remain inaccurate. The RNA-PUZZLES contest provides an ongoing mea-
sure of the rapid improvements in this field (Cruz et al. 2012; Miao et al. 2015).

Internet Resources

Mfold unafold.rna.albany.edu/?q=mfold
ModeRNA iimcb.genesilico.pl/modernaserver
Nearest Neighbor Database
(NNDB)

rna.urmc.rochester.edu/NNDB

RNAstructure rna.urmc.rochester.edu/RNAstructure.html
Sfold sfold.wadsworth.org/cgi-bin/index.pl
ViennaRNA Package rna.tbi.univie.ac.at
Wikipedia RNA Software Page en.wikipedia.org/wiki/List_of_RNA_structure_prediction_software

Further Reading

Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998). Biological Sequence Analysis. Probablistic
Models of Proteins and Nucleic Acids. New York, NY: Cambridge University Press This book is
an excellent primer on probabilistic models for sequence analysis, including hidden Markov
models and stochastic context-free grammars.

Gorodkin, J. and Ruzzo, W.L. (eds.) (2014). RNA Sequence, Structure, and Function: Computational
and Bioinformatic Methods. New York, NY: Humana Press.

Turner, D.H. and Mathews, D.H. (2009). NNDB: the nearest neighbor parameter database for
predicting stability of nucleic acid secondary structure. Nucleic Acids Res. 38: D280–D282. This
describes NNDB, which provides the latest nearest neighbor parameters and usage examples.
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Predictive Methods Using Protein Sequences
Jonas Reeb, Tatyana Goldberg, Yanay Ofran, and Burkhard Rost

Introduction

Simply put, DNA encodes the instructions for life, while proteins constitute the machinery
of life. DNA is transcribed into RNA and from there information is delivered into the amino
acid sequence of a protein. This simplified version of the “central dogma of molecular biology”
formulated by Francis Crick (1958) essentially remains valid, although new discoveries have
extended our view (Elbarbary et al. 2016). Furthermore, epigenetic studies have demonstrated
that chromatin contains more complex information than just a one-dimensional (1D) string
of letters, with the heritability of epigenetic traits having a profound effect on gene expression
(Allis and Jenuwein 2016). Nonetheless, the 1D protein sequence ultimately determines the
three-dimensional (3D) structure into which the protein will fold (Anfinsen 1973), where it
will reside in the cell, with which other molecules it will interact, its biochemical and physio-
logical function, and when and how it will eventually be broken down and reduced back into
its building blocks. In sum, the function (or, in the case of a disease, the malfunction) of every
protein is encoded in the sequence of amino acids.

The central dogma suggests that everything about a protein can be inferred from its DNA
sequence – so, why then analyze protein sequences? It turns out that computationally con-
verting DNA to protein sequence is challenging and we still do not understand exactly how
to identify the structure of a protein based on the DNA that encodes it. It is even more diffi-
cult to predict transcripts from DNA. Fortunately, many experimental approaches, including
proteomics methods, can be used to deduce protein sequences, as discussed in Chapter 11.

The advent of “next-generation” DNA sequencing technologies is generating a wealth of raw
sequence data about which very little is known (Martinez and Nelson 2010; Goodwin et al.
2016). The pace at which sequences are accumulating far exceeds the ability of experimental
biologists to decipher their biochemical traits and biological functions. The gap between the
number of proteins of known sequence and known function – the “sequence–function gap” – is
ever increasing, requiring improved computational approaches to predict aspects of a protein’s
function from its amino acid sequence. A similar sequence–structure gap exists for proteins, in
that there are 180 million protein sequences available but only about 150 000 different known
protein 3D structures have been determined as of this writing (Berman et al. 2000; UniProt
Consortium 2016).

Determining a protein’s function begins with an analysis of what is already known. This
means that every protein must be compared with all others, which implies that the compu-
tational time needed to study protein function grows as the square of sequence growth – a
tremendous challenge for computational biology and bioinformatics. In the following sections,
we survey some of the research approaches and computational tools that have been shown
to successfully predict aspects of the structure and function of a protein from its amino acid
sequence.

Bioinformatics, Fourth Edition. Edited by Andreas D. Baxevanis, Gary D. Bader, and David S. Wishart.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/baxevanis/Bioinformatics_4e
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One-Dimensional Prediction of Protein Structure

Synopsis

The 1D structure of a protein can be written as a simple string of characters representing
the set of natural amino acids – that is, the information content is one dimensional. While
more details on protein structure can be found in Chapter 12, in this chapter, we will
focus specifically on 1D prediction methods. Predictions of 1D features are relevant for two
reasons. First, features such as the number of membrane helices, the disorder in a protein,
or the surface residues are often important for protein function. We could determine 1D
structure from 3D structures if such structures were experimentally available but, given the
sequence–structure gap discussed above, experimental 3D structures are available for fewer
than 1% of all known sequences, while 1D predictions can be obtained for all 180 million
protein sequences known today. Second, predictions of 1D structure are used as an input for
most of the methods that will be described in the section about functional prediction that
follows. All of the features that will be described here are available from the PredictProtein
server, illustrated in Figure 7.1 and providing pre-computed data on over 20 million proteins
(Rost et al. 2004; Kajan et al. 2013; Yachdav et al. 2014).

Figure 7.1 Dashboard of the PredictProtein web server. PredictProtein (Yachdav et al. 2014) provides a centralized interface to many
methods that predict aspects of protein structure and function from sequence. Shown here is a sample of the dashboard for the pro-
tein picturesquely named Mothers against decapentaplegic homolog 7 (UniProtKB identifier smad7_human). The black, numbered line in the
upper middle indicates the input amino acid sequence of length 428. Below follow predictions of different sequence-based tools, along
with a synopsis of the protein family. Predictions include protein–protein binding, protein–DNA/RNA binding, residue exposure (solvent
accessibility), secondary structure, and residue flexibility; if found, the predictions also include membrane, long disordered, and coiled-coil
regions. Additional information is shown through mouse-over events, here illustrated through the beta strand prediction from the method
ReProf. Tabs on the left give access to more detailed views of various predictions and analyses.
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Secondary Structure and Solvent Accessibility

Background Secondary structures are local macrostructures formed from short stretches of
amino acid residues that organize themselves in specific ways to form the overall 3D structure
of a protein. Physically, the driving force behind the formation of secondary structures is a com-
plex combination of local and global forces. Secondary structure prediction methods seek to
predict the secondary structure of a short protein stretch based on the sum of these forces. For
instance, alpha helices are stabilized by hydrogen bonds between the CO group of one amino
acid and the NH group of the amino acid that is four positions C-terminal to it. Strands are
structures in which the backbone zigzags to create an extended structure. The most common
among these is called the beta strand. Two or more stretches of beta strands often interact with
each other, through hydrogen bonds formed between the different strands, to create a planar
structure known as a beta sheet. Structures that are neither helices nor strands are referred to
as “coils,” “others,” or “loops” (Figure 7.2).

Predicting secondary structure is an important step in the experimental study of proteins
and toward inferring their function and evolution. Dozens of ideas, approaches, and meth-
ods for secondary structure prediction have been suggested over the last decades. They are
based on various biochemical insights and a wide range of computational techniques. At their
core, all methods identify patterns of amino acid frequencies that correlate with the forma-
tion of secondary structure elements. The first approach was based just on the occurrence of
prolines, whose structure tends to interrupt helices (Szent-Györgyi and Cohen 1957). Further
work was based on the clustered occurrence of residues statistically identified to be either
helix- or strand-“former” residues (Chou and Fasman 1974). However, single amino acids
do not inherently contain sufficient information for reliable secondary structure prediction.
Therefore, the next set of methods that were developed typically employed a sliding window
approach in which the secondary structure prediction for a central residue is based on the
information of the surrounding residues. For example, in a sliding window of seven residues,
the input consists of the central residue together with the three preceding and three following
residues. The information about the residues in this window can then be extracted in several
ways; for example, one could count how often a specific combination of seven residues was
found in known 3D structures, then use that information to predict the secondary structure
class that was most often observed in the known data. This is the approach of one of the old-
est secondary structure prediction methods, called GOR (Garnier et al. 1978, 1996). A crucial
extension of this concept was the incorporation of evolutionary information (Rost and Sander

Figure 7.2 Protein secondary structure. Experimentally determined three-dimensional structure of alco-
hol dehydrogenase (UniProtKB identifier ADHX_HUMAN) rendered in PyMOL (PDB structure 1m6h, chain
A; Schrodinger 2015). The protein is shown in a “cartoon” view that highlights its secondary structure
elements: alpha helices in are shown in red, beta strands are depicted as yellow arrows, and all other
(“loops”) are colored in green.
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1993). Typically, this is done by finding homologs of the query sequence in a large database,
using position-specific iterated (PSI)-BLAST (Altschul and Gish 1996) or the more sensitive
HHblits, which uses hidden Markov models (HMMs; Box 7.1) to perform sequence profile
comparisons (Remmert et al. 2012). The resulting hits are then aligned in a multiple sequence
alignment (MSA; Chapter 8) that, in turn, is often represented as a position-specific scoring
matrix (PSSM; Chapter 3) or similar construct. As homologous proteins typically have simi-
lar structures, the substitution patterns found within the MSA contain valuable information
about these proteins’ secondary structure. Conserved regions likely mean that secondary struc-
ture is present at those positions, thus amino acid frequencies can be weighted by the overall
conservation of residues at each position within the MSA.

Box 7.1 Hidden Markov Models

Hidden Markov models (HMMs) provide a statistical representation of real biological pro-
cesses. In the context of gene prediction, HMMs describe information about the controlled
syntax of the structure of a gene. In the context of protein analysis, different syntactical
rules or “grammars” are used for different applications. The first and arguably the most
important application of HMMs for proteins is the creation of a reliable multiple sequence
alignment (MSA) for a given protein family.

Consider a simple MSA of length six:

Q-WKPG
Q-WKPG
Q-WRPG
QIWK-G
Q-WRPG
Q-WRPG

Some of the positions, such as the first glutamine (Q), are absolutely conserved, while
position 4 is occupied only by positively charged residues. Position 2 shows a gap intro-
duced by an insertion in one sequence; position 5 shows a gap introduced by a deletion
in the same sequence.

Each of these observations can be represented by different states in the HMM. The
match state represents the most probable amino acid(s) found at each position of the
alignment; match is a bit of a misnomer, because the match state considers the proba-
bility of finding a given amino acid at that position of the alignment. If the position is
not absolutely conserved, the probabilities are adjusted accordingly, given the residues
found in that column. The insert state represents the case when an additional amino acid
needs to be accommodated, as it is here with the isoleucine (I) in sequence 4. The delete
state represents the case when an amino acid is missing and when the sequence (here,
sequence 4) must jump over a position to continue the alignment.

Each of these states, as well as the relationship between the states, can be illustrated
graphically using a commonly used representation originally introduced by Anders Krogh:

D1 D2 D3 D4 D5

I0

B M1 M2 M3 M4 M5 E

I1 I2 I3 I4 I5

Here, the lower row represents the match states, with B representing the beginning of
the alignment and E the end of the alignment. Each of the diamonds represents the insert
states, and each of the circles represents the delete states. Arrows represent a movement
from state to state, and each is associated with the probability of moving from one state
to another.
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Returning to the alignment, M1 would require a glutamine, M2 a tryptophan, M3 either
a lysine or an arginine (50% of the time for either), M4 a proline, and M5 a glycine. Given
this, to represent the sequence EWRPG, the movement through the model would take
the form B→M1→M2→M3→M4→M5→ E, because the sequence does not require an
insertion or a deletion to align with the rest of the sequences in the group, with the
exception of sequence 4. The path for sequence 4 obviously would be different than for
most of the sequences; it would take the form B→M1→ I1→M2→M3→D4→M5→ E.
The movement from M1 to I1 accounts for the insertion at position 2, and the movement
from M3 to D4 accounts for the deletion at position 6.

The usefulness and elegance of this model comes from the ability to train the model
based on a set of sequences. Returning to the original sequences, imagine that they were
fed into the model one by one, without knowing the alignment in advance. For each
sequence, the most probable path through the model is determined. As soon as this is
carried out for all the sequences, the transition probabilities and probabilities for each
match state are determined. This, in turn, can be used to generate the best alignment
of the sequences. Knowledge of these probabilities also allows for new sequences to be
aligned to the original set.

Using the collective characteristics of the input sequences either allows these profile
HMMs to be used to scan databases for new sequences belonging to the set or individual
sequences can be scanned against a series of HMMs to see whether a new sequence of
interest belongs to a previously characterized family.

Another important feature of a single residue is its solvent accessibility or accessible sur-
face area (ASA); this is the area of a residue’s surface that is exposed to the solvent and that
could interact with other proteins or smaller molecules (Figure 7.3). After the elucidation of
the first protein structure, Lee and Richards started examining the ASAs of proteins by devel-
oping a program to draw van der Waals radii on the protein’s structure, essentially by “rolling
a ball” over the entire surface of the protein (Lee and Richards 1971). The accessibility is then
defined by the protein’s surface area, typically given in angstroms squared, that can be touched
by a water molecule’s radius. Biologically, the concept of accessibility is of interest, as residues
deeply buried inside a protein may be crucial in stabilizing its structure even though they
cannot partake directly in binding other molecules. Many methods that perform secondary
structure prediction also predict accessibility to aid the identification of active residues, which
is important for functional studies.

The secondary structure annotations and solvent accessibility data needed for training the
prediction methods can be obtained from known 3D protein structures. The most popular tool
for this task, the Dictionary of Secondary Structure for Proteins (DSSP; Kabsch and Sander
1983), analyzes hydrogen bonds in 3D structures and assigns eight types of secondary structure
elements that can be grouped into the previously mentioned classes: helices (alpha, 310, and pi
helices), strands (extended and bridge), and other (usually referred to as “turn,” “bend,” and
“other” within the DSSP). Solvent accessibility is given for each residue in angstroms squared.
Other similar programs include STRIDE, which incorporates backbone geometry information
and aims to provide annotations that are consistent with those provided by experimentalists
(Frishman and Argos 1995; Heinig and Frishman 2004), and NACCESS, which calculates sol-
vent accessibility from structures (Hubbard and Thornton 1993).

We now describe the most popular secondary structure and solvent accessibility prediction
servers. Nearly all of today’s methods predict just three types of secondary structure (helix, beta
strand, and other) and numerical (0–9) or categorical (e.g. buried, partially buried, or exposed)
measures of accessibility.

Methods PHDsec is among the earliest methods applying the idea of machine learning to
the prediction of secondary structure (Rost and Sander 1993). It was the first method that
combined the usage of evolutionary information with machine learning. This information is
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Figure 7.3 Accessible surface area (ASA). The ASA describes the surface that is in direct contact with
the solvent. Practically, the solvent is usually water, and the ASA can be defined by rolling a probe
over the surface of the protein. The probe is a sphere representing the size of a water molecule (blue),
while the protein’s surface is defined by the van der Waals volume of every amino acid’s atoms (gray).
The ASA is then described by the center of the probe as it moves along the surface (red). Software such
as DSSP that calculate ASA employ more efficient algorithms; however, the underlying principle of what
is being measured remains the same.

obtained through the Homology-derived Secondary Structure of Proteins (HSSP) database
(Touw et al. 2015), which contains alignments of protein sequences to those of proteins with
known structures contained in the Protein Data Bank (PDB) (Rose et al. 2017). PHDsec
uses two consecutive neural networks to make its predictions (Box 7.2): the first layer uses
conservation values derived from an MSA within the HSSP database, using a window of 13
residues to predict one of three secondary structure states. The first layer’s output is then
used as input to the second layer, which smooths out biologically implausible predictions,
such as an alpha helix that is interrupted by a single beta sheet residue in the middle of the
helix. Method improvements since the first version include the ability to factor in additional
weighting information derived from MSAs or global amino acid composition features (Rost
and Sander 1994a,b). This process also led to the renaming of PHDsec as PROFsec. The most
recent iteration, ReProf, is accessible as part of the PredictProtein web server (Yachdav et al.
2014). ReProf also includes the most recent version of the solvent accessibility prediction
algorithm, initially named PHDacc and PROFacc (Rost and Sander 1994a,b).

Box 7.2 Neural Networks

With the development of deep learning, neural networks have regained their popularity
as machine learning models for biology (Punta and Rost 2008; Jensen and Bateman 2011).
Neural networks attempt to mimic the way the human brain processes information when
trying to make a meaningful conclusion based on previously seen patterns. The type of
network design that is typically used for machine learning has several layers: an input
layer, zero or more hidden layers, and one output layer. The figure shows an example with
one hidden layer.

Here, the input layer is a protein sequence (PKRPSSAY), and the output layer is one of
the possible outcomes: whether a particular amino acid lies within an alpha helix, a beta
strand, or other (loop) region. The neural network receives its signals from the input layer
and passes information to the hidden layer through a neuron, similar to how a neuron
would fire across a synapse. A representative subset of the neurons is shown here by
arrows. In most applications all input units are connected to all hidden, and all hidden to
all output units.
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In the figure, a proline residue is highlighted in the input layer; it influences several
nodes in the hidden layer, the strength or weight of the input being controlled by the
neurons. In the hidden layer, one of the nodes is shown in orange; many of the positions
in the sequence may influence that node, with the neurons again controlling the degree
to which those inputs influence the node. The figure illustrates a feed-forward neural
network, where the flow of information is in one direction. Recurrent neural networks,
where neurons connect back to neurons in earlier layers, are also possible.

Why use a neural network? If the direct relationship between the input and output layer
was perfectly understood, such a complicated approach would not be necessary, because
one could write cause-and-effect rules that would make the intermediate, hidden layer(s)
unnecessary. In the absence of this direct relationship, neural networks can be used to
deduce the probable relationship between the input and output layers; the only require-
ment is the knowledge that the input and output layers are, indeed, related. Here, there is
an obvious relationship between the input and output layers, because the individual amino
acids found within a protein must belong to one of the three given secondary structure
classes modeled by the output layer.

To start deducing the relation between input and output, a supervised learning approach
is used, i.e. the connections are optimized to fit a set of training examples for which the
input→output mapping is known. For example, in the realm of secondary structure pre-
diction, one would construct datasets based on known 3D structures, noting not only the
secondary structure in which a particular residue is found but also other factors influenc-
ing structural conformation. Based on these training data, the network attempts to learn
the relationship between the input and output layers, adjusting the strength of each of
the interconnected neurons to fine-tune the predictive power of the network.

PSIPRED is another neural network-based secondary structure predictor using an approach
similar to PHDsec (Jones 1999). A profile based on the initial query sequence is created using
PSI-BLAST and then fed to the first neural network using a window size of 15. The output
is then further processed using a second network and the same window size. The network
architecture currently used for performing these predictions has been significantly improved
over time (Buchan et al. 2013).

Proteus directly transfers secondary structure annotation information obtained from
homologs of the protein being analyzed into the prediction pipeline (Montgomerie et al.
2006). A BLAST search is performed in order to find homologs of known structure within
PDB that match the query protein. If successful, the secondary structure annotation of
the homolog found in PDB is copied onto all aligned residues of the query protein. Any
non-aligned residues are then annotated using predictions based on the query sequence itself.
Once this process is complete, three methods (including PSIPRED) are executed and their
output is fed into a neural network that yields a consensus prediction that is finally reported.
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SANN is a solvent accessibility predictor (Joo et al. 2012). Using a set of proteins with known
accessibility, the authors used PSI-BLAST-based PSSMs with a sliding window of size 15 as fea-
ture vectors. The vector of a residue in the query protein is then compared with all vectors in the
database, with the central residue having the highest weight and decreasing outwards. Based
on this, the 64 nearest neighbors are then used to perform a prediction based on a z-score that
weights neighbors by their closeness to the query residues. SANN predicts solvent accessibility
in two (buried, exposed) or three (buried, intermediate, exposed) discrete states. It also gives a
fractional prediction for relative solvent accessibility (RSA) between 0 and 1.

SSpro5 predicts secondary structure in three or eight (“SSpro8”) states. It can make predic-
tions directly, based on the query sequence, or based on homology of the query sequence to
proteins of known structure, similar to the approach used by the Proteus method (Magnan
and Baldi 2014). First, BLAST is used to identify query protein sequence matches to known
structures in PDB. Once found, the most common secondary structure class assigned by DSSP
at each known structure residue is output as the prediction. If this fails (e.g. when BLAST finds
no matches to PDB or there is no most-common secondary structure class), a sequence-based
prediction is used. For this, a set of 100 bidirectional recurrent neural networks (BRNNs) has
been trained, using PSI-BLAST PSSMs as its input (Box 7.2). The bidirectional neural network
architecture enables the predictor to consider information from a central sequence window, as
well as sequence regions occurring before and after the central window (Pollastri et al. 2002).
ACCpro5 uses the same methodology to perform predictions of solvent accessibility in two
states (RSA larger or smaller than 25%) or 20 states (RSA 0–95% in 5% increments).

RaptorX Property is part of a larger structure prediction service and predicts secondary
structure, solvent accessibility, and disorder (Wang et al. 2016a,b) (Figure 7.4). The method

Figure 7.4 Protein secondary structure. Prediction of secondary structure, solvent accessibility, and disordered regions of the same protein
by the web server RaptorX Property. Summary statistics about the prediction results are shown at the top left. Below, the first row contains
the input amino acid sequence, followed by the predicted secondary structure in the three DSSP classes (SS3) followed by the eight
DSSP classes (SS8). The last two rows contain solvent accessibility prediction in three states (exposed, medium, and buried) and a binary
prediction of disordered residues (none detected here).
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also uses a deep learning approach called deep convolutional neural fields, using sequence
profiles as input. This deep learning approach is expected to capture both relevant aspects of
global protein structure and observed correlations with neighboring residues. The network
achieved its best performance using a window size of 11 and seven hidden layers. Disordered
residues (discussed in more detail in Disordered Regions) and solvent accessibility (either
buried, medium, or exposed) are predicted using the same approach.

SPIDER3 is a deep learning-based method that predicts secondary structure, solvent acces-
sibility, and backbone torsion angles, as well as two other angles involving the C𝛼 atoms and
neighboring residues (Heffernan et al. 2017). The correlation between these three elements
is exploited by an iterative prediction approach. In the first iteration, the various structure
properties are predicted separately using two BRNNs. In the following iterations, the output
from one of these BRNNs is used as input for the other to iteratively predict each output struc-
ture property in turn based on all other structural properties. The input in the first iteration,
to which intermediate predictions are then added in later iterations, consists of just seven
physicochemical amino acid properties, together with sequence profiles from PSI-BLAST and
HHblits. Owing to the design of the network, the method is not window based but uses the
whole sequence as input.

Performance Assessment of Secondary Structure Prediction

The most common measure for the assessment of secondary structure prediction is called the
Q3 score (Box 7.3). Additional measures should also be considered because of the imbalance
of the three possible states (alpha helix, beta strand, or random coil). Most methods predict
strands least accurately owing to inherent bias in the experimental training data (Rost 1996,
2001); only about 20% of all residues are in beta strands, over 30% are in helices, and about
50% in other structures. Many methods that reach relatively high Q3 scores perform as badly
as random when predicting beta strands. Another aspect, considered by per-segment scores, is
how well an entire secondary structure segment is predicted. The most prominent example of
such a score is the segment overlap score (SOV), which measures correctly predicted residues
and segments (see Box 7.4) (Fidelis et al. 1999).

Box 7.3 Secondary Structure Prediction Scoring Schemes and Receiver Operating Char-
acteristic Curves

A classification task can discern between two or more classes. For example, a secondary
structure prediction typically yields a per-residue classification of either an alpha helix,
beta strand, or non-structured region. Measures of classification performance, such as the
number of true positives, can differ in meaning between publications; thus, one must care-
fully identify the relevant definition within the publication. Most commonly, multi-class
prediction performance is reported using accuracy (see Box 5.4), which intuitively trans-
lates to multiple classes when its definition is regarded as “the number of correct pre-
dictions among all predictions.” For some prediction tasks such as secondary structure
prediction, this score has also been termed Qn, with n denoting the number of classes. As
secondary structure predictions ultimately result in the detection of one of three classes,
this metric is often called the Q3 score.

Binary classification usually treats prediction results as discrete. However, machine
learning models usually output a continuous number, representing a likelihood for that
class. During development of the method, a threshold is chosen that yields the best
discrimination between the classes. Imagine a simple neural network with one output
node that provides a continuous value between 0 and 1. Further, this network was
trained with examples of residues residing inside the membrane (producing a desired
output of 1) and with residues residing outside the membrane (producing a desired

(Continued)
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Box 7.3 (Continued)

output of 0). Given a query residue, the network will now predict a value between 0 and
1; the closer that value is to 1, the more likely the residue is found inside the membrane.
The receiver operating characteristic (ROC) curve is used in these cases to describe how
the choice of threshold for the predictor output affects the true-positive rate (TPR) and
the false-positive rate (FPR; see Box 5.4).

Receiver operating characteristic curves
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This curve is derived by making predictions for every possible decision threshold, then
plotting the resulting TPR and FPR values. The plot forms a curve that describes the dis-
crimination performance of the prediction method. A perfect predictor would have a TPR
of 1 and FPR of 0 across all relevant thresholds, while a random prediction is represented
by the dashed black line. Instead of displaying the ROC curve itself, one can represent
the curve as a single numerical score, called “the area under the curve” (AUC). Typically,
AUC denotes the area under the ROC curve (AUC_ROC); however, this term is also used to
describe other areas, such as the area under the precision vs. recall curve (AUC_PR).

Recent methods estimate Q3 and SOV values around 80–85% for their prediction perfor-
mance (Mirabello and Pollastri 2013; Heffernan et al. 2015; Wang et al. 2016a); those values
have been confirmed in a recent review for a small set of methods (Yang et al. 2016a). These
measures also seem realistic given the increasingly slow advances in the development of new
methodologies since the last independent evaluation published several years before this writ-
ing, where only small performance increases were reported (Zhang et al. 2011). Because of
known errors in structure determination and resulting inconsistencies in secondary structure
assignments from experimentally determined protein 3D structures, among other issues, a
perfect Q3 of 100% is not attainable (Kihara 2005; Heffernan et al. 2017). Arguably, the most
important challenge in this field has shifted from predicting secondary structure to the higher
goal of predicting tertiary structure (Chapter 12).
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For solvent accessibility, scoring schemes differ as widely as the values that are predicted.
To calculate RSA, a good normalization scheme is necessary, but this is not trivial (Tien et al.
2013). Given that categorical values such as a prediction in two states (buried or exposed) are
used, Q2 or Q3 measures can be used in a fashion analogous to how these measures are applied
to secondary structure prediction. For predictions of RSA that fall into a range such as 0–100,
accuracy measures are not meaningful, and scores such as Pearson’s correlation coefficient
are more appropriate. From the methods described above, SANN and RaptorX Property both
report Q3 values of 66%, while SANN reports a Q2 value of 81% and ACCpro reports a Q2 value
of 88%. Pearson’s correlation coefficients for RSA prediction are 0.68 for SANN and 0.8 for SPI-
DER3. Unfortunately, these values cannot be directly compared, as they were computed using
different training data or using different predicted output category definitions. Such decisions
can impact performance since residues with 0% solvent exposure are much easier to predict
than those with, for example, 36–49% exposure.

In the past, the web servers EVA and Livebench provided automated predictor performance
assessments by comparing prediction results with about-to-be-released experimentally
determined protein structures (Eyrich et al. 2001; Rychlewski and Fischer 2005), but, unfortu-
nately, this service is no longer active and no independent large-scale assessment of secondary
structure prediction currently exists. The Critical Assessment of Protein Structure Prediction
(or CASP) is a biannual community-led challenge in which developers submit predictions
for structures that have been solved but not yet publicly disclosed (Moult et al. 1995). At
the time of submission, none of the structures are known to either the organizers or any
of the participating groups, making CASP a double-blind experiment. Once the structures
are released, assessors evaluate the previously submitted predictions to chart progress in
the field in an unbiased manner. The focus of the challenge is on developing new, more
accurate algorithms for protein tertiary structure prediction. In CASP5, the last iteration that
considered secondary structure predictions (in 2002), method performance had approached
a saturation point (Aloy et al. 2003). Given this likely saturation of method performance and
because of the generally very high performance available, the choice of predictor is, to some
degree, a matter of personal preference. Any recent method (such as RaptorX Property or
SPIDER3) will provide high-performance predictions through easy-to-use web servers. Other
services, such as ReProf and PSIPRED, are part of larger web-based suites that allow the user
to run additional prediction tools on the query protein with the click of a button and are thus
well suited to give an overview of a wide range of protein features.

Transmembrane Alpha Helices and Beta Strands

Background The communication between a cell and its surroundings takes place almost
exclusively through proteins that are embedded in the cell membrane, with these transmem-
brane proteins interacting with molecules on both the intracellular and the extracellular
sides of the membrane. Transmembrane proteins have been estimated to make up 20–30% of
all proteins found in any organism (Stevens and Arkin 2000; Liu and Rost 2001; Fagerberg
et al. 2010). These include well-known and highly studied protein classes such as the
G-protein-coupled receptors, proteins that are often major targets of drug development efforts
(Jacoby et al. 2006; Overington et al. 2006). In fact, almost two-thirds of all drug targets are
transmembrane proteins. The ability to identify transmembrane proteins and to decipher
their molecular mechanisms is, therefore, of high interest in many fields of biomedicine.
Unfortunately, experimental structural determination of membrane-bound proteins is sig-
nificantly more difficult than for soluble proteins, and transmembrane protein structures are
strongly under-represented in PDB (Kloppmann et al. 2012). Therefore, computational pre-
dictions are essential for understanding the structures of this class of proteins. Typically, the
transmembrane segments are classified into one of two classes according to their secondary
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(a) (b)

Figure 7.5 Types of transmembrane proteins. Experimentally determined three-dimensional structures
of two transmembrane proteins rendered in PyMOL (Schrodinger 2015). Protein segments that are anno-
tated as being inside the membrane are highlighted in yellow. (a) Alpha helical transmembrane protein
aquaporin (PDB structure 3llq, chain A). (b) Beta barrel transmembrane protein OmpA (PDB structure
1bxw, chain A).

structures: helices or strands. Usually, the proteins consist only of these two secondary
structure elements; however, both fulfill the same task of masking the polar protein backbone
from the hydrophobic membrane environment. Proteins using alpha helical transmembrane
segments for this purpose are much more common, while those consisting of beta strands are
typically porins found only in the outer membrane of Gram-negative bacteria, mycobacteria,
chloroplasts, and mitochondria (Kessel and Ben-Tal 2011) (Figure 7.5). As membrane proteins
consist of the same types of secondary structure discussed in the previous section, one may
wonder why specialized predictors were developed for use with transmembrane proteins
rather than just using already available predictors. The underlying reason is that trans-
membrane proteins have evolved unique structural properties that allow them to be firmly
embedded in the cell membrane. These physicochemical properties are different enough from
those of soluble proteins that specialized predictors are required. Fortunately, these properties
are easier to identify, making it easier to predict transmembrane segments compared with
predicting “general” secondary structure. The basic biophysical property that is responsible
for a residue to be buried within a membrane is hydrophobicity, the property that enables
most of the transmembrane segments to remain within the membrane and avoid exposure to
the solvent on either of its sides. Hence, the first transmembrane region prediction methods
focused on a search of long hydrophobic stretches of sequence (Kyte and Doolittle 1982) and
hydrophobicity metrics remain a crucial input feature for today’s most advanced methods
(Reeb et al. 2014). Additionally, many methods predict the transmembrane segment topology,
providing information regarding the orientation of helices or beta strands with respect to the
cytoplasmic and non-cytoplasmic sides of the membrane. An important concept underlying
the determination of topology is the “positive-inside rule,” which describes the observation
that the loops on the cytoplasmic side of the membrane typically contain more positively
charged residues than those on the non-cytoplasmic side (Von Heijne and Gavel 1988). Early
transmembrane region prediction methods focused on the combination of window-based
searches for hydrophobic stretches and the analysis of electrical charges, leading to the first
widely used prediction method (Von Heijne 1992; Claros and Von Heijne 1994). Since then,
and with the advent of machine learning approaches, methods to determine the structure of
membrane proteins have made immense advances, as described below.
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Methods Phobius, like its predecessor TMHMM, predicts transmembrane segments using
an HMM that is based on representations of globular domains, loops, helix ends, and the
transmembrane helix core (Krogh et al. 2001). With respect to TMHMM, Phobius adds
another set of states that model signal peptides (Käll et al. 2004) because signal peptides
contain a stretch of hydrophobic residues that can easily be mistaken for transmembrane
segments. By combining the use of known transmembrane segments and signal peptides
in one model, Phobius is capable of accurately distinguishing between these two classes.
PolyPhobius is an extension of Phobius that keeps the HMM unchanged but achieves a
better performance by using a decoding algorithm that harnesses evolutionary information
from MSAs of the query sequence (Käll et al. 2005).

Proteus-2 is an extension of the original Proteus method described above for secondary
structure prediction (Montgomerie et al. 2008). The method first predicts signal peptides, then
checks these predictions against a database of experimentally annotated signal peptides. Next,
if a query protein is homologous to one with known transmembrane segments, these are trans-
ferred to the query. If this fails, transmembrane segments are predicted using a combination of
TMHMM and TMB-HUNT (Garrow et al. 2005). Finally, any unassigned residues are assigned
a secondary structure class by homology-based inference or, if not possible, as predicted by
Proteus.

MEMSAT-SVM consists of four separate support vector machines (SVMs) for the predic-
tion of transmembrane helices, signal peptides, loops, and re-entrant helices (Nugent and
Jones 2009). This last class is a special case of helical transmembrane segments in which a
helix enters and exits the membrane at the same side (Viklund et al. 2006; von Heijne 2006).
MEMSAT-SVM is one of the few methods that accurately models this case.

TMSEG is a recent method that combines machine learning with empirical filters (Bern-
hofer et al. 2016). First, a random forest model predicts scores for each input residue to be
either in the membrane, a signal peptide, or a loop. Scores are then smoothed and continuous
protein sequence positions that are consistently high scoring for a given class (e.g. transmem-
brane) are identified as a protein sequence segment of that class (e.g. a transmembrane region).
Next, a neural network refines the previously predicted segments and, finally, another random
forest model predicts the topology of the protein (Figure 7.6). A strength of this method is that
it can accurately distinguish between proteins with and without membrane helices.

BETAWARE focuses on predicting whether a query protein is a transmembrane beta barrel
(TMBB) protein (Savojardo et al. 2013), an understudied class of transmembrane proteins. This
is achieved using a neural network with an “N-to-1” encoding that supports the input of a
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Figure 7.6 Transmembrane helix prediction by TMSEG. TMSEG (Bernhofer et al. 2016) predictions of
transmembrane helices for prostaglandin E synthase (UniProtKB identifier PTGES_HUMAN). The graph
distinguishes non-membrane residues (green), helical transmembrane residues (raw prediction in blue),
and signal peptides (red: here all close to 0). The purple line marks the final prediction of transmembrane
helices after smoothing and refinement by a segment-based neural network classifier. In this case, all
four helices are correctly identified.
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variable length query sequence into the network, which predicts whether the query sequence is
a TMBB protein. For all putative TMBB proteins, a grammatical restrained hidden conditional
random field, similar to an HMM, is used to predict the state of each residue in the protein and
the protein membrane topology (Fariselli et al. 2009).

BOCTOPUS2 (Hayat et al. 2016) also predicts TMBB strands and topology. First, an SVM
predicts the preference for each residue to be either pore facing, lipid facing, outer loop, or
inner loop. Next, the region of the beta barrel is determined by finding the region most con-
sistent with the predicted pore- and lipid-facing residues. Once set, the predicted classes are
adjusted such that no membrane residues are predicted outside the barrel region. Lastly, an
HMM that models the same four states as the SVM is used to predict the final topology.

Performance Prediction performance of transmembrane segments can be measured on three
different levels: per residue, per segment, or per protein (Chen et al. 2002) (Boxes 7.3 and 7.4;
see also Box 5.4). Most methods reach Q2 scores of 80% or more (Reeb et al. 2014). However,
owing to disadvantages of per-residue scores (Box 7.4) per-segment scores are important to
consider when interpreting membrane prediction results. If we consider a transmembrane
helix to be correctly predicted if the endpoints deviate by no more than five residues from
known true-positive examples, then TMSEG and MEMSAT-SVM reach segment recall and pre-
cision values of around 85% and PolyPhobius around 75% (Bernhofer et al. 2016). On a more
stringent per-protein score, Qok, TMSEG reaches 66%, MEMSAT-SVM 61%, and PolyPhobius
54%. These scores have high variance because of the small size of the independent benchmark
used to compute them (n = 44), so these scores should be used as a general guideline instead
of a perfect measure of the expected performance of each method. Similarly, performance
assessment for TMBB protein prediction methods is challenging owing to a small indepen-
dent benchmark size. The BOCTOPUS2 publication reports a Q3 (membrane, inside, or outside
loop) score of 89% and SOV score (Box 7.4) of 94% for their own method, and 74% Q3, 75% SOV
for BETAWARE. These numbers are roughly confirmed in another recent publication (Tsirigos
et al. 2016). Given this suggestion of higher performance along with the fact that BETAWARE
is only available as a command line tool, we recommend BOCOTPUS2 as a good starting point
for the prediction of transmembrane beta strands and TMBB proteins.

Box 7.4 Scoring Schemes for Structural Protein Segments

A disadvantage of per-residue scores such as Q2 or Q3 is that they do not punish biologi-
cally meaningless predictions. For example, predicting every transmembrane helix with a
single non-membrane residue in its middle would not have a large effect on Q2, but this
outcome does not make biological sense, so should therefore be penalized numerically.
Per-segment scores account for this possibility, and both precision and recall (see Box 5.4)
can also be measured on a per-segment basis for every protein.

Names Formula

Segment recall, Qtmh
obs Number of correctly predicted transmembrane helices

Number of observed transmembrane helices

Segment precision, Qtmh
pred Number of correctly predicted transmembrane helices

Number of predicted transmembrane helices

To calculate these scores, one needs to define what constitutes a correctly predicted
structural segment. For example, the observed and predicted positions for a helix should
roughly encompass the same region of a protein. It is crucial to predict a continuous seg-
ment, while exact matches to the start and end position are not as important, as these
start and end points can differ even between almost identical homologs. The problem
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becomes much more complex when dealing with transmembrane proteins, as it is not at
all trivial to exactly determine the beginning and end of a membrane segment even when
a high-resolution 3D protein structure is available. The figure below shows the C-terminal
residues of aquaporin (see Figure 7.5a), including its first transmembrane helix, experi-
mentally determined to range from residue positions 5 to 25. Black arrows indicate the
range within which a predicted helix would be considered correct if deviations of up to
five residues are allowed. The same concept is employed by the segment overlap score
(SOV), which measures the average overlap between the predicted and observed structural
segment (Fidelis et al. 1999).
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Given the per-segment scores, one can define an additional (per protein) score that mea-
sures the fraction of proteins where every transmembrane helix was correctly predicted:

Qok = 1
N

N∑

i=0

𝛿i; 𝛿i =
⎧
⎪
⎨
⎪
⎩

1, if Qobs
tmh(i) = Qpred

tmh (i) = 1

0, else

Here, N is the number of proteins in the respective dataset. Clearly, this provides a much
stricter cut-off than just predicting the majority of residues correctly. However, it is crucial
to apply such stringency, as missing a single membrane segment can reverse the overall
membrane segment topology of the protein, the orientation of which provides important
clues about protein function. For example, all G-protein-coupled receptors have seven
membrane helices, with the N-terminus typically residing outside of the cell (Coleman
et al. 2017).

Disordered Regions

Background Disordered regions in proteins do not adopt a well-defined structure in isolation
but fluctuate in a large conformational space (Habchi et al. 2014; Wright and Dyson 2014).
Disordered regions are experimentally determined, for example using nuclear magnetic res-
onance spectroscopy, which allows the dynamic observation of a protein in solution (Habchi
et al. 2014). The phenomenon of protein disorder or disordered regions is described by many
different terms in the literature; these include intrinsically unstructured, natively unstructured,
natively disordered, and loopy. Proteins with such regions are often referred to as intrinsically
disordered proteins (IDPs) or intrinsically unstructured proteins. Typically, these intrinsically
disordered regions (IDRs) have low sequence complexity and an amino acid composition bias
toward hydrophilic residues.

Disordered regions have many functions. One feature is to cover a larger set of potential
binding modes, i.e. a more flexible region can be induced to fit to many different shapes. Con-
sequently, many IDPs are involved in regulation or cell signaling and appear as hubs with many
binding partners in the interaction network. This is especially true for eukaryotic IDPs, while
those in prokaryotes are often involved in longer lasting interactions that form complexes (van
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der Lee et al. 2014). Predicting IDPs and disordered regions from sequence is of value since it
can help in structure determination, drug design, and disease risk evaluation (Deng et al. 2015).

Three different approaches have been applied to predict IDRs (van der Lee et al. 2014). The
first uses sequence patterns such as the amino acid composition and physicochemical proper-
ties. The second uses sequence and MSA information with machine learning. The third uses
a consensus predictor strategy to combine the predictions of other tools. Protein 3D structure
may also be used with any of these approaches.

All large-scale estimates for the abundance of disorder in genomes are based on prediction
methods. On average, eukaryotes have more IDRs longer than 30 residues (33% of proteins)
than prokaryotes (4% of proteins) (Schlessinger et al. 2011; van der Lee et al. 2014). However,
individual organisms differ a lot, as does the disorder content of proteins within an organism
(Habchi et al. 2014; van der Lee et al. 2014; Lobanov and Galzitskaya 2015). Furthermore,
disorder correlates with the extremity of an organism’s habitat (Habchi et al. 2014; Vicedo
et al. 2015).

Several databases store disorder protein region information. DisProt contains manually
curated, experimentally validated IDP annotations (Piovesan et al. 2016). IDEAL stores IDRs
that become ordered upon protein binding and includes interaction partners of the disordered
proteins (Fukuchi et al. 2014), while D2P2 provides precompiled disorder predictions of nine
different methods on over 1700 genomes (Oates et al. 2013).

Methods PrDOS predicts IDRs using machine learning in two parts. First, an SVM is supplied
with information from a PSI-BLAST-generated PSSM in a 27-residue sliding window (Ishida
and Kinoshita 2007). Second, any query homologs with known 3D structures are identified.
The more aligned residues in structures are disordered, the higher the assigned likelihood to
be disordered for a given residue. Predictions from each approach are combined in a weighted
average and smoothed to provide a final output. The more recent incarnation PrDOS-CNF
applies the same methodology using conditional neural fields instead of SVMs (Monastyrskyy
et al. 2014). The same group also maintains a meta-predictor, metaprdos2, which combines
the predictions of five prediction methods including DISOPRED2 and POODLE-S (see below)
in an SVM classifier (Ishida and Kinoshita 2008; Monastyrskyy et al. 2014).

DISOPRED3 employs three prediction models: a neural network tuned to capture long
disordered regions, an SVM, and a nearest neighbor predictor that can be adapted to new exper-
imental data since it does not require any training (Jones and Cozzetto 2015). The output of the
three predictors is combined into the final prediction using a simple window-based neural net-
work. A new feature of DISOPRED3 is the prediction of putative protein binding sites within
the identified IDRs. This is performed by three separate SVMs with increasingly complex input
signals, all of which are based on sequence or evolutionary information.

POODLE is an SVM-based family of disorder predictors. Three predictors are combined in
the meta-predictor POODLE-I such that a specific method is trained for a specific length of dis-
ordered segment (Hirose et al. 2010). POODLE-S predicts short IDRs based on their distance
from the N-terminus using information from PSI-BLAST PSSMs, as well as using physico-
chemical features as input (Shimizu et al. 2007). POODLE-L predicts long IDRs (Hirose et al.
2007). While predictions are refined in a second level, the first level of POODLE-L predicts
IDRs in a 40-residue window using the amino acid composition of the input sequence, as
well as physicochemical features. POODLE-W predicts proteins as (mostly) ordered or as IDPs
based on a semi-supervised learning scheme that was trained on 608 proteins with known dis-
order status and on random samples of 30 000 proteins without labels (Shimizu et al. 2007).
Finally, POODLE-I combines these predictors by first running POODLE-L and POODLE-W
to determine long disordered regions. The predicted IDRs are truncated based on the output
of three secondary structure prediction methods. POODLE-S is then applied to the remain-
ing ordered regions and its predictions are compared with 3D structures of similar proteins, if
available. If a region is predicted as ordered by POODLE-S but not resolved in the structure,
the prediction for this segment is changed to “disorder.”
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Table 7.1 Disorder prediction performance.

Method/score MCC B_ACC AUC_ROC

Prdos-CNF 0.529 0.712 0.907
DISOPRED3 0.531 0.698 0.897
POODLE 0.409 0.781 0.875
metaprdos2 0.385 0.778 0.879
Naive 0.282 0.61 N/A

Shown is the performance of the top disorder predictors in the independent
evaluation of CASP10 (Monastyrskyy et al. 2014) measured by three different
scores: the Matthews correlation coefficient (MCC), balanced accuracy
(B_ACC), and the area under the receiver operating characteristic (AUC_ROC,
Box 7.3). For every score, the best performing method is highlighted in bold.
Performance of a naive predictor, which always considers the first and last
residues as disordered, is given as a baseline. Because of its design it only
performs binary predictions, and the AUC_ROC cannot be calculated.

Performance Disorder predictions are commonly evaluated on a per-residue basis. CASP10
(described above) contains the most recent assessment for the accuracy of predicting proteins
with regular structures using 28 different prediction methods (Monastyrskyy et al. 2014).
The best performers, such as POODLE and metaprdos2, reached balanced accuracy (B_ACC)
values of 78% with most other methods only slightly worse than a naive baseline method that
reaches 61% (Table 7.1). Prdos-CNF and DISOPRED3 were the top performers in terms of
AUC_ROC curve (0.9). Among the findings of the CASP10 assessment was that prediction of
IDRs that are not at the termini of the protein are harder to predict and that there is no clear
correlation between IDR length and the difficulty of their prediction. Generally, performance
increased only slightly in the six rounds of CASP in which disorder prediction was assessed.

Predicting Protein Function

The primary reason for our interest in protein structure and its prediction is to learn about
protein function. Being able to predict aspects of protein structure and function directly from
the protein sequence enables fast functional annotation of the wealth of sequences available
and can guide further experimental studies and validation.

Synopsis

Most protein sequences are predicted from genomics data and the only way to study their func-
tion is through computational protein function prediction. The most widely used approach for
predicting function is by transferring known functional annotation from homologs. However,
large-scale assessments of homology transfer show that this approach has caveats and must
be applied carefully (Rost 2002; Ashkenazi et al. 2012). Moreover, many proteins do not have
annotated homologs; thus, many computational methods for protein function prediction have
been developed to use other information, such as sequence features with known functional
properties.

There are many aspects of protein function, including the protein’s cellular location, interact-
ing molecules, and biological processes that it participates in. Here, we focus mostly on aspects
of molecular function, defined as physicochemical processes that the protein molecule can par-
ticipate in, such as an enzymatic activity, binding other proteins or molecules, or functioning
as a transporter. We begin with protein motifs and domains, considered to be the functional
units of a protein. Then, we discuss the prediction of Gene Ontology (GO) terms, a dictionary
capturing the various aspects of protein function (Gene Ontology Consortium 2000, 2015). A
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related endeavor is the Critical Assessment of Function Annotation (CAFA), which, over the
last 6 years, has established itself as a major resource for gauging how well protein function
prediction works. We also provide several examples and tools for methods that predict subcel-
lular localization, protein interaction binding sites, and the prediction of the effect of single
amino acid sequence variants (SAVs) on protein function.

Motifs and Domains

Background Proteins contain many types of short and longer sequence regions that are respon-
sible for carrying our particular functions. Motifs are typically short; for example, the nuclear
localization signals responsible for import into the nucleus, typically ranging from 6 to 20
residues, or the six-residue-long motif characterizing the active site of serine proteases. Struc-
tural domains, on the other hand, are defined as protein fragments that fold independently
into a characteristic structure, exist in many otherwise different proteins, and carry out some
functions. Most such structural domains are 100–500 residues long (Liu and Rost 2003) and
are the basis for the modular architecture of proteins. For example, the Pleckstrin homology
domain plays a role in targeting of proteins to membranes; it is found in both dynamin, which
is involved in vesicle processing, as well as many kinases such as those of the Akt/Rac fam-
ily that play a role in signal transduction. Finding a motif or domain in a newly discovered
sequence can offer insights into its structure and function.

Motifs and domains are typically originally discovered by identifying conserved regions in
a set of proteins, assuming that more conserved protein sequence regions are more impor-
tant for function than less conserved regions. These are then functionally characterized using
experiments, such as mutating the motif and observing what function the protein loses. Many
databases are dedicated to cataloguing such information from a variety of sources. Motifs and
domains are described by sequence patterns learned from known examples. For example, a
simple pattern consisting of four amino acids, where the first is always an alanine, followed
by any amino acid, then either glutamic or aspartic acid, followed by a final histidine, can be
captured as a regular expression. However, most sequence patterns are larger and more com-
plex – for instance, some amino acids may appear more often than others in a set of motifs. Such
patterns are better expressed using PSSMs or HMMs (Box 7.1), constructed based on an MSA
(Chapters 3 and 8) using tools such as HHsearch and HMMER (Söding 2005; Eddy 2011). These
methods are limited to analyzing known patterns, and prediction methods have been devel-
oped that predict domains, domain boundaries, or domain linker regions from sequence alone,
using amino acid propensities or homology information from sequence alignments. Other
methods employ structural templates, that is, they compare the query protein with known
protein structures and their domain annotations.

Databases InterPro is the primary resource that catalogs information about sequence motifs
and domains (Finn et al. 2016) (Figure 7.7a). It collects data from 14 member databases, each
with its own specialization, and makes the annotations available through a unified search tool,
InterProScan, which exists online as well as a standalone tool (Jones et al. 2014). InterPro
comprises the following databases.

• PROSITE, which contains regular expression-like patterns, as well as profiles which iden-
tify protein families, domains, and functional sites (Sigrist et al. 2013).

• Pfam, a database of profile HMMs, which are built from manually curated seed alignments
that are specific to a protein family (Finn et al. 2014a, 2016).

• SMART, which contains manually curated HMMs that identify domains and can provide
information on orthologs based on its annotation process (Letunic et al. 2015).
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• TIGRFAM, containing families represented by curated HMMs that have been collected
with an emphasis on longer annotations that describe more specific functions (Haft et al.
2013).

• SUPERFAMILY, a collection of HMMs derived by SCOP from 3D structures, modeling all
regions similar to known 3D structures (Oates et al. 2015).

• PRINTS, which, as the name suggests, is a set of protein family “fingerprints” that is man-
ually curated from MSA (Attwood et al. 2012).

• PRODOM, a set of automatically generated domain families based mostly on PSI-BLAST
searches from SCOP domains (Bru et al. 2005).

• CATH-Gene3D, which contains profile HMMs based on superfamily annotations in CATH
(see following paragraph) (Lam et al. 2016).

• PIRSF, which clusters sequences into homeomorphic families whose members have similar
sequences over their entire length and whose protein domains are in the same order (Wu
et al. 2004).

• PANTHER, containing families of homologous genes, each with a phylogenetic tree that
displays the evolutionary relationship between the family members (Mi et al. 2016).

• HAMAP, providing general protein family profiles built from manually curated MSAs
based on sequences that are synchronized with those in UniProtKB (Pedruzzi et al. 2013,
2015).

• SFLD, one of the most recent additions to InterPro (Akiva et al. 2014) that contains man-
ually curated hierarchical clusters of enzymes and aims to provide an alternative to purely
sequence- or homology-based clustering that cannot accurately account for the evolution of
these proteins.

• CDD, a meta-database that incorporates domain definitions from Pfam, SMART, clusters of
orthologous group (COG), PRK (Klimke et al. 2009), and TIGRFAM (Finn et al. 2016); also
contains domain boundaries determined from known 3D structures.

• MobiDB contains consensus predictions of disordered regions longer than 20 residues
(Necci et al. 2017).

These descriptions reveal the inherent (and intended) redundancy of InterPro. The reason
for this redundancy lies in the hope that alternative approaches to the same problem can lead to
a more complete and reliable annotation of motifs and domains. Furthermore, some databases
can provide more specific annotations than others, allowing the user to choose the desired level
of granularity from the combined results.

Two other important related databases are the above-mentioned SCOP and CATH. SCOP2
contains manually curated domains from PDB structures organized in a hierarchical format,
defined as a directed acyclic graph (Andreeva et al. 2014). CATH contains semi-automated
structure-based domain annotations at four hierarchical levels (Sillitoe et al. 2015). To offer
more specific descriptions, an extension of CATH, called SOLID, clusters superfamily mem-
bers at increasingly higher sequence identity cut-offs into another five levels (Greene et al.
2007). CATH recently added FunFams, which are represented by HMMs that have been cre-
ated by clustering sequences based on specificity-determining positions (SDPs) (Das et al.
2015). SDPs are positions that are unique to a protein subfamily as compared with the over-
all family, and thus presumably are important for function specific to the subfamily. SDPs are
a more sensitive pattern determinant than just conserved sequence positions. Finally, COG
is a database containing COGs which are formed from full-length proteins from microbial
genomes (Galperin et al. 2015).

No single database captures every aspect of function annotation. Therefore, meta-databases
such as InterPro are crucial resources for proteins without annotations since they allow
researchers a straightforward comparison and to judge reliability of the information presented
while maintaining transparency of their origin. Another approach has been pursued by
Swiss-Prot (Bairoch and Boeckmann 1994; Boutet et al. 2016), a database that has largely
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(a)

(b)

Figure 7.7 Annotations of human tumor suppressor P53 (P53_HUMAN). (a) InterPro (Finn et al. 2016) shows the entry as belonging
to one single family, namely IPR002117. Families are sets of proteins assumed to share the evolutionary origin and inferred to be
similar in function and structure based on homology. Domains (distinct functional or structural units) are shown, followed by a list
of the specific hits against all InterPro databases (see text for details). Here, the identifiers of each segment in the source database
are shown on the right and as a mouse-over. For example, PF08563 is a reference to the Pfam family “P53 transactivation motif” and
cd08367 links to the CDD entry for “P53 DNA-binding domain.” (b) neXtProt expertly curates the current knowledge about protein
function (Gaudet et al. 2017). While many annotations originate from UniProtKB/Swiss-Prot, neXtProt carefully adds information
based on experimental data.
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been assembled and curated by experts who read the literature and use many of the databases
and methods described in this chapter. Over recent years, Swiss-Prot, which is part of
UniProtKB (UniProt Consortium 2016; see Chapter 1), has moved its objective from “many
annotations” to “deep annotations,” i.e. from the effort to annotate as many proteins as
possible to that of focusing on providing as detailed annotations as possible for fewer proteins.
neXtProt is a related effort that focuses solely on collecting the most detailed possible
annotation of all human proteins (Gaudet et al. 2017) (Figure 7.7b).

Methods Motif- and domain-finding methods used by the databases and tools mentioned
above essentially are derivatives of sequence alignment methods, such as those discussed
in Chapter 3. In the following section, we cover methods for the identification of structural
domains using only information about protein sequence.

DomCut is one of the earliest and simplest approaches for the prediction of domain linker
regions (Suyama and Ohara 2003). At every position over a sliding window of size 15, it
compares the amino acid frequency between domain and linker regions, as calibrated from a
high-resolution set of structures from PDB.

Scooby-Domain identifies domains by their characteristic hydrophobic amino acid compo-
sition. The method calculates the fraction of hydrophobic residues in sliding windows of all
possible sizes, from the smallest to the largest observed domain (Pang et al. 2008). This leads
to a matrix that contains the average hydrophobicity for every combination of window size
and central residue in the window. Starting from the 10 best-scoring values in the matrix, the
A* heuristic search algorithm is used to filter through a set of alternative domain architec-
tures. The method was further improved by integration of domain boundary predictions by
DomCut and PDLI (Dong et al. 2006), as well as homology information. As a special feature,
Scooby-Domain can also predict a domain composed of segments that are not continuous in
sequence. The output of the network is first smoothed and domains are then assigned using a
pattern-matching algorithm that merges two regions with high domain scores.

DOMpro predicts protein domains with a 1D recursive neural network that is fed the whole
sequence as input, with 25 inputs per protein residue (Cheng et al. 2006). Twenty of these input
units code for amino acid probabilities from a PSSM, capturing evolutionary information,
while the other three code for predicted secondary structure and two for solvent accessibility
features at that position.

Dom-Pred is a domain prediction web server consisting of two components (Bryson et al.
2007): DomSSEA recognizes known domains by predicting the secondary structure of a query
sequence, then comparing the secondary structure profile against that of domains deposited
in PDB. DPS, on the other hand, tries to predict domain boundaries of yet-uncategorized
domains. This exploits the fact that local alignments resulting from a PSI-BLAST search have
been observed to create consistent N- and C-terminal signals. These boundaries likely mark
domains that are expected to be conserved.

Performance Predictions of domains can be assessed on two levels. The first is to correctly
predict the number of domains in a protein. For this measure, Dom-Pred reports a perfor-
mance of 85% correctly identified domains using homology inference (DomSSEA) and 68%
from sequence alone (DPS). DOMpro reports 69% correctly identified domains. The second
and more difficult level involves the correct identification of the domain boundaries – or,
alternatively, the linker regions between domains. Here, DomCut reports a sensitivity of 53%,
similar to Scooby-Domain and DPS both with 50%. DomSSEA improves the performance to
55%. Scooby-Domain also claims a precision of 29%, compared with 85% (DomSSEA) and 72%
(DPS). Finally, DOMpro reaches an accuracy of 25% for proteins with two domains and 20% for
more than two. Unfortunately, these performance measures can only be compared to a limited
degree, as they were calculated on different sets of data and using varying definitions of how



206 Predictive Methods Using Protein Sequences

much a predicted boundary can deviate from the experimental annotation while still counting
as correct.

CASP8 provided the last independent evaluation of domain boundary predictions (Ezkurdia
et al. 2009). Eighteen predictors were assessed on up to 122 targets with manually curated
domain definitions. The best methods predicted the correct number of domains in up to 90% of
the cases and also performed well in determining exact domain boundaries (as assessed by how
close predictions are to the experimental annotation). All of the top-scoring methods made
use of structure templates where available, and the CASP assessors noted that performance
significantly decreased for targets which had to be predicted ab initio, without prior structural
knowledge. Among the methods mentioned above, only Dom-Pred was evaluated during
CASP8, predicting the correct number of domains for less than 70% of the targets. It should
also be kept in mind that single-domain proteins are over-represented among all proteins of
known 3D structure (i.e. all CASP targets) and that predictions involving these single-domain
proteins yield significantly higher performance (Liu and Rost 2004; Ezkurdia et al. 2009).

Gene Function Prediction Based on the Gene Ontology

Background To systematically predict and evaluate protein function requires a well-defined
dictionary of terms describing such functions. GO (Gene Ontology Consortium 2000, 2015) is
the standard and most comprehensive such dictionary. GO captures multiple aspects of protein
function, described using three different hierarchies/ontologies: one for molecular function
(MFO; e.g. “alcohol dehydrogenase activity”), one for biological process (BPO; negative reg-
ulation of eye pigmentation’), and one for cellular component (CCO, “extracellular matrix
component”). Each of these consists of terms ordered hierarchically in a directed acyclic graph,
with the most specific descriptions of function at the graph’s leaves. For example, parents of
“negative regulation in eye pigmentation” in BPO include “regulation of pigmentation during
development” and, simply, “pigmentation.” GO, in collaboration with genome and protein
database groups, also maintains annotations of these terms to genes for multiple species, with
each annotation associated with an evidence code that provides information about where the
annotation information is derived from (e.g. “inferred from sequence similarity” or “traceable
author statement”).

Methods Metastudent (Hamp et al. 2013) predicts GO terms for a protein based on homol-
ogy. BLAST (Chapter 3) is used to find similar sequences with known GO annotations, and
these annotations are then transferred to the query protein. If no homolog is found, no pre-
diction is made. In general, this method has relatively low reliability, but certain terms can be
highly reliably predicted.

COGIC uses annotation transfer by homology and machine learning to predict GO terms
(Cozzetto et al. 2013). Specifically it uses: (i) annotation transfer from PSI-BLAST hits
against UniRef90 with at least 85% alignment coverage; (ii) a naive Bayes classifier based on
text-mining data from UniProtKB/Swiss-Prot; (iii) a naive Bayes classifier assessing the asso-
ciation of the frequency of amino acid 3-mers with specific GO terms; (iv) predictions by the
SVM-based method FFPred for eukaryotic targets (described below); (v) further annotation
transfer based on distant relationships described by the orthologous groups found within
the EggNOG database (Huerta-Cepas et al. 2016); (vi) a simple neural network, based on a
similarity score that compares the PSSMs of query sequences with those from the annotated
dataset; and (vii) GO term predictions based on high-throughput data provided by the method
FunctionSpace for human proteins (Lobley 2010). Predictions by these seven components are
then combined and propagated to protein annotations based on the GO graph structure.

FFPred 3.0 is an SVM-based de novo function predictor focusing on human proteins
(Cozzetto et al. 2016). Therefore, it is a particularly helpful tool when annotation transfer
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cannot be applied or when annotation transfer methods provide few results. As the prediction
of GO terms is a large multi-label problem, a single protein can be associated with many
GO terms, but SVMs are binary classifiers; FFPred trains a total of 868 separate SVMs, each
predicting a single GO term. The input feature set for the SVMs consists of sequence features
including amino acid composition, predicted secondary structure, transmembrane segments,
disordered regions, signal peptides, subcellular localization, and more.

FunFams, short for Functional Families, are clusters of protein domains which are likely to
share the same function (Das et al. 2015). To construct FunFams, all sequences from a CATH
superfamily with a sequence identity of 90% are clustered (Sillitoe et al. 2013, 2015). These
initial clusters are then further merged using profiles created from the MSAs of each cluster in
an iterative fashion until a single cluster remains. In the process, a hierarchical clustering tree
is constructed. Next, the optimal cut of the tree is determined such that the remaining parent
nodes represent FunFams, considering SDPs (described in Motifs and Domains, Databases).
The resulting FunFams can then be used to predict GO terms. All superfamilies identified in
a protein are linked to all corresponding FunFams and all the associated GO terms and their
GO DAG ancestors are transferred to the query protein.

Performance Because of the hierarchical structure of GO, evaluation metrics consider not just
perfect matches of predicted GO terms but also their parents. Furthermore, an evaluation can
be either protein centric, measuring how well all GO terms of a single protein have been pre-
dicted and averaging over all proteins, or term centric, evaluating how well a specific term has
been predicted over all proteins in the set.

The most commonly reported score by method developers is the protein-centric Fmax, corre-
sponding to the maximal F1 score (see Box 5.4) achieved along the precision-recall or the ROC
curve (Box 7.3). This is also the main score in the CAFA algorithms (Radivojac et al. 2013), the
de facto standard in evaluating GO term prediction methods.

CAFA is the equivalent of CASP for the protein function prediction community. The idea
is to define a set of target proteins for which all participants must submit their predictions by
a given deadline. This is followed by an annotation growth phase of around 8 months during
which the organizers wait for the accumulation of experimental data to be annotated by GO
curators; these data can then be used to evaluate the previously submitted prediction results.
In the first CAFA experiment conducted from 2010 to 2011, only two GO aspects were eval-
uated: MFO and BPO. CAFA2 (2013–2014) extended this evaluation by also adding the third
GO ontology – CCO – and further added terms describing human phenotypic abnormalities as
cataloged in the human phenotype ontology (HPO; Köhler et al. 2016). CAFA3 started in 2016
and finished evaluations in 2019. It expanded the scope by including predictions of metal- and
nucleotide-binding residues, as well as a manually curated set of moonlighting proteins that
perform multiple distinct functions, only one (or none) of which is made known to participants
in the challenge.

Results for the protein-centric Fmax from CAFA2 are shown in Table 7.2 (Jiang et al. 2016).
Compared with the PSI-BLAST baseline, overall performance is best for MFO, worse for BPO,
and as low as a naive prediction using CCO. However, the latter low performance was likely due
to a problem with the assessment design, as a few very common terms such as “organelle” seem
to have dominated the evaluation. When adapting the alternative scoring scheme (Smin) that
de-emphasizes general terms over more descriptive ones further down the GO graph, the naive
prediction performance dropped significantly – below that of the 10 best prediction methods.
Using Smin for scoring, FunFams (MFO and BPO) and jfpred (CCO, based on COGIC/FFPred)
join the ranks of the best methods. Independent of weighting, no method was able to perform
better than the naive baseline on human phenotypes described by HPO. The generally bad
performance could be attributed to the fact that target proteins on average have many more
HPO terms annotated than they do for the three GO ontologies. Furthermore, HPO is limited
to human, while GO allows the transfer of annotations from homologs in other organisms.
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Table 7.2 Performance of selected gene ontology term prediction methods in CAFA2.

Fmax

Prediction
method

Molecular
function (MFO)

Biological
process (BPO)

Cellular
component (CCO)

jfpred (FFPred+COGIC) 0.544 0.446 0.35
FunFams 0.563 0.43 0.352
Metastudent 0.523 0.441 0.288
Best method 0.595 0.468 0.372
PSI-BLAST Baseline 0.451 0.347 0.251

Shown is the performance of the Gene Ontology (GO) term prediction methods evaluated in the
most recent independent assessment performed by CAFA2 (Jiang et al. 2016), based on the primary
score, Fmax, for the three GO ontologies. For reference, Best method shows the best performance
achieved in the respective ontology for any method. All values should only be seen as a rough
performance estimate, as the coverage of methods shown here differs and error estimations have
been omitted. The original publication contains additional performance scores that are
complementary to Fmax.

Overall, performance has improved from CAFA1 to CAFA2 (Jia and Liu 2006). It is further-
more encouraging that the best methods do not perform significantly worse for difficult targets
that have low sequence similarity to the training data. Finally, while several methods stand out
for one or two measures, there is no single method that consistently performs best across all
ontologies and scoring schemes.

Subcellular Localization

Background Predicting the subcellular localization of proteins computationally is an impor-
tant challenge in bioinformatics, as the compartment in which a protein functions natively
is informative about its function. Experimental studies have shown that proteins may travel
between different subcellular compartments, yet most of them are functional within a sin-
gle compartment for most of their lifetime (Huh et al. 2003; Foster et al. 2006). Furthermore,
the cellular sorting mechanism that directs proteins to their main location of function is rel-
atively well understood, providing useful features for computational prediction methods, and
experimental localization data are available in public databases for many proteins, provid-
ing useful training and test data. The manually annotated database UniProtKB/Swiss-Prot
(O’Donovan et al. 2002) contains experimental localization information for more than 30 000
proteins (release 2018_08). However, these constitute only 0.03% of all known proteins in the
current UniProt release (UniProt Consortium 2016). Thus, the vast majority of proteins do not
have any experimentally determined cell location information, so computational prediction
methods can help fill this gap.

The best computational methods achieve impressive levels of prediction performance
(Gardy and Brinkman 2006; Horton et al. 2007; Hu et al. 2009; Goldberg et al. 2014) and are
routinely used for large-scale protein annotation (Graessel et al. 2015; Ramilowski et al. 2015).
However, most of these methods focus on one or a few cellular compartments or specific
organisms. The most reliable localization predictions result from careful homology-based
inference, i.e. where localization information is transferred from an experimentally annotated
protein to its unannotated sequence homolog. Unfortunately, this method cannot be applied
to most proteins because of limited existing cellular location information. For these, de novo
machine learning methods provide fairly reliable results. Other automatic methods annotate
proteins by mining biological literature and molecular biology databases (Nair and Rost 2002).
For example, a simple approach could be to compare annotated UniProtKB keywords between
the query protein and proteins of known subcellular localization. Location annotations are
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transferred from a protein with similar keywords. Finally, meta-predictors integrate different
methods, using the most reliable prediction for the final prediction.

Methods LocTree3 is the latest generation of the LocTree method, employing a hierarchi-
cal structure of SVMs to mimic the protein-trafficking pathway in a cell and predict protein
localization (Goldberg et al. 2014) (Figure 7.8). LocTree3 predicts 18 subcellular localization
classes in eukaryotes, six in bacteria, and three in archaea. LocTree3 is a hybrid approach that
first uses a PSI-BLAST search to transfer any known localization information to a query pro-
tein from its sequence homolog. If no homology-based information is available, it uses a de
novo-based method called LocTree2 that employs a profile-kernel SVM, using an evolutionary
profile-based conservation scores of short stretches of k consecutive residues (k-mers) as input
(Goldberg et al. 2012).

MultiLoc2 predicts protein localization by integrating the overall amino acid composition
with known cellular sorting signals, phylogenetic profiles, and GO (Gene Ontology Consor-
tium 2015) terms for the prediction of protein localization in eukaryotes (Blum et al. 2009).
MultiLoc2 is available in two versions: MultiLoc2-LowRes can be applied to eukaryotic globu-
lar proteins and predicts five localization classes, while MultiLoc2-HighRes additionally covers
transmembrane proteins and predicts 11 eukaryotic subcellular localization classes. MultiLoc2
uses a two-level prediction approach, where the first layer consists of several SVMs process-
ing different encodings of the query sequence, forwarding their output to the second-level
SVM-based classifiers that produce probability estimates for each localization class.

DeepLoc predicts 10 different eukaryotic localization classes (Almagro Armenteros et al.
2017). Unlike the methods mentioned above, DeepLoc performs its prediction ab initio using
only the sequence and no ancillary homology information. The method first uses a convo-
lutional neural network to extract sequence motifs of varying lengths that are then used as

Figure 7.8 Prediction of subcellular localization. Visual output from LocTree3 (Goldberg et al. 2014), a web server predicting subcellular
localization. Upon submission of a sequence (and specification of its kingdom: eukaryota, bacteria, or archaea), the predicted localization,
along with the corresponding Gene Ontology terms (if available), are shown. The last column (Annotation Type) denotes whether the result
was obtained through a homology search or, as is the case here, predicted by the machine learning model. The tree on the right is a
visualization of the hierarchical network of support vector machines (SVMs). Highlighted in orange is the path that was used to predict the
example, the alpha subunit of human ATPase, as being localized to the mitochondrion.
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input for a recurrent neural network and fed through additional filtering layers. The final step
performs predictions using a hierarchical approach similar to that of LocTree3.

Performance Generally, the performance of subcellular localization prediction methods can
be assessed using a binary accuracy score (Box 7.3; see also Box 5.4), even though many meth-
ods predict 10 or more classes. In general, newer methods that integrate more sources of infor-
mation outperform older and simpler methods (Hu et al. 2009; Mooney et al. 2013; Goldberg
et al. 2014). The reported performance levels suggest accuracies >85% for extracellular pro-
teins, ∼80% for those found within the plasma membrane and nucleus, >65% for cytoplasmic
proteins, and >70% for mitochondrial proteins. DeepLoc, the most recent method, reports an
overall accuracy of 78% based on their newly assembled dataset. Using the same dataset, Loc-
Tree2 reaches 61% accuracy, while MultiLoc2 reaches 56% accuracy.

Protein Interaction Sites

Background Most proteins do not function alone. Instead, they work with other molecules
within molecular complexes (Rao et al. 2014; Keskin et al. 2016) to perform specific func-
tions. Protein interactions and resulting interaction networks are covered in greater depth
in Chapter 13. Here, we focus on describing methods that predict physical, non-covalently
bonded protein–protein interaction sites for an individual protein 1D sequence. Many methods
are also available to predict protein–protein interaction sites based on known 3D structures,
and the reader is referred to two comprehensive references for more information on these
methods (Esmaielbeiki et al. 2016; Keskin et al. 2016).

There are many types of protein interaction binding sites. For instance, a site could be defined
by a large surface of a protein’s 3D structure, corresponding to amino acid positions scattered
across a 1D sequence that are close in the 3D fold, which is used to bind to other large proteins.
Small sites that bind small molecules are prevalent in enzymes, and usually define the enzyme
active site. Finally, short linear sites are continuous amino acid stretches, often found in disor-
dered regions, that bind proteins (Tompa et al. 2014). Protein interactions are usually mediated
by domains and motifs, each with their own characteristic binding sites and preferred binding
patterns in their partner molecules (Pawson and Nash 2003). Proteins may have multiple inter-
acting partners and binding sites and some sites may bind to more than one partner, which may
lead to competition among the partners. Interestingly, even between two identical proteins A
and B, we surprisingly observe alternative interfaces that are biologically meaningful (Hamp
and Rost 2012).

Typically, binding interfaces, which can involve 20–50 residues, are defined by having a large
difference in ASA between the monomer and the complex or by the distance between two
residues within a specific protein 3D structure (Figure 7.3). However, the characterization of
binding interfaces is not trivial, so a specific set of tools has been developed that enable the user
to discern artifacts from true interactions (Tuncbag et al. 2009; Keskin et al. 2016). Binding
sites can also be experimentally identified using a range of methods, such as alanine scanning,
whereby each position in a protein sequence is mutated to alanine one by one, and the resulting
change in binding strength is then measured. Positions that affect the binding strength when
mutated are part of the binding site. Some interacting residues contribute more to binding than
others. Those contributing most are often referred to as hot spots (Tuncbag et al. 2009; Morrow
and Zhang 2012), with about 10% of all binding residues being hot spots. These residues are
often buried and differ by their native amino acid composition, with tryptophan, arginine,
and tyrosine being particularly common. As hot spots are prime drug targets, several tools
have been developed to predict them (Keskin et al. 2016). Newer methods for binding site
prediction involve searching for patterns of correlated mutations present in MSAs, based on the
concept that evolutionary mutations in one site must be compensated for in a partner site for
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the interaction to be maintained (Marks et al. 2012). Several tools have been developed recently
based on these advances, such as FILM3, EVfold, and EVcomplex (Marks et al. 2011; Nugent
and Jones 2012; Hopf et al. 2014). Evaluated as part of the CASP11 and CASP12 assessments,
there have been tremendous advances in the development of these methods, and it is expected
that they will be further improved in the near future (Kinch et al. 2016; Yang et al. 2016b; Wang
et al. 2017; Schaarschmidt et al. 2018).

About 5% of all eukaryotic proteins are assumed to bind nucleotides; their functions include
processes such as the regulation of gene expression, DNA replication, and DNA repair (Yan
et al. 2016). To predict binding residues for these cases, a separate set of specialized predictors
has been developed that are based on either the sequence or template 3D structures where
available (Zhao et al. 2013).

Many databases collect protein interaction sites (Tuncbag et al. 2009; de Las Rivas and
Fontanillo 2010; Keskin et al. 2016). Protein binding interfaces and their interacting residues
are stored in PISA (Krissinel and Henrick 2007), Inferred Biomolecular Interactions Server
(IBIS) (Shoemaker et al. 2012), IPfam (Finn et al. 2014b), PIFACE (Cukuroglu et al. 2014),
and 3did (Mosca et al. 2014). Results from experimental alanine scanning mutagenesis are
available within BID (Fischer et al. 2003), as well as from a legacy database called ASEdb
(Thorn and Bogan 2001).

Methods Predicting PPI interface residues. A popular approach for predicting binding
sites in proteins is to learn their physicochemical patterns from known examples and then
search for these patterns in other protein sequences (Ofran and Rost 2003a,b; Esmaielbeiki
et al. 2016). Ofran and Rost (2003a,b) developed a prediction method based on a neural network
with a sliding window of size nine and using only the sequence as input. Šikić et al. (2009) more
recently showed that this remains a viable approach. Subsequent methods improved perfor-
mance by including evolutionary information, as well as predicted secondary structure and
solvent accessibility data (Res et al. 2005; Wang et al. 2006; Ofran and Rost 2007; Chen and
Jeong 2009; Chen and Li 2010). Developers of the PSIVER method found that predicted acces-
sibility information is also highly informative, even if used alone (Murakami and Mizuguchi
2010). HomPPI is a purely homology-based predictor that transfers binding site information
from known sites in homologous proteins that are part of molecular complex 3D structures
in PDB (Xue et al. 2011). ELM is a database of short linear protein binding site patterns, typi-
cally described by regular expressions, with associated tools for identifying known patterns in
a query sequence (Gouw et al. 2018).

Predicting protein–DNA and –RNA binding. DBS-PSSM extends an earlier approach
for the prediction of DNA-binding residues by training a relatively small neural network (103
nodes in total) with a sliding window of five and conservation information from PSI-BLAST
PSSMs (Ahmad and Sarai 2005). DP-Bind is a consensus approach combining the prediction
results from an SVM and two logistic regression models (Hwang et al. 2007; Rezácová et al.
2008). Both of these methods found that performance is significantly increased when using
homology information. SomeNA (Hönigschmid 2012; Yachdav et al. 2014) uses a hierarchical
set of neural networks that predict whether a protein binds DNA or RNA and, if so, where
it binds. RNA-binding residues are also predicted by Pprint using an SVM with PSSM input
(Kumar et al. 2008). RNABindRPlus tackles the same task using the same input to an SVM
and a window size of 21 (Walia et al. 2014). A logistic regression classifier is used to combine the
predictions with the results from the homology-based predictor HomPRIP, which generally
achieves higher performance but cannot be applied to query proteins without homologs.

Performance Predicting PPI interface residues. Predicted protein–protein interaction
(PPI) sites are typically evaluated using the same set of standard scores as outlined for other
binary classification tasks (see Box 5.4). Without a recent independent evaluation, the only
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values available are those provided by method authors. These values have been determined
based on different test data and are therefore not comparable. They are also highly variable.
Independent of these difficulties, performance has been reported to have reached a plateau
(Esmaielbeiki et al. 2016).

Predicting protein–DNA and –RNA binding. A recent review by Yan et al. (2016) has
comprehensively studied 30 prediction methods of DNA- and RNA-binding residues, evaluat-
ing nine on an independent dataset of 3D structures. The authors found that most predictors
reach a similar performance for the prediction of DNA-binding residues with an AUC_ROC
around 0.79 (Box 7.3). These results are encouraging, but work remains to be done and predic-
tors do differ in terms of whether they emphasize higher specificity (most) or sensitivity. In fact,
the area under the ROC curve may not be the most appropriate way to evaluate such prediction
methods. For example, DBS-PSSM has the best sensitivity, at 72%, but a specificity of only
75%, significantly lower than other methods that reach more than 90%. A consensus predictor
developed by Yan et al. (2016) that combined prediction results using a logistic regression
approach outperformed all individual predictors. Similar results describe the prediction of
RNA-binding residues, albeit with lower AUC_ROCs (0.724 for RNABindR and 0.681 for
Pprint). Interestingly, these methods seem to capture general properties of nucleic acid bind-
ing. For example, an RNA-binding site prediction method also predicts many DNA-binding
residues as positives. To counter this, new methods, such as SomeNA, that train on both data
classes (DNA and RNA) in an attempt to distinguish them have been proposed (Yachdav
et al. 2014). One important problem that has been benchmarked poorly so far is the degree to
which a method confuses proteins that bind nucleotides and those that do not. All the above
performance estimates apply if and only if the protein is already known to bind DNA or RNA.

Effect of Sequence Variants

Background Any two unrelated individuals differ in their genomes at around 5 million sites
(Auton et al. 2015) and by about 20 000 SAVs. An important question is whether these muta-
tions affect protein function. Because of the large number of possible protein mutations, it is
currently impossible to evaluate all of them using experimental methods, so computational
prediction methods are needed to fill the gap. Using such methods, surprising findings are
revealed. For instance, many SAVs in healthy individuals appear to have strong impact upon
function, common SAVs appear to affect function more than rare SAVs, and SAVs between indi-
viduals have, on average, more impact than those seen between human and related organisms
(such as apes or mice; Mahlich et al. 2017). Most methods, including the ones presented below,
are either limited or strongly biased toward human sequence variants. Chapter 17 provides
more information about how these methods are used in practice.

Methods SIFT was one of the first methods to predict SAV effects on protein function (Ng
and Henikoff 2003; Kumar et al. 2009). The central information used in this method (and
most other methods) is to evaluate the SAV in terms of evolutionary sequence conservation
identified in an MSA. If the SAV changes the native amino acid to one that is observed in the
family of the varied protein, the variant is predicted to be neutral. In contrast, if the SAV alters
a conserved position, a change in function is predicted. SIFT uses PSI-BLAST to identify sim-
ilar proteins and build an MSA, then uses this MSA to predict whether the SAV is likely to be
deleterious (i.e. by mutating a relatively conserved position).

PROVEAN is based on the same idea as SIFT but contains some important extensions,
including the ability to predict the effect of insertions and deletions and multiple simultaneous
variants on protein function (Choi et al. 2012). PSI-BLAST is used to identify sequence families
that are clustered at 80% sequence identity. The 45 clusters most similar to the query sequence
are selected. For each cluster, the query sequence is compared with the cluster sequences to
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compute a delta score using the substitution scores in the BLOSUM62 matrix (see Chapter 3).
The arithmetic averages over all scores within each cluster are again averaged to determine the
final prediction score. If the score is below an empirically defined threshold, the SAV is consid-
ered deleterious. Calculating averages for every cluster before merging results instead of just
averaging all sequence scores is important, as large groups of similar proteins might otherwise
bias the results; the clustering step reduces redundancy in the data, thereby avoiding this bias.
The default score threshold was estimated based on a set of human disease-causing SAVs and
common variants (assumed to be neutral) from the UniProtKB (humsavar) database that was
then extended to cover insertions and deletions.

PolyPhen-2 predicts SAV effects based on conservation and experimental or predicted infor-
mation about protein structure (Adzhubei et al. 2010). From a larger set of features, eight
sequence-based and three structure-based features were combined within a naive Bayes classi-
fier to determine a final prediction score. PolyPhen-2 was trained on disease-causing mutations
annotated in the UniProtKB database. The method aims to predict the effect upon the “system”
(a disease) rather than upon the protein (a molecular effect). PolyPhen-2 offers two models:
one focuses on SAVs with strong effects that cause a Mendelian disease or disorder involving
a single gene, while the other is trained to identify less deleterious alleles that may contribute
to complex disease involving more than one gene.

SNAP2 predicts the effect of SAVs on protein function using a system of neural networks
(Hecht et al. 2015). As for other methods, the most important signal for prediction comes
from evolutionary conservation. To further improve performance, SNAP2 includes protein
sequence-based predictions as input, including secondary structure, binding site, and dis-
ordered region information. Global features such as the protein length and the amino acid
composition are also considered. The method was trained on a dataset that includes human
disease-causing SAVs, mostly from the Protein Mutant Database that catalogs how variants
affect an experimentally measured level of molecular function. Thus, while SNAP2 predicts
how an SAV affects molecular function, this may not correspond to a deleterious effect on the
phenotype being studied. SNAP2 was developed to support the idea of “comprehensive in silico
mutagenesis,” which attempts to learn the functional effects of all possible protein mutations;
this information, in turn, can be used to compute a heat map illustrating the functional effects
of each mutation (Figure 7.9; Hecht et al. 2013). Although conservation provides the dominant
signal, the additional features under consideration are also important, particularly for proteins
with few known similar sequences. Recent analyses show that SNAP2 results are very different
for many variants when compared with the predictions from the other methods described here
(Reeb et al. 2016).

CADD (Kircher et al. 2014) is the only method presented here that predicts the effect of a
variant on genomic sequences rather than for proteins; however, it also can handle SAVs. It
can score any SNV or small indel in either coding or non-coding regions. CADD uses a set
of 63 features that are combined within an SVM classifier. These features include evolution-
ary, regulatory, and transcript information (such as transcription factor binding sites or intron
and exon boundaries), as well as predicted effect scores from PolyPhen and SIFT. The training
was performed on a set of variants that capture differences between human and an inferred
human–chimp common ancestor. All of these variants, which also appear in large numbers in
the human population, are considered neutral variants since they have been subjected to nat-
ural selection. Another set of simulated in silico variants are considered deleterious because
they are not under evolutionary constraint. CADD provides a single score measuring the dele-
teriousness of a variant, independent of what type the variant is and where in the genome it
lies. This makes the method more generally applicable than the others described above.

Performance Generally, variant effect prediction is evaluated with the same measures used
for other classification tasks such as AUC_ROC or accuracy (Box 7.3). For example, in a recent
independent evaluation SIFT, PolyPhen, and CADD reached AUC_ROC values of 0.59–0.63
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Figure 7.9 From predicting single amino acid sequence variant (SAV) effects to landscapes of suscepti-
bility to change. Shown are the SNAP2 (Hecht et al. 2015) predictions resulting from a complete in silico
mutagenesis study for the cystic fibrosis transmembrane conductance regulator, as shown by Predict-
Protein (Yachdav et al. 2014). Prediction results are represented as a heatmap in which every column
corresponds to one residue in the sequence. Rows represent mutations to all other non-native amino
acids. Note that not all those SAVs are reachable by a single nucleotide variant (SNV). SAVs predicted
as neutral are highlighted in green, while those predicted to affect molecular function are in red. Syn-
onymous mutations are black. While traditionally focusing on a few select variants that are of particular
interest, some modern tools are computationally efficient and accurate enough to predict the effect of
every possible variant in a protein. While predictors are not sensitive enough to regard every high-scoring
variant as potentially interesting, such an approach allows for the identification of sites that may be func-
tionally important, as the effect of every possible kind of variation for that residue is predicted. Here,
the clustering of high-effect scores falls exactly into the known nucleotide binding region from residues
458–465. This approach represents one very effective way in which the application of residue-based
prediction tools can lead to knowledge at the level of the whole protein.

on a dataset containing variants known to affect protein function. Using a different set of
variants that affect the function of transcription factor TP53, performance was significantly
higher (0.83–0.87). Performance was even higher on a set of variants implicated in human dis-
ease (0.83–0.94). Other published rankings of methods often disagree widely, depending on
the datasets used (Thusberg et al. 2011; Dong et al. 2015; Grimm et al. 2015). This high varia-
tion exemplifies the difficulties in evaluating the effect of a SAV. One reason for the variation
is that the tools described above predict different types of effects, such as the effect on molec-
ular function, a pathway, or the organism in general. One extreme example of the problem
is that SIFT, PolyPhen-2, and SNAP2 predictions seem to generally agree on the base set of
SAVs with known experimental information that should be used as the basis for predictions,
but differ substantially on how to apply never-before-seen data such as the natural sequence
variation observed between 60 000 individuals (Mahlich et al. 2017) or by random SAVs (Reeb
et al. 2016). Another issue at play is ascertainment bias, where well-studied proteins are more
likely to be included in training data, leading to overestimation of generalization performance
(Grimm et al. 2015). Given these issues and the overall estimated performance of these tools,
they are best used to generate hypotheses for further testing (Miosge et al. 2015).

Summary

Seminal discoveries made in the 1960s by Anfinsen and others have clearly established that
the sequence of a protein determines its structure and, ultimately, its function. Owing to
the relative simplicity with which protein sequences can be obtained experimentally, a large
enterprise devoted to predicting structure and function from sequence has emerged. Structure
prediction has tremendously matured to the point that some aspects may be considered solved,
at least to the extent that current experimental data allow (Hopf et al. 2012). Despite these sub-
stantial advances, the general problem of predicting protein function from sequence has not
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been solved. The 1D prediction methods presented in this chapter (secondary structure, trans-
membrane, solvent accessibility, and disorder) are important as input to higher level prediction
methods. Fortunately, given the wide range of prediction methods available, many of which
are discussed in this chapter, it is possible to annotate protein sequences with a multitude of
information, even without any prior knowledge. These predictions will still clearly contain
errors – but, once the user understands the strengths and weaknesses of each method, these
tools can be incredibly useful toward allowing the user to filter the deluge of sequence data gen-
erated today and, hopefully, generate hypotheses that can be experimentally tested. Given that
errors may exist in the data that these methods depend upon, it is important to identify the pri-
mary evidence used for protein function prediction, whether using best-in-class tools, mapped
by high-throughput experiments, or those carefully gathered by experts based on detailed
experiments. No existing resource informs users about these situations. Thus, the analysis
of the proteins that you are interested in is typically done best by using the best, appropriate
prediction tools for any particular question, along with the most reliable database annotations.

Internet Resources

Essential databases and prediction evaluations
CAFA biofunctionprediction.org/cafa
CAGI genomeinterpretation.org
CASP predictioncenter.org
CATH www.cathdb.info
InterPro www.ebi.ac.uk/interpro
neXtProt www.nextprot.org
PDB www.wwpdb.org
Pfam pfam.xfam.org
SCOP2 scop2.mrc-lmb.cam.ac.uk
UniProtKB www.uniprot.org

Prediction of protein structure
BETAWARE biocomp.unibo.it/savojard/betawarecl
BOCTOPUS2 boctopus.bioinfo.se
PolyPhobius phobius.sbc.su.se/poly.html
POODLE cblab.my-pharm.ac.jp/poodle
PrDOS prdos.hgc.jp/cgi-bin/top.cgi
Proteus wks80920.ccis.ualberta.ca/proteus
Proteus2 www.proteus2.ca/proteus2
PSIPRED, MEMSAT-SVM, and
DISOPRED3

bioinf.cs.ucl.ac.uk/psipred

RaptorX raptorx.uchicago.edu/StructurePropertyPred/predict
ReProf, TMSEG, and Meta-Disorder predictprotein.org
SPIDER3 sparks-lab.org/server/SPIDER3
SSpro5, ACCpro5 scratch.proteomics.ics.uci.edu

Prediction of protein function
CADD cadd.gs.washington.edu
DeepLoc www.cbs.dtu.dk/services/DeepLoc
DomCut www.bork.embl-heidelberg.de/~suyama/domcut
DomPred, FFPred 3.0, COGIC bioinf.cs.ucl.ac.uk/psipred
DOMpro scratch.proteomics.ics.uci.edu
DP-Bind lcg.rit.albany.edu/dp-bind

http://biofunctionprediction.org/cafa/
https://genomeinterpretation.org
http://predictioncenter.org/
http://www.cathdb.info/
https://www.ebi.ac.uk/interpro/
https://www.nextprot.org/
http://www.wwpdb.org/
http://pfam.xfam.org/
http://scop2.mrc-lmb.cam.ac.uk/
http://www.uniprot.org/
http://biocomp.unibo.it/savojard/betawarecl/
http://boctopus.bioinfo.se/
http://phobius.sbc.su.se/poly.html
http://cblab.my-pharm.ac.jp/poodle
http://prdos.hgc.jp/cgi-bin/top.cgi
http://wks80920.ccis.ualberta.ca/proteus/
http://www.proteus2.ca/proteus2/
http://bioinf.cs.ucl.ac.uk/psipred/
http://raptorx.uchicago.edu/StructurePropertyPred/predict/
https://predictprotein.org/
http://sparks-lab.org/server/SPIDER3/
http://scratch.proteomics.ics.uci.edu/
http://cadd.gs.washington.edu/
http://www.cbs.dtu.dk/services/DeepLoc/
http://www.bork.embl-heidelberg.de/~suyama/domcut/
http://bioinf.cs.ucl.ac.uk/psipred/
http://scratch.proteomics.ics.uci.edu/
http://lcg.rit.albany.edu/dp-bind/
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FunFams www.cathdb.info/search/by_sequence
HomPPI ailab1.ist.psu.edu/PSHOMPPIv1.3
HomPRIP-NB ailab1.ist.psu.edu/HomPRIP-NB/index.html
LocTree3 rostlab.org/services/loctree3
MultiLoc2 abi-services.informatik.uni-tuebingen.de/multiloc2/webloc.cgi
PolyPhen-2 genetics.bwh.harvard.edu/pph2
Pprint crdd.osdd.net/raghava/pprint
PROVEAN provean.jcvi.org/index.php
PSIVER mizuguchilab.org/PSIVER
RNABindRPlus ailab1.ist.psu.edu/RNABindRPlus
ScoobyDomain www.ibi.vu.nl/programs/scoobywww
SIFT sift.bii.a-star.edu.sg
SNAP2 rostlab.org/services/snap2web
SomeNA, Metastudent, Ofran, and
Rost PPI predictor

www.predictprotein.org

Further Reading

Keskin, O., Tuncbag, N., and Gursoy, A. (2016). Predicting protein-protein interactions from the
molecular to the proteome level. Chem. Rev. 116: 4884–4909. Keskin et al. give an expansive
overview of protein binding in all its facets, covering protein–protein and protein–nucleic acid
binding on the protein and residue level, as well as additional topics not covered in this chapter,
such as docking and other prediction algorithms based on protein structure instead of sequence.

Moult, J., Fidelis, K., Kryshtafovych, A. et al. (2016). Critical assessment of methods of protein
structure prediction: progress and new directions in round XI. Proteins 84 (Suppl 1): 4–14. This
is the most recent evaluation of the CASP experiment, which is an independent assessment of
all major aspects of protein structure prediction. Similarly, readers interested in function
prediction should investigate CAFA (Jiang et al. 2016) and CAGI (see Internet Resources) for
variant effect prediction.
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Multiple Sequence Alignments
Fabian Sievers, Geoffrey J. Barton, and Desmond G. Higgins

Introduction

A multiple sequence alignment (MSA) is an arrangement of more than two amino acid or
nucleotide sequences which are aligned so as to make the residues from the different sequences
line up in vertical columns in some appropriate manner. These are used in a great variety of
analyses and pipelines in proteome and genome analysis and are an essential initial step in
most phylogenetic comparisons. They are widely used to help search for common features
in sequences and can be used to help predict two- and three-dimensional structures of pro-
teins and nucleic acids. An excellent review of MSA methods, uses, and abuses is provided by
Chatzou et al. (2016).

Usually, one should only attempt to align sequences which are phylogenetically related and,
therefore, homologous. In this case, the ideal alignment will have homologous residues aligned
in the columns. An example of a multiple protein sequence alignment is shown in Figure 8.1.
Here, one column is highlighted. If this column is well aligned, one can infer that the residues
in that column have been derived from the same residue in the common ancestor of these
sequences. That residue could have been a valine (V) or an isoleucine (I) or some other residue,
but the key thing is that all of the amino acids in that column derive from that one position
in the common ancestor. This is the phylogenetic perspective that underlies the construction
of these alignments. In principle, one could also attempt to align the sequences so as to maxi-
mize the structural, functional, or physicochemical similarity of the residues in each column.
In simple cases, if the sequences are homologous, a good phylogenetic alignment will also
maximize structural similarity. If the sequences are not homologous or so highly divergent
that similarity is not clear, then a functional alignment may be very difficult to achieve. One
common example of this kind of difficulty involves promoter sequences that share short func-
tional motifs, such as binding sites for regulatory proteins. Most MSA packages struggle to
correctly align such motifs and these are best searched for using special motif-finding pack-
ages or by comparison with sets of known motifs. A second example is where protein sequences
share a common fold but no sequence similarity, perhaps because of convergent evolution of
their three-dimensional structures or because of extreme divergence of the sequences. Again,
such alignments are best carried out using special sequence–structure matching packages. In
this chapter, we focus specifically on cases where we wish to align sequences that are clearly
homologous and phylogenetically related.

When constructing an MSA, one must also take into account insertions and deletions that
have taken place in the time during which the sequences under consideration have diverged
from one another, after gene duplication or divergence of the host species. This means that
MSA packages have to be able to find an arrangement of null characters or “gaps” that will
somehow maximize the alignment of homologous residues in a fashion similar to that done
for pairwise sequence alignments, as discussed in Chapter 3. These gaps are frequently rep-
resented by hyphens, as shown in Figure 8.1. Given a scoring scheme for residue matches
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HBB_HUMAN       --------VHLTPEEKSAVTALWGKVN--VDEVGGEALGRLLVVYPWTQRFFESFGDLST 
HBB_HORSE       --------VQLSGEEKAAVLALWDKVN--EEEVGGEALGRLLVVYPWTQRFFDSFGDLSN 
HBA_HUMAN       ---------VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-DLS- 
HBA_HORSE       ---------VLSAADKTNVKAAWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHF-DLS- 
GLB5_PETMA      PIVDTGSVAPLSAAEKTKIRSAWAPVYSTYETSGVDILVKFFTSTPAAQEFFPKFKGLTT 
MYG_PHYCA       ---------VLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLEKFDRFKHLKT 
LGB2_LUPLU      --------GALTESQAALVKSSWEEFNANIPKHTHRFFILVLEIAPAAKDLFSFLKGTSE 
                          *:  :   :   *  .           :  .:   * :   *  :   .  
 
HBB_HUMAN       PDAVMGNPKVKAHGKKVLGAFSDGLAHLDN-----LKGTFATLSELHCDKLHVDPENFRL 
HBB_HORSE       PGAVMGNPKVKAHGKKVLHSFGEGVHHLDN-----LKGTFAALSELHCDKLHVDPENFRL 
HBA_HUMAN       ----HGSAQVKGHGKKVADALTNAVAHVDD-----MPNALSALSDLHAHKLRVDPVNFKL 
HBA_HORSE       ----HGSAQVKAHGKKVGDALTLAVGHLDD-----LPGALSNLSDLHAHKLRVDPVNFKL 
GLB5_PETMA      ADQLKKSADVRWHAERIINAVNDAVASMDDT--EKMSMKLRDLSGKHAKSFQVDPQYFKV 
MYG_PHYCA       EAEMKASEDLKKHGVTVLTALGAILKKKGH-----HEAELKPLAQSHATKHKIPIKYLEF 
LGB2_LUPLU      VP--QNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG-VADAHFPV 
                      . .:: *.  :   .                  :  *.  *  .  :    : . 
 
HBB_HUMAN       LGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH------ 
HBB_HORSE       LGNVLVVVLARHFGKDFTPELQASYQKVVAGVANALAHKYH------ 
HBA_HUMAN       LSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR------ 
HBA_HORSE       LSHCLLSTLAVHLPNDFTPAVHASLDKFLSSVSTVLTSKYR------ 
GLB5_PETMA      LAAVIADTVAAG---------DAGFEKLMSMICILLRSAY------- 
MYG_PHYCA       ISEAIIHVLHSRHPGDFGADAQGAMNKALELFRKDIAAKYKELGYQG 
LGB2_LUPLU      VKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMNDAA--- 
                :   :  .:            ...       .   :  

Figure 8.1 An example multiple sequence alignment of seven globin protein sequences. One position
is highlighted.

(e.g. BLOSUM62; Henikoff and Henikoff 1992) and scores for gaps, one can attempt to find
an MSA that produces the best overall score (and, thereby, the best overall alignment). In
principle, this can be done using extensions of dynamic programming sequence alignment
methods (Needleman and Wunsch 1970) to many sequences. This would then guarantee the
best-scoring MSA. In practice, such extensions require time and memory that involve an expo-
nential function of the number of sequences (written O(LN ), for N sequences of length L) and
are limited to tiny numbers of sequences. Therefore, all of the methods that are widely used
rely on heuristics to make the MSAs. The use of heuristics makes very large alignments possible
but comes at the expense of a lack of guarantees about alignment scores or quality.

The most widely used MSA heuristic was called “progressive alignment” by Feng and Doolit-
tle (1987); this method also belongs to a family of methods that were described by different
groups in the 1980s (see, for example, Hogeweg and Hesper 1984). The earliest automatic MSA
method that we are aware of was described by David Sankoff in 1973 (Sankoff et al. 1973) for
aligning 5S rRNA sequences and is essentially a form of progressive alignment. All of these
methods work by starting with alignments of pairs of sequences and merging these with new
sequences or alignments to build up the MSA progressively. The order in which these align-
ments are performed is usually done according to some form of clustering of the sequences,
generated by an all-against-all comparison, referred to as a “guide tree” in Higgins et al. (1992).
A generic outline of this process is illustrated in Figure 8.2.

Measuring Multiple Alignment Quality

There are literally hundreds of different MSA packages and each uses different combinations
of parameter settings and heuristic algorithms to make the alignments. How can we tell which
package works best or is best-suited to which kinds of data? One standard approach is to
compare alignments produced by different packages with a set of established “gold standard”
reference alignments. Such sets are used as benchmarks and have been invaluable for devel-
opers of MSA packages in order to test and compare MSAs. For proteins, the most widely
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--------VHLTPEEKSAVTALWGKVN–-VDEVGGEALGRLLVVYPWTQRFFESFGDLST
--------VQLSGEEKAAVLALWDKVN–-EEEVGGEALGRLLVVYPWTQRFFDSFGDLSN
---------VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-DLS-
---------VLSAADKTNVKAAWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHF-DLS-
---------VLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLEKFDRFKHLKT
PIVDTGSVAPLSAAEKTKIRSAWAPVYSTYETSGVDILVKFFTSTPAAQEFFPKFKGLTT
--------GALTESQAALVKSSWEEFNANIPKHTHRFFILVLEIAPAAKDLFSFLKGTSE
  
PDAVMGNPKVKAHGKKVLGAFSDGLAHLDN-----LKGTFATLSELHCDKLHVDPENFRL
PGAVMGNPKVKAHGKKVLHSFGEGVHHLDN-----LKGTFAALSELHCDKLHVDPENFRL
----HGSAQVKGHGKKVADALTNAVAHVDD-----MPNALSALSDLHAHKLRVDPVNFKL
----HGSAQVKAHGKKVGDALTLAVGHLDD-----LPGALSNLSDLHAHKLRVDPVNFKL
EAEMKASEDLKKHGVTVLTALGAILKKKGH-----HEAELKPLAQSHATKHKIPIKYLEF
ADQLKKSADVRWHAERIINAVNDAVASMDDT--EKMSMKLRDLSGKHAKSFQVDPQYFKV
VP--QNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKGVAD-AHFPV

LGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH------ 
LGNVLVVVLARHFGKDFTPELQASYQKVVAGVANALAHKYH------ 
LSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR------ 
LSHCLLSTLAVHLPNDFTPAVHASLDKFLSSVSTVLTSKYR------ 
ISEAIIHVLHSRHPGDFGADAQGAMNKALELFRKDIAAKYKELGYQG 
LAAVIADTVAAG---D------AGFEKLMSMICILLRSAY------- 
VKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMNDAA--- 

>HBB_HUMAN
VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLST
PDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDP
ENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH
>HBB_HORSE
VQLSGEEKAAVLALWDKVNEEEVGGEALGRLLVVYPWTQRFFDSFGDLSN
PGAVMGNPKVKAHGKKVLHSFGEGVHHLDNLKGTFAALSELHCDKLHVDP
ENFRLLGNVLVVVLARHFGKDFTPELQASYQKVVAGVANALAHKYH
>HBA_HUMAN
VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSH
GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKL
LSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR
>HBA_HORSE
VLSAADKTNVKAAWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHFDLSH
GSAQVKAHGKKVGDALTLAVGHLDDLPGALSNLSDLHAHKLRVDPVNFKL
LSHCLLSTLAVHLPNDFTPAVHASLDKFLSSVSTVLTSKYR
>MYG_PHYCA
VLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLEKFDRFKHLK
TEAEMKASEDLKKHGVTVLTALGAILKKKGHHEAELKPLAQSHATKHKIP
IKYLEFISEAIIHVLHSRHPGDFGADAQGAMNKALELFRKDIAAKYKELG
…
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Figure 8.2 An outline of the simple progressive multiple alignment process. There are variations for all of these steps and some of them
are iterated in well-known packages such as MAFFT and MUSCLE.

used MSA benchmarks have tended to rely on comparisons of protein sequences with known
structures. This is due to the observation that protein sequences with very similar structures
can actually have very highly divergent sequences. Therefore, this approach is very much based
on a structural perspective. In turn, phylogenetic benchmarks have tended to use simulated
alignments and/or sets of sequences with known phylogeny and do not necessarily give the
same results as one would obtain based on structure (Iantorno et al. 2014). The use of structures
in a benchmark entails aligning the structures automatically or manually, then using the corre-
sponding sequence alignment to test various MSA packages. Early structural aligners included
SSAP (Taylor and Orengo 1989) and STAMP (Russell and Barton 1992); a more recent program
is MUSTANG (Konagurthu et al. 2006). While this process leads to a structural superposition
of extant sections of the sequences to be aligned, it may not always be easy to align individual
residues. Therefore, creating a reliable reference alignment may require some manual inter-
vention, something that is not always straightforward (Edgar 2010; Iantorno et al. 2014).

The earliest large-scale MSA benchmark is BAliBASE. The original version (Thompson et al.
1999) contained over 140 reference alignments divided into five hierarchical reference sets, in
an attempt to cover many different alignment scenarios. These include equidistant sequences
of similar length (the BB11/12 reference set), families containing orphan sequences (BB2),
equidistant divergent families (BB3), N/C-terminal extensions (BB4), and alignments with
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insertions (BB5). For categories BB11, BB12, BB2, and BB3, different sequence lengths from
less than 100 to more than 400 residues are covered. For category BB11/12, alignments with low
to high sequence identity are used. While the current version of BAliBASE is 4.0, we will use
BAliBASE 3.0 (Thompson et al. 2005) for the purposes of this discussion. Version 3 comprises
the same five categories as version 1; however, the number of reference alignments has been
increased to 218. The number of sequences of the reference alignments ranges from 4 to 142,
with a median of 21. The BAliBASE benchmark contains a scoring program that assesses how
well a generated (test) protein MSA resembles the reference alignment. Similarity between
test and reference alignments in BAliBASE is expressed by two numbers: the sum-of-pairs
(SP) score and the total column (TC) score. The scoring program measures SP and TC scores
only for regions that are reliably aligned in the reference; these regions are the so-called “core
columns.” OXBench (Raghava et al. 2003) and SABmark (Van Walle et al. 2005) are based on
similar principles as BAliBASE. SABmark comprises 1268 alignments, ranging from three to 50
(median eight) sequences. OXBench comprises 672 families of between two and 122 (median
three) sequences. In this chapter, we give SP and TC scores for various MSA packages, as mea-
sured using the BALiBASE benchmark.

The SP score measures the proportion of correctly aligned residue pairs while the TC
score measures the proportion of reference alignment columns, which are perfectly retrieved
in the generated MSA. Both scores can vary between 0 (that is, no residue pair or column
retrieved) and 1 (that is, the generated MSA and the reference alignment are identical). For
a pairwise alignment, the SP score and TC score are the same. For an MSA aligning three or
more sequences, the TC score can never exceed the SP score. The SP and TC scores give a
measure of the sensitivity of the aligner, measuring the fraction of correctly aligned residues
and columns (the number of true positives). They do not, however, penalize for incorrectly
aligned residues, which would be a measure of the specificity of the aligner (the number of
true negatives). The specificity and sensitivity (see Box 5.4) of alignments in a benchmark test
can be quantified by the Cline shift score (Cline et al. 2002) and the QModeler score (Sauder
et al. 2000), which take incorrectly aligned residues into account.

The maximum number of sequences in benchmarks such as BAliBASE 3.0, SABmark, or
OXBench is of the order of 100. None of these benchmarks can explore the performance of MSA
software if thousands or even millions of sequences have to be aligned. One way to increase
the number of sequences that can be aligned is to mix a set of sequences for which a reliable
alignment is known with sequences for which no reliable alignment is known. This was done
with OXBench to give the “extended dataset,” which had datasets of over 1000 sequences for
some families. PREFAB (Edgar 2004) was designed from the outset with this principle in mind.
PREFAB comprises 1682 reference alignments of two sequences, to which between 0 and 48
(median 48, mean 45.2) non-reference sequences are added. The software performs the align-
ment of the full set of (up to 50) sequences. However, the quality of the alignment can only
be evaluated based on the alignment of the two reference sequences. A general purpose scor-
ing program called qscore is available from the same web site that distributes PREFAB and
MUSCLE.

A benchmark that extends the number of sequences into the tens of thousands is HomFam
(Blackshields et al. 2010; Sievers et al. 2013). It is based on similar principles to PREFAB in that
it mixes a small number of sequences for which a reliable alignment is known with a large
number of homologous sequences for which no reliable alignment is known. The reference
alignments come from the Homstrad structure alignment database (Mizuguchi et al. 1998)
and the bulk of the sequences come from Pfam (Finn et al. 2014). The reference alignments
comprise between five and 41 sequences, while the number of Pfam sequences varies between
approximately 100 and 100 000. The 2013 HomFam dataset contains 95 families.

Recently, a new class of benchmarks has been devised that can test an aligner with arbitrarily
large numbers of sequences, relies on a small number of references, and assesses the alignment
of all sequences in the alignment (including non-reference sequences). The first such bench-
mark is ContTest (Fox et al. 2016). In ContTest, the MSA is used to detect the co-evolution of
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alignment columns and produce a contact map prediction (Marks et al. 2011). This contact
map prediction is then compared with the observed contact map of an embedded reference
sequence. The accuracy with which the predicted and the observed contact maps agree serves
as a proxy for the alignment quality. Co-evolution can only be detected if the information con-
tent of the alignment is large enough; that is, there should be at least as many sequences in
the alignment as there are residues in the reference sequences. In practice, the number of
sequences should be five times as large, so, for a typical protein domain, ContTest will not
work well for fewer than 1000 sequences.

Another such benchmark is QuanTest (Le et al. 2017). Here, the MSA is used to predict
secondary structure (Drozdetskiy et al. 2015), and then this predicted secondary structure
is compared with the true secondary structure of one or more of the embedded reference
sequences. In general, secondary structure prediction accuracy increases with the number of
aligned sequences, but useful predictions can already be made for 200 sequences. Therefore,
QuanTest is more applicable to smaller alignments than ContTest.

Making an Alignment: Practical Issues

Most automatic alignment programs such as the ones described in the next section will give
good quality alignments for sequences that are similar. However, building good multiple align-
ments for sequences that are highly divergent is an expert task even with the best available
alignment tools. In this section we give an overview of some of the steps to go through in order
to make alignments that are good for structure/function prediction. This is not a universal
recipe, as each set of sequences presents its own problems and only experience can guide the
creation of high-quality alignments.

The key steps in building a multiple alignment are as follows:

• Find the sequences to align by database searching or other means.
• Locate the region(s) of each sequence to include in the alignment. Do not try to multi-

ply align sequences that are very different in length. Most multiple alignment programs
are designed to align sequences that are similar over their entire length, so first edit the
sequences down to those regions that the sequence database search suggests are similar.
Some database search tools can be of assistance in identifying such regions (e.g. PSI-BLAST;
Altschul et al. 1997).

• Run the multiple alignment program.
• Inspect the alignment for problems. Take particular care over regions that appear to be

speckled with gaps. Use an alignment visualization tool (e.g. Jalview or SeaView; see View-
ing a Multiple Alignment) to identify positions in the alignment that conserve physicochem-
ical properties across the complete alignment. If there are no such regions, then look at
subsets of the sequences.

• Remove sequences that appear to seriously disrupt the alignment and then realign the subset
that is left.

• After identifying key residues in the set of sequences that are straightforward to align,
attempt to add the remaining sequences to the alignment so as to preserve the key features
of the family.

With the exception of the first step (database search), all of the above steps can be man-
aged within the Jalview program (see Viewing a Multiple Alignment), software that combines
powerful alignment editing and subsetting functions with integrated access to eight multi-
ple alignment algorithms. Alternatively, many of the programs described below can be run
from web sites where the user pastes a set of sequences into a window or uploads a file with
sequences in a standard file format. This works well for occasional use, and the use of many of
these web sites is relatively self-explanatory. In particular, we recommend the tools server at
the European Bioinformatics Institute (EBI), which allows for online usage of the most widely
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used MSA packages. Some servers have limits on the number of sequences that can be aligned
at one time or the user may need to make hundreds of alignments. In these cases, the user
can run these alignment programs locally on a server or a desktop computer. Familiarity with
the basic use of the Linux operating system then becomes important. All of the commonly
used alignment packages can be run using so-called “command-line input,” where the user
enters the name of the program (e.g. clustalo) at a prompt in a terminal window, followed
by instructions for input and output. Basic usage for Linux command-line operation is given
below for most of the commonly used multiple alignment packages.

Commonly Used Alignment Packages

Here, we describe how to make multiple alignments using a range of commonly used packages.
Summary information for downloading source code or for online usage is given in Internet
Resources.

Clustal Omega

Clustal Omega (Sievers et al. 2011) is the latest installment of the Clustal MSA suite for
use with amino acid and nucleotide sequences. It is an almost complete rewrite of its
predecessor, ClustalW2 (Larkin et al. 2007). The main improvements over ClustalW2 are that
Clustal Omega can align much larger numbers of sequences than ClustalW2 in a shorter
amount of time, producing alignments that are usually more accurate as measured by crystal
structure-based benchmarks, and that it can incorporate prior knowledge about the general
structure of the final alignment. Clustal Omega is a command-line-driven program that has
been successfully compiled for Linux, Mac, and Windows. Unlike its predecessor, Clustal
Omega does not have a graphical user interface (GUI), but this absence is mitigated by the exis-
tence of many very good alignment visualization programs such as SeaView (Gouy et al. 2010)
and Jalview (Waterhouse et al. 2009), as well as by online web servers such as the European
Molecular Biology Laboratory (EMBL)-EBI bioinformatic web and programmatic tools frame-
work, the Max Planck Bioinformatics Toolkit, and the Galaxy server of the Pasteur Institute.

Clustal Omega is a progressive aligner. A “guide tree” is used to guide the multiple align-
ment; this guide tree is calculated from a matrix of pairwise distances among the sequences.
For N sequences, this requires N ×N sequence comparisons and the storage of an N ×N
distance matrix. In the past, this step was usually the bottleneck that prevented conventional
aligners from aligning large numbers of sequences. Practical limits were of the order of
10 000 sequences or fewer. However, and by default, Clustal Omega does not calculate an
all-against-all distance matrix, but uses the mBed algorithm instead (Blackshields et al. 2010).
mBed calculates a distance matrix of all sequences against a small number of randomly
chosen “seed” sequences. The computational requirements of the mBed algorithm, therefore,
do not scale quadratically with N but rather as N × log(N). Clustal Omega uses the mBed
distance matrix to perform a k-means clustering of the sequences. By default, the cluster sizes
have an upper limit of 100 sequences. Small guide trees are generated for the clusters, and an
overarching guide tree is constructed for the clusters. The default upper cluster size was set
to 100 when typical alignment sizes did not routinely exceed 10 000, such that there would
be at most 100 clusters of size 100; for larger alignments, the cluster size can be adjusted by
setting the --cluster-size flag. Despite the apparent reduction in information owing to a
smaller distance matrix, alignments generated using an mBed guide tree are usually of equal
quality to (if not higher quality than) an all-against-all-based distance matrix. The mBed
mode can be turned off using the --full flag for a full distance matrix calculation.

In the main alignment step of the progressive alignment heuristic, individual sequences
are aligned to form subalignments, and small subalignments are aligned to each other to
form larger and larger subalignments. These pairwise alignments are carried out in Clustal



Commonly Used Alignment Packages 233

Omega using hhalign (Söding 2005). This program converts individual sequences and small
subalignments into hidden Markov models (HMMs), then aligns these HMMs in a pairwise
fashion.

Clustal Omega’s file input/output process uses Sean Eddy’s squid library, allowing it to read
and write several widely used sequence formats such as a2m/FASTA, Clustal, msf, PHYLIP,
selex, Stockholm, and Vienna. The default output format is FASTA. A minimum Clustal
Omega command line would be written as follows:

clustalo -i <infile> -o <outfile>

where <infile> is a placeholder for a file containing sequences to be aligned in one of
the recognized file formats and <outfile> is a placeholder for the file where the aligned
sequences will be stored in FASTA format.

Iteration Clustal Omega has the ability to iteratively refine an alignment. In the initial
alignment phase, distances are based on k-mers of unaligned sequences. During the iterative
refinement, distances will be based on a full alignment. The hope is that these full alignment
distances are a better reflection of the sequences’ similarity and will, therefore, produce a
“better” guide tree that will, in turn, produce a better alignment. Clustal Omega also converts
the initial alignment into an HMM that is then aligned in the background to the individual
sequences and subprofiles so that Clustal Omega can “anticipate” how and where the other
sequences will align to it. The actual method for “anticipating” is to transfer pseudocount
information from the HMM of the initial alignment to the sequences and subalignments
that have to be realigned; this process is described in greater detail in Sievers et al. (2011).
Sequence alignment is particularly vulnerable to misalignment during the early stages of
progressive alignment, and the pseudocount transfer to individual sequences and small
subalignments can, therefore, be large. As the subalignments grow during the latter stages
of progressive alignment, enough “real” information should have accumulated so that the
pseudocount transfer can be scaled back. For subprofiles of 100 or more sequences, there is
effectively no pseudocount transfer. Alignments can be refined an indefinite number of times;
however, experience has shown that one or two iterations produce a good improvement in
alignment quality. More than two iterations are rarely useful and should be applied on a
case-by-case basis. The minimum command for performing an iterative alignment is written
as follows:

clustalo -i infile.fa -o outfile1.fa --iter=1

where infile.fa and outfile1.fa are the names of the FASTA-formatted input and
output files, respectively.

Keep in mind that the use of iteration comes with a performance penalty. For each round
of iteration, three additional alignments have to be performed: the first and the second
subalignments have to be aligned with the background HMM, and then two subalignments,
augmented with pseudocount background information, have to be aligned themselves.
An alignment using one round of iteration takes roughly four times as long as the initial
alignment, and an alignment using two rounds of iteration should take roughly seven times
as long as the original alignment.

During iteration, a preliminary alignment is converted into an HMM, and this HMM is then
used to produce a higher quality alignment. HMM information can be generated externally.
If the type of sequences to be aligned is known, then there may already exist a pre-calculated
HMM. For example, Pfam (Finn et al. 2016) contains a large collection of protein families,
alignments, and their HMMs. If it is known that the sequences to be aligned are homologous
to a family in Pfam, then the corresponding HMM can be downloaded from Pfam and used as
an additional command-line argument:

clustalo -i infile.fa -o outfile4.fa --hmm-in=pfam.hmm
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Figure 8.3 Aligner accuracy versus total single-threaded run time using the BAliBASE3 benchmark.
Times are sums of and total column (TC) scores are averages over all 218 test alignments. X-axis (time)
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points are for Clustal Omega (i1: more accurate mode), MUSCLE (i2: fast mode), and PASTA (m, MUSCLE
as subaligner; w, ClustalW2 as subaligner). Data points correspond to columns 8 and 9 in Table 8.1.

where pfam.hmm is an HMM downloaded from Pfam that contains alignment information
from a protein family homologous to the sequences contained in infile.fa. Alterna-
tively, the HMM could be generated from a locally produced alignment using HMMER
(Finn et al. 2011).

Benchmarking Clustal Omega When assessing the performance of a multiple sequence aligner,
several issues should be considered. Can the alignment software handle the number of input
sequences? How long does the alignment process take? Can the alignment be extended to
larger numbers of sequences, or to longer sequences? How accurate are the alignments, when
compared with standard alignments of sequences of known three-dimensional structure? Dif-
ferent aligners perform differently in all of these respects. Some are very fast with small sets of
sequences but take impractical amounts of time when the number of sequences grows beyond
a few hundred. Some of these slow aligners can, however, be very accurate when tested on
benchmarks. In contrast, some aligners can handle extremely large datasets, but at the expense
of some accuracy. In this section, Clustal Omega is compared with some widely used alignment
packages with regard to computer time and alignment accuracy and also the ability to handle
long or many sequences. Detailed descriptions of the alignment packages and how to use them
are given in the following sections. In Figure 8.3 and Table 8.1, results are shown using the
well-established BAliBASE3 benchmark (Thompson et al. 2005). Here, accuracy is measured
as the proportion of alignment columns in 218 benchmark alignments and is given as the TC
score in the table. Clustal Omega is neither the fastest nor the most accurate alignment pack-
age, but it is more accurate than all of the faster aligners, including L-INS-i from the MAFFT
package (Katoh et al. 2005a,b), the only aligner that achieves a higher TC score (Figure 8.3).
Figure 8.3 gives total times and overall accuracy scores for BAliBASE3. BAliBASE3 is divided
into subcategories of alignment types and the individual results for these are given in Table 8.1.

The performance measures in Table 8.1 are for a dataset of fixed size. Figure 8.4 plots
the run times of various MSA algorithms against the number of sequences to be aligned
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Table 8.1 Aligner performance on BAliBASE3 benchmark.

BALiBASE reference set Memory

Aligner BB11 BB12 BB2 BB3 BB4 BB5 all Time RSS ss

ClustalO 0.36 0.79 0.45 0.58 0.58 0.53 0.55 00 h:04 m:25 s 959 060 55 961
ClustalO-i1 0.36 0.79 0.45 0.59 0.59 0.55 0.56 00 h:24 m:53 s 3 442 156 106 888
ClustalW2 0.22 0.71 0.22 0.27 0.40 0.31 0.37 00 h:09 m:58 s 8 032 3 852
DIALIGN 0.27 0.70 0.29 0.31 0.44 0.43 0.42 00 h:47 m:28 s 56 912 7 350
Kalign 0.37 0.79 0.36 0.48 0.50 0.44 0.50 00 h:00 m:24 s 7 260 2 776
L-INS-i 0.40 0.84 0.46 0.59 0.60 0.59 0.58 00 h:30 m:01 s 703 524 43 695
MAFFT 0.29 0.77 0.33 0.42 0.49 0.50 0.47 00 h:00 m:50s 461 668 35 950
PartTree 0.28 0.76 0.30 0.40 0.45 0.50 0.45 00 h:00 m:57 s 448 524 19 421
MUSCLE 0.32 0.80 0.35 0.41 0.45 0.46 0.48 00 h:07 m:48 s 78 608 15 892
MUSCLE-i2 0.27 0.76 0.33 0.38 0.43 0.43 0.45 00 h:01 m:47 s 78 780 15 860
PASTA(w) 0.24 0.71 0.23 0.23 0.37 0.34 0.37 01 h:08 m:49 s 317 112 58 703
PASTA 0.35 0.78 0.45 0.50 0.51 0.52 0.53 01 h:45 m:08 s 664 336 65 448
PASTA(m) 0.30 0.78 0.31 0.35 0.44 0.39 0.44 01 h:10 m:43 s 323 936 62 038
PRANK 0.24 0.68 0.25 0.35 0.36 0.39 0.39 35 h:55 m:53 s 468 692 36 742
T-Coffee 0.41 0.86 0.40 0.47 0.55 0.59 0.55 05 h:48 m:46 s 1 870 536 192 504

38 44 41 30 49 16 218

Columns 2–7 (BB11–B5) average total column (TC) scores for hierarchical reference sets; column 8 (all) TC
scores averaged over all 218 test alignments. Column 9 (time) total (single threaded) run time for all 218 test
alignments. Column 10 (RSS) maximum memory requirements; column 11 (rss) average memory
requirement. Columns 8/9 (all/time) are represented in Figure 8.4. Last row gives numbers of test alignments
in each hierarchical set.
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for three sets of sequences of different lengths, taken from Pfam (Finn et al. 2014). The
bars correspond to results for a very short protein domain (zf-CCHH, average length 23
amino acids), a medium-length domain (rvp, average sequence length 93), and a long
protein domain (RuBisCO_large, length 248). The results in Figure 8.4 are represented as a
double-logarithmic plot. Shallow curves scale favorably; that is, an increase in the number
of sequences being aligned will only result in a moderate increase in calculation time. Steep
curves scale unfavorably, with calculation times increasing rapidly when using larger and
larger sequence sets. Results for Clustal Omega are represented by red bars (zf-CCHH at
the bottom, RuBisCO_large at the top) and bullets (rvp). For datasets of 20–1000 sequences,
Clustal Omega is slower than Kalign (magenta bullets), default MAFFT (dark blue bullets),
or fast MUSCLE (green squares). Owing to its more favorable scalability, Clustal Omega
overtakes fast MUSCLE and Kalign at N = 2000 and default MAFFT at N = 20 000. MAFFT
PartTree (dark blue squares) is consistently faster than Clustal Omega over all datasets.

Both main stages of the progressive alignment heuristic (that is, the distance calculation
and the pairwise alignment) have been parallelized in Clustal Omega. An alignment may be
distributed among the different cores of one computer but not among different computers.
Distance matrix calculation is an easily parallelizable task. The pairwise alignment stage, on
the other hand, is difficult to parallelize effectively. As can be seen in Figure 8.5, good speed-up
for Clustal Omega is attainable for two, three or four threads, but more threads are only useful
if the number of sequences is very large. Parallelization in Clustal Omega is “thread-safe,” with
an alignment generated using one thread guaranteed to be the same as when using more than
one thread.

ClustalW2

ClustalW2 (Larkin et al. 2007) is the predecessor of Clustal Omega and is derived from a series
of programs dating back to the 1980s. It is usually slower than Clustal Omega, it cannot align as
many sequences, and its alignments are often of lower quality. It also cannot be spedup by using
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multiple threads. Since 2010, its code base has been frozen, and ClustalW2 is no longer under
active development. While ClustalW2 is still available as an online tool at the Pasteur Galaxy
server, it is no longer provided as a tool by the EBI or the Max Planck Bioinformatics Toolkit.
ClustalW2 is part of several Linux distributions (e.g. Ubuntu, with code and executables avail-
able from the Clustal web site). ClustalW2 is included here because it is still very widely used
and the GUI makes it a very easy and intuitive program to use. Unlike Clustal Omega, it can
be run interactively in a terminal or with a GUI, known as ClustalX. Here, however, we will
only describe the use of ClustalW2 from the command line.

ClustalW2 is also a progressive aligner and always calculates a full N × N distance matrix,
where N is the number of sequences to be aligned. This effectively limits the number of
sequences that can be aligned by ClustalW2 in a reasonable amount of time. Here, we did not
attempt to align more than 5000 sequences. The “W” in the name ClustalW derives from the
weighting scheme for down-weighting over-represented sequences.

ClustalW2 automatically recognizes seven sequence file formats as input: NBRF-PIR,
EMBL-SWISSPROT, Pearson (FASTA), Clustal, GCG-MSF, GCG9-RSF, and GDE. Alignment
output is by default in Clustal format but GCG, NBRF-PIR, PHYLIP, GDE, NEXUS, or FASTA
can be selected. A minimal ClustalW2 command line would be written as follows:

clustalw2 -INFILE=infile.fa

This will read the sequences in infile.fa, detect the file format, guess whether the
sequences are nucleotide or protein, align the sequences, and write the alignment in Clustal
format into a file infile.aln. The stem of the input file name (in this example ‘infile’)
is retained, the file extension (in this example ‘.fa’) is dropped and the extension ‘.aln’
is appended. ClustalW2 also outputs by default the guide tree in Newick format to a file
that ends with ‘.dnd’. A progress report, specifying distances of unaligned sequences
and intermediate subalignment scores, is printed to standard output. For large numbers of
sequences, this can be time and memory consuming and may be suppressed by setting the
-QUIET flag. If the alignment should be written to a file with a name different than the default
name, then this can be specified by setting the -OUTFILE flag. The output format can be
specified by setting the -OUTPUT flag, as shown in the following command:

clustalw2 -INFILE=infile.fa -OUTFILE=output.a2m -OUTPUT=fasta

Here, the alignment of unaligned sequences in infile.fa will be written to a file
output.a2m in FASTA format.

On the standard protein benchmark BAliBASE3, ClustalW2 exhibits a medium speed that is
slower than Clustal Omega, default MAFFT, and Kalign. Its execution time is roughly the same
as default MUSCLE but it is faster than PRANK, T-Coffee, and PASTA. However, its accuracy,
as measured by the TC score, is the worst of all the aligners considered here, as can be seen in
Figure 8.3.

ClustalW2 is, for small numbers of sequences, one of the most memory frugal aligners in
this comparison. Its time and memory requirements, however, grow with the square of the
number of sequences. Therefore, we could not extend the range of sequence numbers beyond
5000 on our benchmark machine with 8GB of RAM, as can be seen from the orange circles in
Figure 8.4.

DIALIGN

The progressive alignment algorithm is appropriate if the sequences to be aligned are clearly
alignable over their full lengths. However, if sequences only share local similarities and are
otherwise unrelated, then this may not be suitable. For example, sequences which share one
short protein domain but which are otherwise completely unrelated will be difficult to align
with the standard progressive aligners such as Clustal Omega. DIALIGN (Morgenstern et al.
1998) does not attempt to match up individual residues but rather segments of residues. These
segments are free from gaps and have the same lengths in all sequences to be aligned. While
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there are no gaps within the segments, mismatches are allowed. Segments of different lengths
are considered, but a lower threshold of 10 is normally used. Multiple segments are aligned if
this can be done consistently – that is, where no segment is aligned to more than one segment
in another sequence and where all segments in all sequences are in the same order. This con-
sistency scheme pre-dates the one implemented in T-Coffee (Notredame et al. 2000). A typical
command line for DIALIGN is
dialign2 -fa input.in

where input.in is the file that contains the unaligned sequences to be aligned. Aligned
output is written to a file with the same name as the input file and an added extension ‘.fa’.
Using the BAliBASE3 benchmark dataset, DIALIGN is faster than T-Coffee, PASTA, and
PRANK but slower than all the other aligners. TC scores for DIALIGN are relatively low, but
they outperform ClustalW2 and PRANK. DIALIGN’s run time requirements are the highest
for all the aligners (Figure 8.4). DIALIGN’s memory requirements are initially low, but appear
to grow quadratically with the number of sequences (Figure 8.5). A version of DIALIGN has
been parallelized (Schmollinger et al. 2004).

Kalign

Kalign2 (Lassmann and Sonnhammer 2005) is a progressive MSA program. It establishes the
distances necessary for generating the guide tree by using the Muth–Manber string-matching
algorithm (Muth and Manber 1996). This appears to be the fastest distance calculation algo-
rithm of all the programs considered here. Distance matrix calculation in Kalign2, however,
scales quadratically with the number of sequences. Kalign2 offers support for Clustal, PileUp,
MSF, Stockholm, UniProt, Swiss-Prot, and Macsim alignment formats.

A minimum Kalign2 command line is written as follows:
kalign -in input.fa -out output.fa

This command will write the alignment of unaligned sequences in input.fa into out-
put.fa in default FASTA format. Additionally, a progress report is written to standard output.

Using the BAliBASE3 benchmark, Kalign2 is by far the fastest of the programs considered
here. Its accuracy, as measured by the TC score, is better than the default versions of MAFFT,
MUSCLE, or ClustalW2, but not as high as L-INS-i, Clustal Omega, or T-Coffee (Figure 8.3).
With between four and 142 sequences (median 21 sequences), however, BAliBASE3 is a rela-
tively small benchmark. For larger sequence numbers, Kalign’s scalability outweighs its effi-
cient implementation and is overtaken in terms of speed by MAFFT (for 1000 sequences),
MUSCLE in fast mode, Clustal Omega (for 2000 sequences), and PASTA (for 20 000 sequences).

MAFFT

MAFFT (Katoh et al. 2005a,b) is a collection of different executables, managed by a script
that selects a range of multiple aligners depending on the number of sequences, the desired
accuracy, and available computational power. Here we will focus on (i) the general purpose
default MAFFT aligner FFT-NS-i for medium to large datasets, (ii) the more accurate but
slower L-INS-i for small datasets of a few hundred sequences, and (iii) PartTree, which can
deal with overwhelmingly large numbers of sequences.

When MAFFT is run without specifying a particular aligner, it runs in default mode. In
default mode, MAFFT recodes an amino acid sequence as a sequence of tuples, compris-
ing the residues’ volume and polarity. The correlation of the volumes and polarities of two
sequences can be efficiently calculated, using a fast Fourier transform (FFT). This way, homol-
ogous sections of the sequences are identified. These parts are then aligned using conven-
tional dynamic programming. This algorithm is referred to as FFT-NS-1. In default mode,
MAFFT repeats this process one more time (referred to as FFT-NS-2) and then employs an
iterative refinement, which finally constitutes FFT-NS-i. The MSA produced during FFT-NS-2
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is gradually refined by repeated pairwise alignment of randomly partitioned groups in the
sequences. L-INS-i uses iterative refinement, as well as alignment consistency (Notredame
et al. 2000), a technique that measures consistency between the multiple alignment and pair-
wise alignments. This approach can be very accurate but, in general, scales cubically with the
number of sequences. It is, therefore, mostly applicable to smaller problems. On the other
hand, PartTree is a fast method that quickly constructs a guide tree, allowing it to handle
datasets of many thousands of sequences.

Default MAFFT A minimum default MAFFT command line is written as follows:
mafft input.fa > output.fa

MAFFT does not accept non-standard amino acid symbols, such as ambiguity codes. If any
such symbols are among the sequence information, then the --anysymbol flag should be
set. Diagnostic output (to standard error) can be suppressed by setting the --quiet flag.

On BAliBASE3, default MAFFT is the second fastest aligner after Kalign2, with a TC score
slightly below Kalign2, comparable to default MUSCLE, and much higher than ClustalW2.
Memory consumption is consistently high. All MAFFT strategies have been parallelized, and
speed-up is good for up to four threads. Beyond that, useful speed-up is achieved only for very
large numbers of sequences. Default MAFFT is thread-safe, i.e. an alignment generated using
one thread is guaranteed to be the same as when using more than one thread. This means that
alignments are repeatable in multi-thread mode.

L-INS-i L-INS-i is the high-accuracy MAFFT program and, consequently, has lower through-
put than the default version. A minimum MAFFT L-INS-i command line can be written in one
of two ways:
linsi input.fa > output.fa

or
mafft --localpair input.fa > output.fa

Of all the programs considered here, MAFFT L-INS-i attains the highest TC score on the
BAliBASE3 benchmark (Figure 8.3). Its execution time is slower than MUSCLE and Clustal
Omega, comparable to one iteration of Clustal Omega, and faster than either T-Coffee or
PASTA. The speed-up for multi-threaded execution of MAFFT L-INS-i is the best of all the
programs. However, MAFFT L-INS-i is not thread-safe. This means that the results of runs
using different numbers of threads can differ. Even results using the same number of threads
may differ for different runs.

PartTree The minimal MAFFT PartTree command line is written as follows:
mafft --parttree input.fa > output.fa

PartTree is the high-throughput MAFFT program and is not expected to do well on a small
benchmark like BAliBASE3. It is slower and less accurate than the MAFFT default version.
The data in Figure 8.4 show that PartTree is consistently the fastest aligner for more than 200
sequences. Clustal Omega has a similar scalability (Figure 8.4) but has a higher overhead.
PartTree is also the most memory-efficient algorithm for more than 2000 sequences. Guide
trees can be written in all versions of MAFFT by setting the --treeout flag. In PartTree,
however, the sequence identifiers are replaced by the integer index of the position in which
the sequence appears in the input file. PartTree guide trees also may contain multi-furcations.
As in all versions of MAFFT, external guide trees may be read in, however, the file format
is exclusive to MAFFT. The input has to be generated from a guide tree in standard format
using a utility program called newick2mafft.rb; this program is part of the MAFFT distribution.
PartTree is thread-safe; however, there is no useful speed-up for more than one thread.
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MUSCLE

MUSCLE (Edgar 2004) is a progressive MSA program. During a first stage, it calculates a dis-
tance matrix of the unaligned sequences, based on a fast k-tuple vector comparison. These dis-
tances are then clustered using UPGMA cluster analysis (Sokal and Michener 1958). This stage
produces a first alignment, which can then be improved upon in a second iterative step. This
step is similar to the first, the only difference being that alignment-based distances (Kimura
1983) are used instead of k-tuple vector comparisons. During a subsequent round of iterative
refinements, the second-stage alignment can be improved upon by cutting the second-stage
guide tree into two parts, realigning the sequences in each subtree, and aligning the two sub-
profiles (called tree-dependent restricted partitioning). The new alignment is accepted if its
alignment score is improved. These refinements are, by default, carried out 14 times, leading
to overall 16 rounds of alignments.

A minimal MUSCLE command line is written as follows:
muscle -in input.fa -out output.fa

This command will carry out the initial two rounds of alignment (both k-tuple and alignment
distance based), followed by 14 rounds of iterative refinement. If the number of sequences is
large, the iterative refinement can be skipped by including an additional term in the command
specifying the maximum number of iterations:
muscle -in input.fa -out output.fa -maxiters 2

Using the BAliBASE3 benchmark, default MUSCLE has an accuracy (as measured by the
TC score) that is comparable to that of default MAFFT; it is slightly faster than ClustalW2 and
slightly slower than Clustal Omega. Fast MUSCLE, with only the first two alignment phases,
is roughly one order of magnitude faster than its default version. Using BAliBASE3, it is faster
than Clustal Omega but still not as fast as default MAFFT or Kalign2. Its accuracy, however,
falls off with respect to the default version. In the large-scale tests in Figure 8.4 MUSCLE
exceeded the memory available in our test bed for 5000 and 20 000 sequences for default and
fast mode, respectively. The run times for fast MUSCLE start off faster than Clustal Omega
and slower than Kalign2 but overtake Kalign2 in terms of speed and are, in turn, overtaken
by Clustal Omega for 2000 sequences. As the iterative refinement re-partitions the guide tree
but does not regenerate it, guide trees are always the same for the default and the fast version.
There is no parallel version of MUSCLE.

PASTA

PASTA (Practical Alignments using SATé and TrAnsitivity; Mirarab et al. 2015) is a Python
script that calls existing software packages, such as SATé (Liu et al. 2009), MAFFT, MUSCLE,
ClustalW, HMMER (Eddy 2009), OPAL (Wheeler and Kececioglu 2007), and FastTree-2 (Price
et al. 2010), and combines their results. In a first step, a small number of sequences is ran-
domly selected from the input dataset and aligned. The default aligner for PASTA is MAFFT
L-INS-i. This initial alignment is called the “backbone” and is converted into an HMM using
HMMER. The remaining sequences are aligned onto this HMM. An initial maximum like-
lihood (ML) tree is constructed from this alignment using FastTree. The sequences are then
clustered according to this tree, such that the cluster size is small. The clusters are then aligned
using the default aligner to form subalignments. Subalignments that are “adjacent” in the over-
all spanning tree are aligned using OPAL to form subalignment pairs. Different subalignment
pairs are merged to produce the overall alignments.

PASTA expects nucleotide sequence input, by default. For protein sequences, a minimal
PASTA command line would be written as follows:
python run_pasta.py --input=input.fa --datatype=Protein

Using the BAliBASE3 benchmark, default PASTA is faster than T-Coffee and PRANK but
slower than all the other aligners. PASTA’s accuracy intimately reflects the accuracy of the
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underlying subalignment software. This aligner can be changed by specifying, for example,
--aligner=muscle or --aligner=clustalw2. PASTA alignments are more accurate if
a more accurate aligner such as L-INS-i is used, as in the default. They are of medium quality
if an aligner such as MUSCLE is used, and PASTA produces the worst alignments if ClustalW2
is used. For BAliBASE3, PASTA alignments, however, never quite reach or exceed the qual-
ity of the underlying subalignment software. This can be seen in Figure 8.3, with the PASTA
data points being to the right (slower) and below (less accurate) the points of its correspond-
ing subaligner. This is not surprising, as it has been demonstrated using alignments of small
numbers of protein sequences that ML phylogenetic trees are not necessarily good guide trees
and frequently are decidedly bad guide trees (Sievers et al. 2014).

PASTA, however, was not designed for aligning small numbers of sequences. Using the
large-scale benchmark data, it starts off (at 20 sequences) as the second slowest aligner after
PRANK but, because of its favorable time scalability, it overtakes L-INS-i at 500 sequences,
default MUSCLE and ClustalW2 at 5000 sequences, and Kalign2 at 20 000 sequences. Its mem-
ory consumption scales similarly.

PASTA has been parallelized. By default, it tries to use all available threads. The number of
threads can be changed by specifying an argument for the --num_cpus flag. PASTA demon-
strates a good speed-up as the number of threads is increased; this effect becomes even more
pronounced as the number of sequences is increased, as can be seen in Figure 8.5. However,
the version of PASTA examined here is not thread-safe. This means that alignments can differ
depending on the number of threads. Probably even more disconcertingly, alignments can-
not be recreated using more than one thread. This is true in PASTA’s default mode, which uses
non-thread-safe L-INS-i, and also if MUSCLE, which is single-threaded only, is used as the sub-
aligner. For the latter, in one particular example, alignment lengths can vary from 159 to 183 if
the same 100 rvp sequences (average length 106.5, longest sequence 124) are aligned 10 times
using three threads. In this example, the TC scores of the core columns of the six rvp reference
sequences vary between 0.433 and 0.556. Therefore, one should always set --num_cpus=1
so that results are reproducible.

PRANK

In a pairwise alignment of two single sequences, one cannot decide if a gap in one sequence
is caused by a deletion in this sequence or by an insertion in the other sequence. In an MSA,
however, such a distinction may become important, especially for phylogenetic analysis. Most
progressive aligners underestimate the true number of insertion events and can give rise to
artificially short alignments. PRANK (Löytynoja and Goldman 2005) tries to account for this
fact by performing a phylogeny-aware gap placement. This makes PRANK potentially useful
for sequences where one is interested in carefully estimating the locations of all gaps. It can-
not properly be tested by the type of structure-based benchmarks described here, and its low
performance does not mean it is not useful in other situations.

A minimum command line for PRANK is written as follows:

prank -d=infile.fa -o=outfile -f=fasta

Using the BAliBASE3 benchmark, PRANK is the slowest aligner and, with the exception of
ClustalW2, the one that attains the lowest TC score (Figure 8.3). This is unsurprising, as con-
ventional, structure-based benchmarks reward compact alignments and possibly do not penal-
ize over-alignment sufficiently. It should be noted that PRANK only reads standard IUPAC
codes (unique letters for each amino acid or base) and replaces all non-IUPAC characters (like
ambiguity codes) with N or X. Comparing the alignment with the unaligned data or with a
reference alignment can, therefore, lead to discrepancies.

The scalability benchmark shows that PRANK is a slow aligner for small numbers of
sequences. However, PRANK’s time complexity is one of the lowest of all the aligners: after
100 sequences PRANK overtakes T-Coffee, and after 1000 sequences it overtakes MAFFT
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L-INS-i (Figure 8.4). Its memory requirements follow a similar trend and are predicted to
exceed the available memory of this test bed after 5000 sequences.

T-Coffee

T-Coffee started as a progressive alignment heuristic method for optimizing the Coffee objec-
tive function for MSA (Notredame et al. 1998). That function finds the MSA that maximizes the
sum of weighted pairwise matches between residues from different sequences. Those pairwise
matches can come from pairwise alignments, existing MSAs, corresponding residues from pro-
tein structure superpositions, or aligned residues from RNA structure alignments. That makes
it possible for T-Coffee to merge alignment information from unaligned sequences, different
MSA packages, structure alignments, or a mixture of these. In Notredame et al. (2000), MSA
consistency was first described, where pairwise residue matches between sequences that agree
with pairwise matches from other pairs get increased weight. This helps to get around the
inherently greedy nature of progressive alignment and was shown to give very accurate align-
ments. Consistency has since been incorporated into the Probcons (Do et al. 2005) and MAFFT
(Katoh et al. 2005a,b) packages. It adds to the computational complexity of the alignment
and is mainly suitable for aligning less than 1000 sequences but it greatly increases alignment
accuracy.

A minimum command line for T-Coffee is written as follows:

t_coffee -in infile.fa -output fasta

This command will produce an alignment file named infile.fasta_aln in FASTA
format.

Using the BAliBASE3 benchmark, T-Coffee is the second slowest aligner after PRANK. Its
average TC score, however, is among the highest, beating PASTA, Kalign, and MUSCLE, as
shown in Figure 8.3. T-Coffee’s average memory consumption is the highest. As T-Coffee
is based on the principle of consistency, its time complexity with respect to the number of
sequences is expected to be high. We could not extend the sequence range beyond 1000 as
T-Coffee exhausted the available 8GB of RAM. In terms of parallelization, T-Coffee is com-
pletely thread-safe. This means that alignments do not depend on the number of processors,
which can be set by specifying the -n_core flag. Alignments are also reproducible. T-Coffee
is, therefore, the aligner with the best parallel speed-up while still being thread-safe.

Viewing a Multiple Alignment

It is very difficult to view an MSA without using visualization software to emphasize some
features of the alignment. For example, conserved columns or motifs can be emphasized by
using different fonts or colors or shading. Further, an alignment can be annotated by show-
ing structural or functional features in different regions. There are some dedicated alignment
viewing packages and packages which include very good viewing capabilities, and we mention
some widely used ones below (see Internet Resources). Two of these packages (SeaView and
Jalview) also include extremely powerful capabilities for editing an MSA.

Clustal X

Clustal X (Thompson et al. 1997) was created by taking the pre-existing Clustal W package
(Thompson et al. 1994) and adding a GUI that was portable across all widely used operating
systems. The alignment engine is identical in the two packages, and both were developed and
maintained afterwards in parallel. The unaligned or aligned sequences are shown in a scrol-
lable window with a default coloring scheme that emphasizes residues that are well conserved
in columns. Clustal X includes tools for manipulating the alignment display by user-adjustable
coloring schemes, font sizes, and options for highlighting poorly conserved blocks, columns,
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or sequences. Alignments can also be produced as high-quality PostScript files for publication.
These coloring facilities work best for amino acid sequences, but nucleotide sequences can also
be viewed. Clustal X is no longer actively developed but it is still freely available and widely
used owing to its portability, robustness, and ease of use. It is available as a desktop application
for all widely used operating systems.

Jalview

The Jalview open-source MSA editor and analysis workbench works on the Windows, Mac,
and Linux platforms (Waterhouse et al. 2009). Jalview focuses on multiple alignments and
functional analyses at the gene, protein, or RNA family level rather than on whole genomes.
In addition to sophisticated interactive multiple alignment editing functions for DNA, RNA,
and protein sequences, including “undo,” multiple “views,” and the ability to subset and
“hide” sequences and columns of an alignment, Jalview provides linked views of trees, DNA
and protein sequences, protein three-dimensional structures via Jmol or Chimera (Pettersen
et al. 2004), and RNA secondary structure via VARNA (Darty et al. 2009). Two examples
are shown in Figure 8.6 : a protein alignment, with linked protein structure displays, and an
RNA alignment, linked to an RNA secondary structure display. Jalview connects to major
public databases of sequences, alignments, and three-dimensional structures to allow easy
access to these resources and sequence annotations (e.g. active site descriptions). Jalview
supports a wide range of annotation methods both on individual sequences and calculated
from alignment columns to be displayed on or under the alignment. It also includes a split
DNA/RNA/protein view that links DNA alignments and the associated protein sequence
alignments to be edited and analyzed together; an example is shown in Figure 8.7. This
view also permits the mapping of population variation data single-nucleotide polymor-
phisms (SNPs) and other genomic features such as gene exons to protein sequences and
three-dimensional structure. For example, a Jalview user can look up proteins in UniProt,
then cross-reference them back to the full gene and transcripts in Ensembl to see any known
SNPs on the alignment, then view the three-dimensional protein structures and location of
SNPs (if available) with a few clicks of the mouse.

In order to make alignments, Jalview includes direct access to eight popular multiple align-
ment algorithms and allows users to modify the parameters for each method (Troshin et al.
2011). Thus, users can interactively align, realign, and compare alignments generated by dif-
ferent methods and parameter combinations. Jalview also provides direct access to the JPred
protein secondary structure prediction algorithm (Drozdetskiy et al. 2015) to predict protein
secondary structure and solvent accessibility from either a single sequence or a multiple align-
ment. Jalview includes four protein disorder prediction algorithms and the RNAalifold pro-
gram (Bernhart et al. 2008) that predicts RNA secondary structure from RNA multiple align-
ments via JABAWS2.2. For conservation analysis, there are 17 different amino acid conserva-
tion score methods, as well as the SMERFS functional site prediction algorithm available in
Jalview via the AACon package. The Jalview web site includes training materials and manu-
als while the online training YouTube channel provides more than 20 short video tutorials on
basic and advanced features of Jalview.

SeaView

SeaView (Galtier et al. 1996) is an MSA editor that is especially useful for linking views of an
alignment to MSA and phylogenetic packages. It works with either nucleotide or amino acid
alignments. SeaView reads and writes a large variety of MSA file formats and can directly
call MUSCLE or Clustal Omega to create an MSA. Users can then edit the alignment and
call the Gblocks filter program to remove poorly aligned regions. The package can calculate
phylogenetic trees using various methods including maximum parsimony (using Protpars
from the PHYLIP package; Felsenstein 1981), neighbor joining (Saitou and Nei 1987), or ML



Figure 8.6 Protein and RNA multiple sequence alignments as visualized using Jalview. The left panes illustrate protein multiple alignments with different feature coloring, tree, and
Jmol molecular structure views. All windows are linked, so clicking on a residue or sequence in one window will highlight the corresponding residue or sequence in all other windows.
On the right, an RNA multiple alignment is illustrated, with corresponding secondary structure information displayed in VARNA.



Figure 8.7 Linked coding sequence (CDS), protein, and three-dimensional structure views visualized in Jalview, showing the positions of known single-nucleotide polymorphisms
(SNPs). A text search was used in Jalview to find a set of related protein sequences in UniProt. Jalview then cross-referenced these sequences to CDS data found in Ensembl. The protein
sequences were multiply aligned by Clustal Omega. Finally, the three-dimensional structure of one of the proteins was displayed in the linked Chimera application. Red and green
positions in the alignment highlight the location of known SNPs retrieved from Ensembl.
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using Phyml (Guindon and Gascuel 2003). SeaView is a very direct and robust way to go from
unaligned sequences to a full phylogenetic analysis under a single framework.

ProViz

ProViz (Jehl et al. 2016) is a recently re-released package for viewing pre-made alignments of
protein sequences with superimposed annotation of features, especially functional domains.
The alignments and links to databases of functional information are pre-computed, and the
viewer displays information about the sequences from a range of sources in an integrated fash-
ion. ProViz can be run online or can be downloaded and run locally. The easiest starting point
for viewing is by using the ID, name, or keyword for a protein or gene of interest; the viewer will
then show alignments containing that protein. Users can also input their own protein sequence
or multiple alignment. The data sources used by ProViz are listed in Internet Resources.

Summary

MSAs of even quite large datasets of thousands of sequences can be carried out quickly online
or using Linux-based laptop and desktop computers. These are used in a great variety of further
analyses and crop up in almost all phylogenetic and many structural analyses or investigations
of sequence similarity. There are many packages available and none of them can be said to give
the “best” alignments in all cases; they all use a variety of computational shortcuts, just to make
the computations tractable. Different packages have different strengths and weaknesses, and
the best solution is to look at the alignments themselves using an alignment viewer and to try
different programs out. Some web sites and some alignment-viewing packages support several
of the most widely used programs while maintaining a consistent interface. That makes the
task of trial and comparison easier. By far, the most important consideration is the nature and
quality of the input sequences. They must be sufficiently similar so that they can be aligned;
keep in mind that the more fragmentary or outlier sequences that are included, the more frag-
mented will be the alignment. Clean datasets will give clean alignments that will be easy to
view by eye and easy to analyze.

Internet Resources

Multiple sequence alignment versions

Clustal Omega v1.2.3 www.clustal.org/omega EMP
ClustalW2 v2.1 www.clustal.org/clustal2 --P
DIALIGN v2.2.2 dialign.gobics.de ---
Kalign v2.04 msa.sbc.su.se/cgi-bin/msa.cgi ---
MAFFT v7.309 mafft.cbrc.jp/alignment/software EMP
MUSCLE v3.8.31 www.drive5.com/muscle EMP
PASTA v1.6.4 github.com/smirarab/pasta ---
PRANK v.150803 wasabiapp.org/software/prank E--
T-Coffee 11.00.8cbe486 www.tcoffee.org/Projects/tcoffee/index.html EMP

Availability at three sites for online usage (EMP) at EBI (E, www.ebi.ac.uk/services), MPI for
Genetics in Tübingen (M, toolkit.tuebingen.mpg.de), and the Pasteur Institute Galaxy server
(P, galaxy.pasteur.fr).

http://www.clustal.org/omega/
http://www.clustal.org/clustal2/
http://dialign.gobics.de/
http://msa.sbc.su.se/cgi-bin/msa.cgi
http://mafft.cbrc.jp/alignment/software/
http://www.drive5.com/muscle/
https://github.com/smirarab/pasta
http://wasabiapp.org/software/prank/
http://www.tcoffee.org/Projects/tcoffee/index.html
http://www.ebi.ac.uk/services
https://toolkit.tuebingen.mpg.de/
https://galaxy.pasteur.fr/
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Multiple sequence alignment visualization packages

ClustalX Desktop MSA version of Clustal W www.clustal.org
Jalview Alignment editor and viewer www.jalview.org
SeaView Alignment editor and viewer doua.prabi.fr/software/seaview
ProViz Alignment and annotation viewer proviz.ucd.ie

Data sources used by ProViz for visualizing protein alignments

Multiple sequence alignments
GeneTree Homo/Para/ortholog alignments and

gene duplication information
www.ensembl.org

GOPHER Ortholog alignments by reciprocal best hit bioware.ucd.ie
Quest for orthologs Datasets of homologous genes questfororthologs.org

Protein modularity
ELM Manually curated linear motifs elm.eu.org
Pfam Functional regions and binding domains pfam.xfam.org
Phospho.ELM Experimentally verified phosphorylation

sites
phospho.elm.eu.org

Structural information
DSSP Secondary structure derived from PDB

tertiary structures
swift.cmbi.ru.nl/gv/dssp

Homology models/
SWISS-MODEL

Assigned tertiary structure by sequence
similarity to resolved structure

swissmodel.expasy.org

Protein Data Bank
(PDB)

Experimentally resolved protein tertiary
structures

www.rcsb.org

Genomic data
1000 genomes Single-nucleotide polymorphism www.1000genomes.org
dbSNP Single-nucleotide polymorphism with

disease association and genotype
information

www.ncbi.nlm.nih.gov/SNP

Isoforms Alternative splicing www.uniprot.org

Additional curated data
Mutagenesis Experimentally validated point mutations

and effect
www.uniprot.org

Regions of interest Experimentally validated functional areas www.uniprot.org
Switches. ELM Experimentally validated motif-based

molecular switches
switches.elm.eu.org

Prediction
Anchor Binding sites in disordered regions anchor.enzim.hu
Conservation Conservation of residues across the

alignment
bioware.ucd.ie

ELM Linear motifs by regular expression elm.eu.org
IUPred Intrinsically disordered regions iupred.enzim.hu
MobiDB Collection of various disorder prediction

methods
mobidb.bio.unipd.it

PsiPred Secondary structure for human
proteins

bioinf.cs.ucl.ac.uk/psipred

http://www.clustal.org/
http://www.jalview.org/
http://doua.prabi.fr/software/seaview
http://proviz.ucd.ie/
http://www.ensembl.org/
http://bioware.ucd.ie/
http://questfororthologs.org/
http://elm.eu.org/
http://pfam.xfam.org/
http://phospho.elm.eu.org/
http://swift.cmbi.ru.nl/gv/dssp
http://swissmodel.expasy.org/
http://www.rcsb.org/
http://www.1000genomes.org/
http://www.ncbi.nlm.nih.gov/SNP
http://www.uniprot.org/
http://www.uniprot.org/
http://www.uniprot.org/
http://switches.elm.eu.org/
http://anchor.enzim.hu/
http://bioware.ucd.ie/
http://elm.eu.org/
http://iupred.enzim.hu/
http://mobidb.bio.unipd.it/
http://bioinf.cs.ucl.ac.uk/psipred
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Introduction

Nothing in biology makes sense except in the light of evolution.
Theodosius Dobzhansky

The universe has been around for a long time. Calculations estimate it to be over 13 billion
years old (Planck Collaboration 2015). The solar system is thought to be ∼4.6 billion years old
(Bouvier and Wadhwa 2010), with the formation of the Earth occurring just slightly later, at
∼4.5 billion years ago (Wilde et al. 2001). The earliest evidence for life on Earth has long been
considered to be fossilized microbial mats called stromatolites discovered in Western Australia,
which date back to 3.4 billion years ago (Wacey et al. 2011). However, recent evidence of bio-
genic carbon in hydrothermal vent precipitates in Canada date the origins of life as far back as
4.1 billion years (Dodd et al. 2017). That is a long time for organisms to be living, reproducing,
interacting, and competing for resources – and, inevitably, dying. And in that time, the Earth
has seen many climatic, atmospheric, and geological changes, altering the Earth’s chemistry
and temperature (Allegre and Schneider 2005).

Because of the similarities in metabolism, physiology, and architecture of cellular life, it is
known that all life on Earth shared a common ancestor, known as the last universal common
ancestor (LUCA), more than 3.8 billion years ago (Doolittle 2000; Weiss et al. 2016). The sci-
entific theory of evolution by natural selection, published in Charles Darwin’s book On the
Origin of Species (1859), proposed that evolution is change in the heritable characteristics of
biological populations over successive generations, and that “all organisms are derived from
common ancestors by a process of branching” (Darwin 1859). Darwin’s seminal work was the
first to describe this mechanism for evolutionary change, and also championed the theory that
evolutionary processes give rise to biodiversity. Biodiversity on Earth has previously been esti-
mated to range widely, from 3 to 100 million species, while more recent numbers suggest that
there are closer to a trillion living species, with only 1.9 million species actually named and
only 1.6 million species cataloged in databases (Mora et al. 2011; Ruggiero et al. 2015; Loceya
and Lennona 2016).

Systematics is the study of the interrelationships of living things. How all these species are
named and classified into higher order groups is a branch of science called taxonomy. There
are many ways to group organisms that have been used in the past and will be discussed below.
The focus of this chapter is phylogenetics – the field of systematics that focuses on evolution-
ary relationships between organisms, groups of organisms (e.g. species or populations), or
even the genes and proteins found within organisms. A “phylogenetic relationship” between
entities such as species, genes, or proteins refers to how those entities shared a common ances-
tor at some point in the past. Phylogenetic analyses always allow one to infer relationships.
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© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
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Phylogenetic analysis now commonly uses cladistics – a particular method of hypothesizing
relationships among organisms, genes, or proteins. These analyses are based on branching
patterns depicted using tree-like representations quite similar to human family trees and are
constructed based on similarities in traits or characters. Traditionally, the characters used in
these types of analyses were morphological features of an organism but, with the advent of
genomics and the availability of large amounts of whole genome sequencing (WGS) data from
a wide variety of organisms, the field has moved to using gene or protein sequences as the basis
for these analyses, where each nucleotide or amino acid residue is, quite literally, a “character.”

Genes have been traditionally considered to be heritable units that accumulate mutations
over time. Organisms with a shared evolutionary past will have certain mutations in common
that can be traced and compared using different algorithms and software. As such, the three
core tenets of cladistics can be summarized as follows.

• Any group of organisms, genes, or proteins is related by descent from a common ancestor.
• There is a bifurcating pattern of cladogenesis (clade formation).
• Changes in characteristics occur in lineages over time.

In addition to biological research, an understanding of how genes, proteins, and species are
related to each other has many practical applications, such as in bioprospecting, controlling
disease outbreaks, forensics, selecting and monitoring drug treatments, tracking ecological
degradation, food and agricultural research, and much more. To this end, this chapter will
review early classification schemes and the use of molecular sequences as molecular clocks,
explain the fundamentals of phylogenetics and interpreting phylogenetic trees (with caution-
ary notes), describe the differences between common phylogenetic methods and software (and
their appropriate use), and provide real-world applications of phylogenetic analyses.

Early Classification Schemes

Throughout history, early classification schemes for naming and organizing taxa have been tra-
ditionally based on a range of physiological, morphological, and biochemical characteristics.
The Greek philosopher Aristotle (384–322 BC) introduced two key concepts: the classification
of organisms by type, and binomial nomenclature (Archibald 2014). Aristotle grouped crea-
tures according to their similarities (e.g. animals with blood and animals without blood), and
then organized the groups into a hierarchy. However, Aristotle’s “ladder of nature” (scala nat-
urae), or system of classification, was not based on a common evolutionary history, and the
various species on the ladder had no specific genetic relationship to each other (Archibald
2014). Aristotle’s binomial definition scheme provided a name for each animal or plant, which
consisted of a “genus and difference,” differentiating subgroups of creatures within families
according to unique characteristics. However, the use of a formal binomial nomenclature was
not applied systematically until two millennia later with the publication of the Systema Nat-
urae (1735) by the famous Swedish physician and botanist Carolus Linnaeus (1707–1778),
considered to be the father of taxonomy (Linnaeus 1735). By the late twentieth century, Robert
Whittaker’s five-kingdom classification system, based mainly upon differences in metabolism,
was a standard feature of biology textbooks (Whittaker 1969). The five-kingdom system clas-
sified organisms as being members of either the Protista (single-celled eukaryotes), Animalia,
Plantae, Fungi, or Monera (unicellular prokaryotes, including most bacteria). Up until this
point, classification schemes were largely reliant on morphological or metabolic characteris-
tics or characters that were weighted heavily by an individual scientist, rather than examining
the total number of traits organisms had in common.

A more objective approach to biological classification, in which organisms are categorized
based on shared derived characteristics due to common ancestry, is provided through the use
of cladistics. In cladistics, taxa that share many derived characters are grouped more closely
together than those that do not. In this way, these collections of characteristics (or characters)
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can be used by scientists to infer phylogenetic or evolutionary relationships. The German
entomologist Willi Hennig drafted the seminal work on cladistics, Basic Outline of a Theory of
Phylogenetic Systematics (1950), while a prisoner of war during World War II (Schmitt 2003).
Hennig described how inferred relationships should be shown in a branching hierarchical tree
called a cladogram, constructed such that the number of changes from one character state (a
branch or clade) to the next is minimized. The tenets of cladistics provide the foundation for
modern-day phylogenetic analysis.

Sequences As Molecular Clocks

Nucleic acid sequences in genes and regulatory regions accumulate different types of muta-
tions over time due to a number of mechanisms. These mutations include missense, nonsense,
or frameshift errors during DNA replication; insertions and deletions of pieces of DNA, the
expansion of repetitive sequences, and even duplication of genes and entire chromosomes
(Griffiths et al. 2000). The chemical properties of genetic sequences affect their structure, as
well as their ability to interact with other molecules. While mutations in genetic material
can impact the function of a cell, downstream consequences of genetic changes also affect
the structure, physicochemical properties, and catalytic abilities of proteins (Griffiths et al.
2000). Protein sequence and structure are tightly linked to functionality. As proteins are the
workhorses of the cell, changes in their primary sequences can alter cellular and even organ-
ismal phenotypes. Some regions of molecular sequences are critical for function. Organisms
accumulating mutations in these regions often result in detrimental perturbations in func-
tion, thereby reducing fitness. Selection pressure then favors conservation of these regions,
while other less critical regions are much more tolerant of change. Rates of change of differ-
ent positions vary across molecular sequences, between types of genes and proteins, as well as
between species and environmental circumstances. In general, the more sequence differences
there are between organisms, the more time they likely have had to independently acquire
mutations – and, thus, the more distant the evolutionary relationship between them.

The development of protein and nucleic acid sequencing technology in the 1960s and 1970s
sparked a profound advance in the ways that scientists could perceive and study organisms.
In 1965, Emile Zuckerkandl and Linus Pauling took the opportunity to write an invited (and
not peer-reviewed) manuscript to “say something outrageous” about the use of molecular
sequences to infer rates of change in evolutionary history, which was later to become known
as the molecular clock hypothesis (Zuckerkandl and Pauling 1965). The concept of a molec-
ular clock utilizes the mutation rate of biomolecules to deduce the point in time when two
or more life forms, genes, or proteins diverged. Zuckerkandl and Pauling calibrated the rates
of amino acid change in human and horse hemoglobin chains using paleontological informa-
tion to infer the last common ancestor of many animal species. While the study assumed that
rates of change of all positions in a sequence are uniform (which is rarely the case in reality),
“molecules as documents of evolutionary history” opened the door for implementing DNA
and protein sequences for tracing evolutionary events (Zuckerkandl and Pauling 1965).

This concept had a profound impact in microbiology, where the classification of microbes
was traditionally based on phenotypic traits that were often subjective. In contrast, sequence
comparisons could provide a much more objective, quantitative metric. Indeed, the field of
microbiology was further revolutionized in 1977 by Carl Woese, who used 16S ribosomal RNA
(rRNA) sequence comparisons to create the modern-day Tree of Life. The Tree of Life classi-
fies organisms within three domains: Eukarya (also called eukaryotes), Bacteria (which he first
called eubacteria), and Archaea (initially archaebacteria) (Woese and Fox 1977; Woese et al.
1990). The 16S rRNA gene (or 18S in Eukarya) seemed an ideal molecular clock, as it was not
subject to coding sequence constraints or biases and with certain parts of the sequence mutat-
ing at different speeds (Woese and Fox 1977). The faster changing regions could be employed
to study more recent relationships, while more slowly changing regions enabled the study of
very distant relationships (Woese and Fox 1977).
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Woese’s idea of using the 16S rRNA gene to construct the Tree of Life has been extended to a
variety of other single genes and proteins to construct phylogenetic trees, including rooting the
Tree of Life using a duplication within a gene that occurred before the formation of the three
Domains of Life (Lawson et al. 1996). Because of different selection pressures, environmen-
tal influences, variable accuracy in replication machinery, and other factors, the topologies of
these different trees are not always congruent; this reflects the accumulation of changes in gene
sequences in different organisms over time. Put otherwise, an organism’s evolutionary history
is rarely reflected by the history of a single gene’s evolution. This observation led to the use of
concatenated gene and protein sequence datasets. These are series of different sequences that
are linked one after the other, an approach that increases the resolution of phylogenetic sig-
nal by gaining consensus among gene histories (Gadagkar et al. 2005). As genome sequencing
chemistry and technology continues to improve, WGS has become a powerful tool for under-
standing biodiversity. The sequences of thousands of genes can now be deciphered and used
for phylogenetic analysis and many other applications.

Background Terminology and the Basics

As alluded to above, phylogenetic analysis is the means of inferring or estimating evolutionary
relationships. All phylogenetic analyses are based on the analysis of characters or traits. For
morphological data, this can be the presence of hair or a certain shape in a bone. Molecular
phylogenetics is the study of evolutionary relationships performed by comparing nucleotides
or amino acids in a sequence. For sequence data analysis, each column of an alignment is
considered to be a character or trait, with each amino acid residue or DNA base in the column
representing the particular state of that character.

The resulting relationships are most commonly represented by different types of hierarchical
trees. While trees can be depicted in different ways, all contain the basic elements that consist
of nodes linked by branches to leaves, connecting ancestors to descendants. A taxon represents
a taxonomic group of any rank, such as a species, family, or class, while all of the descendant
organisms that originate from a single common ancestor and represent a single monophyletic
branch is known as a clade. A cladogram is a tree-based view of evolutionary relationships in
which the lengths of the branches in the diagram are arbitrary; in contrast, the branches in a
phylogenetic tree often indicate the amount of character change that has occurred. The tree
shape, or how the nodes and branches connect the different taxa, is known as the tree topology.
These components of a phylogenetic tree are illustrated in Figure 9.1.

The basic steps for constructing a phylogenetic tree include defining a biological question,
sourcing and selecting sequences that are homologous (share a common ancestry), a compari-
son of conserved and variable characters, quantification of the change between sequences, and
the representation of the data in a tree. Each of these steps will be discussed in turn below.

Defining the biological question being asked is critical for determining the methods used
for analysis and the degree of sampling, defined as the range and types of sequences and
species that should be included. It should be noted that not all genes are found in all species.
Sequences may be generated in the laboratory or retrieved from private or public databases
such as GenBank (National Center for Biotechnology Information (NCBI); see Chapter 1).
Whether sequences are generated de novo or downloaded from a database, they should be of
high quality with few sequence errors and carefully selected to ensure they are homologous.
It is also important to acknowledge the source of sequence data when reporting the methods
used to generate results. Public databases often employ automated sequence similarity-based
algorithms for annotating genomes with gene/protein names. However, different researchers
and different organisms often have different naming conventions, so sequences should not be
chosen based on their names alone but, rather, based on sequence similarity.

Sequence identity is a quantifiable measure that describes the number of characters that the
sequences being compared share that are identical. Sequence similarity is also a quantifiable
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Figure 9.1 Different ways to visualize a tree. In this example, the same tree is presented in both (a)
and (b). Taxa are grouped into clades in a tree that comprises a series of branches and nodes that mark
bifurcating points in the branches. In (a), note that branch lengths are not significant; they do not indicate
the degree of divergence, with the tree only providing the branching order. A clue indicating that a tree
is only illustrating the branching order is the equal length of branches and how they align flush with
the name of each taxon. (b) The same tree, with branch lengths indicating the degree of divergence
that has been inferred from the analysis. By adding up branches between each taxa, one can estimate
the degree of divergence between them. In this example, adding up the lengths of branches 1, 2, and 3
indicates the degree of divergence between fly and mouse. Adding up the lengths of branches 1, 2, and
4 indicates the degree of divergence between fly and human. In this artificial example, the differences
in branch length would infer that fly and mouse are slightly more related to each other, than fly and
human. Note that, in cases such as that shown in (b), only the horizontal branches are significant. The
vertical branches are just used to separate out the taxa and make it easier to view them.

measure that describes the number of characters that are either identical or chemically similar
in the sequences being compared; keep in mind that this measure does not necessarily reflect
ancestry (see Chapter 3). For example, amino acids of the same chemical groups share prop-
erties such as charge, polarity, and hydrophobicity. Alanine and valine both have hydrophobic
side chains, and so two sequences with these different amino acids at the same position would
be considered similar but not identical (Figure 9.2). Sequences that share matching charac-
ters (either nucleotides or amino acids) and similar structures because the genes that encoded
those sequences were inherited from a common ancestor are called homologs. Homologs share
sequence similarity due to inheritance. Homologs in different species that arose from speci-
ation events are called orthologs. However, some species contain multiple copies of a gene
(or protein) owing to a process called gene duplication. Once a gene is duplicated within an
organism, there is a degree of redundancy in the system that enables selection processes to
work differently on the different copies of the gene. The different copies accumulate changes
in different ways and at different rates; this results in divergence and often gives rise to new
functionality in one or both of the copies. Sequences that are related by gene duplication are
called paralogs. Sometimes an organism will acquire a gene from another species through a
process called horizontal (or lateral) gene transfer. These different copies of the gene are called
xenologs.

It is important to recognize and distinguish these types of relationships when selecting
sequences for comparison or during subsequent analysis (Figure 9.3). The best way to select
sequences for comparison is through similarity searches performed computationally, such as
through a BLAST search (see Chapter 3).

In order to measure the amount of change between different nucleotide or amino acid
sequences, they must first be aligned. This is done to ensure the same positions in the gene
or protein are being compared. There are different types of alignments that are appropriate
for different purposes, and there are many tools for performing both pairwise and multiple
sequence alignments (see Chapter 8). Pairwise alignment is a process in which the characters
of two sequences are lined up to achieve maximal levels of identity (and conservation, when
considering amino acid sequences), allowing one to assess the degree of similarity and the
possibility of homology. Multiple sequence alignments are particularly useful for phylogenetic
analyses and may focus on a part of a sequence, known as a local alignment, or involve
entire sequences, known as a global alignment. Identifying positions that contain many
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A, V, I, L (hydrophobic)
N, T (polar, uncharged)
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S, T (polar, uncharged)
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Sequence similarity = 20/20 = 100%
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Sequence similarity = 18/20 = 90%
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Figure 9.2 Alignments illustrating sequence similarity versus sequence identity. Two alignments are
shown, comparing sequence 1 with sequences 2 and 3. Alignment 1 compares sequences 1 and 2 and
contains four substitutions (highlighted). The substitutions are within the same chemical groups, so they
are considered to be similar; A→V, I→V, and A→L are all changes within the hydrophobic amino acids
group, and N→T are both polar, uncharged amino acids. There are 16 identical positions and, therefore,
80% identity, while there are 20 similar positions (16 identical plus four similar), for a total of 100%
similarity. Alignment 2 compares sequences 1 and 3, and contains five substitutions (highlighted). Three
of the substitutions occur within the same chemical group and so they are considered to be similar; H
are R are both basic amino acids, S and T are both polar uncharged amino acids, and D and E are both
acidic amino acids. However, two substitutions are between chemically unrelated amino acids and so
are not considered similar; P and V are from different groups, and R and E are also from different groups.
There are 15 identical positions and, therefore, 75% identity, while there are 18 similar positions (15
identical plus three similar), for a total of 80% similarity.
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no copy of gene

Ancestral taxa with
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Figure 9.3 The differences between orthologs, paralogs, and xenologs. The ancestral organism on the
right contains a single copy of a particular gene (shown as a white rectangle). The descendant lineage
(shown in blue, with gray-colored gene) accumulates a number of different mutations resulting in the
formation of a new and distinct species in the first speciation event. Each lineage has its own copy
of the gene that has differentiated through mutation and selection, and these different versions are
called orthologs. A gene duplication event produces two different copies of the gene (duplicated gene
is shown in black) in the same organism, which are passed on to descendants and accumulate mutations
independently. Genes that diverged only because of gene duplication are called paralogs. The horizontal
gene transfer (HGT) event (also called a lateral gene transfer) that delivers a copy of a gene to a new
lineage (shown with dashed outline) results in distinct clades or taxa sharing more closely related genes,
although the lineages are themselves not as closely related through vertical descent. The sharing of
genes through the process of HGT produces xenologs.
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AGGTAGCTCGATAGCTAGATCGATAGCTAGATAGCTAGAT
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AGCTAGCTGGATTGCTACATCGA—A———A—CTG—CTAGAT
ATGTTGCTCGATAGCAAGTTCGTT—————GA——ACTAGAT
AGCTAGCTGGATAGCAAGATCGCT—GTA————AG—TACAT
AGGAAGGTCGACAGCTAGTTCGAC—C———GA————TAGAT
AGGTAGCTCGACAGCTAGATCGCTA—C—A—AT——CTAAAT
ACCTAGCCCGATAGCTAGGTCGG—AGC————TAAATAGAT
TGGTAGCTCGACAGCTAGGTCGATA—C—A—A—A—CTAGCT
AAATAGCTAAATAGCTAGATAGGTAG—AGA—T—GCTAGAT
AGATAGCTCAATAGCTAGTTCGCTA—————————CTAGAT

Figure 9.4 The difference between phylogenetic signal and phylogenetic noise. Phylogenetic signal is
provided by regions of sequence conservation where different positions can be aligned and contain some
variability. These positions contain information about evolutionary processes or rates (here, positions
1–22 and 35–40). Phylogenetic noise is produced by faster evolving sites, which are often difficult to
align and may contain several gaps. This noise can mislead phylogenetic inference, resulting in weak
support or support for incorrect hypotheses.

identical or highly similar characters, as well as some variable characters, indicates regions
of sequence conservation. These conserved regions are more easily aligned and contain the
most informative phylogenetic signal. Positions that are highly divergent are often more
difficult to align, hence considered to have phylogenetic noise and often not included in most
analyses (Figure 9.4). An overview of different types of software, and various considerations
for aligning sequences suitable for someone new to phylogenetic analysis, is discussed in the
section devoted to tree construction that follows below (see Multiple Sequence Alignment
and Alignment Editing).

The path of divergence, or the way sequences have changed over time through the accumu-
lation of mutations, will affect the shape of the phylogenetic tree depicting the inferred course
of evolution. The process of quantifying changes between aligned sequences and determining
the path of divergence between sequences requires some assumptions, based on the defined
biological question one is seeking to answer. Substitution models estimate the likelihood of one
base or amino acid changing to another; they also estimate the relative rate of overall change
among different sites in the sequence. In general, substitutions are more frequent between
bases or amino acid residues that are more similar biochemically. In the case of DNA, the four
types of transitions (A→G, G→A, C→T, and T→C) are usually more frequent than the eight
types of transversions (A→C, A→T, C→G, G→T, and the reverse). Such biases will affect the
estimated divergence between two sequences.

The specification of relative rates of substitution among particular residues usually takes the
form of a square matrix (called a substitution matrix; see Chapter 3). The substitution cost of
a more unlikely change is higher than the cost of a more likely change. The off-diagonal ele-
ments of the matrix correspond to the relative costs of going from one base to another. The
diagonal elements represent the cost of having the same base in different sequences. Different
DNA and protein substitution models will be reviewed in the tree construction section below
(see Determining the Substitution Model). A factor to note is how genetic changes are prop-
agated from genes to proteins to phenotypic expression. A non-synonymous substitution is a
nucleotide mutation that alters the amino acid sequence of a protein. In contrast, nucleotide
changes that do not alter amino acid sequences are referred to as synonymous substitutions.
As non-synonymous substitutions result in a biological change in the organism, they are more
subject to selection.

With the advent of sequencing technologies, a variety of statistical tests have been developed
to quantify selection pressures acting on protein-coding regions. Among these, the dN/dS ratio
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is one of the most widely used, owing in part to its simplicity and robustness. This measure
quantifies selection pressures by comparing the rate of substitutions at silent sites that are
presumed neutral (the synonymous substitution rate, or dS) with the rate of substitutions at
non-silent sites that possibly experience selection (the non-synonymous substitution rate, or
dN). The ratio dN/dS is expected to be greater than 1 only if selection promotes changes in the
protein sequence, whereas a ratio less than 1 is expected only if selection suppresses protein
changes. Thus, in addition to variation in substitution types, variation in substitution rates
among different sites in a sequence has been shown to profoundly affect the results of tree
building; this is known as rate heterogeneity (Swofford et al. 1996).

The most obvious example of among-site rate variation, or heterogeneity, is evident among
the three positions within a codon in a coding sequence. Owing to the degeneracy of the
genetic code, changes in the third codon position are able to occur more frequently with-
out affecting the resulting protein sequence. Therefore, this third codon position tends to be
much more variable than the first two. For this reason, many phylogenetic analyses of cod-
ing DNA sequences exclude the third codon position. However, in some cases, rate variation
patterns are more subtle, particularly those corresponding to conserved regions of proteins
or rRNA. Therefore, one should always have as much information as possible about a given
gene or sequence before performing any phylogenetic analysis; this includes information on
proposed domains, overall degree of conservation, coding and non-coding regions, and RNA
structure if analyzing a non-protein-coding gene. To correct for heterogeneity in mutation rates
across sites in biomolecules, the gamma distribution can be implemented to model variation
(Yang 1994). The gamma distribution is a probability distribution (similar to the better known
Poisson distribution) that describes the statistical probability of rates of change, depending on
certain parameters. Different forms of the gamma distribution (e.g. the amplitude of the peak
and width of the curve) are highly controlled by a single alpha parameter called the “shape
parameter.” The higher the value of alpha, the lower the heterogeneity or site variation.

Tree-building methods differ in the details, but essentially all are designed to fit species
into related branches and nodes, based on evolutionary models. Tree-building methods
can be sorted into distance-based vs. character-based methods. Character-based methods
use the aligned sequences directly during tree building. Distance-based methods transform
the sequence data into pairwise distances (calculated values which link the most similar
sequences together); they then use these derived values rather than the characters directly
to build trees (Figure 9.5). While distance-based methods are much less computationally
intensive than character-based methods, distance-based methods correct for mutation
saturation across sites. Put otherwise, after one sequence of a diverging pair has mutated at
a particular site, subsequent mutations in either sequence cannot render the sites any more
“different.” In fact, subsequent mutations can make them equal again; for example, if a valine
mutates to an isoleucine but then mutates back to a valine, this would result in an “unseen”
substitution. These methods also calculate branch lengths, which represent how many
changes have occurred between nodes or between a node and a leaf. Long branch lengths

Sequence 1
Sequence 2
Sequence 3
Sequence 4
Sequence 5

Sequence 6
Sequence 7
Sequence 8
Sequence 9
Sequence 10

–
0.9
0.5
0.4
0.3

S6 S7 S8 S9 S10
0.9
–
0.4
0.3
0.2

0.5
0.4
–
0.9
0.8

0.4
0.3
0.9
–
0.7

0.3
0.2
0.8
0.7
–

ATCTATAGCGCGTAT
AACTATACCGCGCAT
GTCTGTGGCGCGTAA
GTTTGTGGCGCGTAA
GTCTCTGGCGAGTAA

Character based
• Use aligned sequences directly • Sequence data transformed into

pairwise distances

Distance basedvs.

Figure 9.5 Character-based versus distance-based phylogenetic methods. Character-based methods
such as Maximum Parsimony and Maximum Likelihood use aligned sequences directly during tree infer-
ence, while distance-based methods such as Neighbor-Joining first transform the sequence data into
pairwise distances.



Background Terminology and the Basics 259

indicate more change; shorter branch lengths indicate less change. Different distance-based
and character-based methods will be discussed in the tree construction section below (see
Tree Building).

There are many different ways to fit data representing species, together in a tree, which
generally increases with the numbers of sequences used. Several procedures are available for
evaluating the phylogenetic signal in the data and the robustness of the tree topologies. The
most popular method involves statistical resampling. It is called bootstrapping. Bootstrapping
works on the premise that, if the phylogenetic signal is spread evenly across the sequence,
different positions should be sufficiently informative to render the same tree topology (Efron
1979; Felsenstein 1985). Gauging whether this is true or not is important, as some regions of
sequence can erroneously influence the tree. For example, domains such as binding cassettes
that share sequence similarity but can be found in proteins with very different functionality can
adversely influence phylogenetic trees. As such, bootstrapping can be considered a two-step
process, where the first step involves generating many newly perturbed datasets from the orig-
inal set (where the perturbation involves random sampling with replacement) and the second
step involves processing the datasets just like in the original phylogenetic analysis. Based on
the resulting set of trees (usually 100 or 1000 trees), the proportion of times that a particular
branch (e.g. a taxon) appeared in the trees is calculated, and this value is placed on that branch
in a consensus tree. This value is commonly referred to as the bootstrap value.

Note that these new datasets are created from the original dataset by randomly sampling
columns of characters from the original dataset. This type of random sampling means that each
site can be sampled again with the same probability as any of the other sites. As a consequence,
each of the newly created datasets has the same number of total positions as the original
dataset, but some positions are duplicated or triplicated and others are missing. Therefore,
it is possible that some of the newly created datasets are completely identical to the original
set – or, on the other extreme, that only one of the sites is replicated, say, 500 times, while
the remaining 499 positions in the original dataset are dropped. As a result, bootstrap analysis
allows one to identify whether a given branching order is robust to some modifications in the
sequence, particularly with respect to the removal and replacement of some sites. Simply put,
each bootstrap value acts a measure of confidence in a node.

Phylogenetic trees can be represented as rooted or unrooted. The root of the tree represents
the ancestral lineage, and the tips of the branches represent the descendants of that ances-
tor. As one moves from the root to the tips, one is moving forward in time. Rooting a tree is
performed by defining the position on the tree of the (hypothetical) ancestor, usually through
the inclusion of an “outgroup,” which can be any organism or sequence not descended from
the nearest common ancestor of the organisms or sequences being analyzed. One example of
choosing an outgroup might be to use a Salmonella sequence as a root for an analysis of a
collection of Escherichia coli sequences. The Salmonella sequence is suitable as an outgroup
since it is similar enough to identify phylogenetic signal between all the taxa, but is outside
the Escherichia genus (the “ingroup”; Figure 9.6).

Similarly, as it is known that reptiles were the progenitors of mammalian species, a reptilian
sequence could be used as an outgroup for a mammalian sequence analysis. The outgroup
sequence must be selected at the beginning of the phylogenetic analysis and must include in
all subsequent steps: alignment, substitution and evolutionary modeling, and tree evaluation.
However, outgroup rooting can have issues. An outgroup that is closely related to the ingroup
might be simply an erroneously excluded member of the ingroup. A clearly distant outgroup
(e.g. a fungus for an analysis of plants) can have a sequence so diverged that its attachment
to the ingroup is subject to the “long branch attraction” problem (discussed below, see Tree
Building). It is wise to examine resulting tree topologies produced both with and without an
outgroup. Another means of rooting involves analysis of a duplicated gene or gene with an
internal duplication (Lawson et al. 1996). If all the paralogs from the organisms are included
in the analysis, then one can logically root the tree at the node where the paralog gene trees
converge, assuming that there are no long branch problems.
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E. coli clade
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Figure 9.6 Rooting a tree with an outgroup. Escherichia coli bacteria are commonly found in the lower
intestine of warm-blooded organisms. Most E. coli strains are harmless, but some types (called serotypes)
are pathogenic and can cause serious food poisoning in humans. Pathogenic lineages (O157:H7 EDL933
and APEC01) of E. coli are compared with a wild-type laboratory strain in this small E. coli phy-
logeny. While the relationships between sequences can be inferred from an unrooted tree, the ancestral
sequence cannot be inferred unless the tree is rooted. By rooting a tree with an outgroup (in this case
a Salmonella sequence, which is known to be more distantly related and ancestral to the group under
study), it is possible to determine which lineages are ancestral and which are descendants.

Tree viewing software presents nodes, branches, and leaves in different formats, or “views,”
and can include rooting, bootstrap, and other confidence metrics, branch lengths, and leaf
labeling (e.g. names of taxa, genes, or proteins; sequence IDs, and other information), as
required or preferred. In the following section, we provide an overview of tree construction
methods and frequently used software for performing phylogenetic analyses.

How to Construct a Tree

Whether it is better to use nucleotides or amino acid datasets for phylogenetic analyses has
been the source of some debate, with the debate focusing on the strength of the phyloge-
netic signal vs. overall ease of use. The main argument for using amino acid sequences to
infer phylogeny is that there are more possible character states (20) than nucleotides (four).
As such, the increased number of character states can increase resolution during alignment.
However, the increased number of characters in nucleotide sequences can lead to better res-
olution of the tree, particularly when investigating more closely related sequences. Of course,
some sequences, such as 16S rRNA sequences, have no associated protein-coding sequence.
The decision then falls to the individual performing the analysis, informed by the biological
question, the degree of divergence of the sequences being investigated, the available sequences
for sampling, and the tools available.

A straightforward phylogenetic analysis consists of four steps: multiple sequence alignment,
determining the substitution model, tree building, and tree evaluation. Each step is critical
for the analysis and should be handled accordingly. A tree is only as good as the data it is
based upon.

Multiple Sequence Alignment and Alignment Editing

Phylogenetic sequence analysis always begins with a multiple sequence alignment. The align-
ment step in phylogenetic analysis is as important as subsequent steps, if not more important,
as it produces the dataset upon which models of evolution are used. Aligned sequence positions
subjected to phylogenetic analysis represent a priori phylogenetic conclusions because the sites
themselves (not the actual bases) are effectively assumed to be genealogically related or homol-
ogous. A typical alignment procedure involves the application of a program such as Clustal
(ClustalW, ClustalX, or Clustal Omega), followed by manual alignment editing and submis-
sion to a tree-building program (Chenna et al. 2003). Many current methods (including Clustal,
PileUp, and ALIGN in ProPack) align sequences according to an explicitly phylogenetic crite-
rion (a “guide tree”) that is generated on the basis of initial pairwise sequence alignments. A
widely used algorithm for performing global pairwise alignments is the Needleman–Wunsch
algorithm that is implemented in both the Clustal and MUSCLE alignment program packages;
this algorithm matches together as many characters as possible between all pairs of sequences
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within the input dataset, regardless of their lengths, in order to obtain their pairwise scores
(Needleman and Wunsch 1970). Different programs use slightly different approaches to do
this. Clustal uses the actual sequences for alignments, while MUSCLE saves time by investigat-
ing only k-mers, or short sequences of length k in the sequences, at this first stage of alignment
(Needleman and Wunsch 1970). These scores are then used in the construction of a guide tree,
which is used to create the multiple sequence alignment.

The aptly named guide tree literally guides the construction of a more robust alignment.
The theory is that sequences that are more closely related should be aligned first and then
the resulting groups of sequences, which share less relatedness between groups but still have
a common ancestor, could then be more accurately aligned with one another. Methods for
multiple sequence alignment and examples of commonly used sequence alignment software
are discussed in more detail in Chapter 8.

There are many parameters in alignment software that control the speed and sensitivity
of comparisons, such as gap penalties and choice of scoring matrix, described more fully in
Chapter 3. The most important parameters in an alignment method are those that determine
the placement of insert and deletions (indels) or gaps in an alignment of length-variable
sequences. Alignment parameters should increase or decrease according to estimated evolu-
tionary divergence, such that base mismatches are more likely as the sequences become more
divergent (Thompson et al. 1994). Skewed sampling, such as the over-representation of closely
related sequences, can impact pairwise scoring in the guide tree and entrain algorithms,
adversely affecting the alignment of under-represented sequences (Thompson et al. 1994;
Hughey et al. 1996). Alignment parameters should also be dynamically adjusted in such cases.
Dynamic parameter adjustments are available in some software packages, including Clustal.
However, unless phylogenetic relationships are known beforehand, there is no clear way to
determine which alignment procedure is best for a given phylogenetic analysis.

In general, it is inadvisable to simply subject a computer-generated alignment to a
tree-building procedure because the latter is blind to errors in the former. However, as long as
the entire alignment is scrutinized in view of independent phylogenetic evidence, methods
such as Clustal that utilize some degree of phylogenetic criteria are some of the best currently
available. For example, if there are several individual gaps very close to each other in the
alignment, they should be grouped into a single indel containing all the gaps since, from an
evolutionary standpoint, one insertion or deletion is more plausible than many. Similarly,
Clustal encourages the formation of gaps in hydrophilic amino acid sequences, consistent
with an insertion or deletion occurring on a globular protein surface, or in the hydrophilic
loop regions of a membrane protein, instead of in the hydrophobic protein core. However, it
must be emphasized that there are no methods currently available for determining whether
one multiple alignment is significantly better than another according to a phylogenetic model.

Alignment of distantly related sequences can be problematic. As discussed earlier, there
is an important link between biomolecular structure and function. Often, sequence diver-
gence between distantly related molecules can result in poorly resolved alignments that are
either “gappy” or highly variable at many positions. Sometimes, constructing alignments using
secondary or tertiary structural information to inform the alignment is considered phyloge-
netically more reliable than purely sequence-based alignment. This is because confidence in
homology assessment is greater when comparing complex characters (such as structures) than
simple ones that may have diverged significantly (such as nucleotides and amino acids), result-
ing in phylogenetic “noise.” This scenario is true in the case of 16S rRNA genes (see Chapter
6). Furthermore, alignment “surgery,” or alignment editing, is sometimes warranted to ensure
that phylogenetic signal can be retained and ambiguous information removed; this entails
manually removing columns in the dataset. When alignment ambiguities are resolved manu-
ally, phylogenetic relationships, substitution processes, and base composition should be con-
sidered. It is perfectly reasonable to resolve ambiguities in favor of phylogenetic evidence and,
in some cases, to delete ambiguous or noisy regions in the alignment (Figure 9.4). It is useful
to perform the phylogenetic analysis based on a series of slightly modified alignments. This is
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done to determine how ambiguous regions in the alignment affect the results and what aspects
of the results appear to be more reliable.

Determining the Substitution Model

The choice of a substitution model should be given the same emphasis as alignment and tree
building. As implied in the preceding section, the substitution model influences both align-
ment and tree building. Although any of the parameters in a substitution model might prove
critical in a given dataset, the best model is not always the one with the most parameters. To
the contrary, the fewer the parameters, the better. This is because every parameter estimate
has an associated variance or uncertainty. Unfortunately, there is no clear method that is bet-
ter than another, each one having its own benefits and disadvantages that differ depending on
the type of analyses performed and the philosophy of the investigator.

There are a number of different nucleotide substitution models that have been generated by
different scientists over the past 50 years. These models estimate nucleotide base frequencies
(an estimate of how often a particular nucleotide exists in a sequence) and substitution rates
(the rate one nucleotide will be substituted by another as a result of evolutionary processes)
differently. The JC69 model (Jukes and Cantor 1969) is the simplest substitution model. JC69
assumes equal base frequencies and equal mutation rates. The only parameter of this model
is the overall substitution rate. The K80 model (Kimura 1980) assumes that all of the bases
are equally frequent, but distinguishes between transitions and transversions and weights
these events differently, thereby affecting the substitution rates. Felsenstein’s 1981 model (F81
model) is an extension of the JC69 model, in which base frequencies are allowed to vary (i.e. fre-
quency of A≠G≠C≠T; Felsenstein 1981). The HKY85 model by Hasegawa et al. (1985) can be
thought of as combining the extensions made in the K80 and F81 models. Specifically, HKY85
distinguishes between the rate of transitions and transversions, also allowing for unequal base
frequencies. The T92 model extends Kimura’s K80 two-parameter method to the case where a
GC-content bias exists (Tamura 1992).

All things being equal, one would expect an organism’s GC content to equal 50%, and the
consequent AT content to account for the other 50%. However, GC content across species is
variable, and the reasons for these differences are thought to be multifactorial and are often
controversial. For example, analyses have demonstrated that a correlation exists between
GC content and optimal temperature growth for some organisms in certain genomic regions
but not for others. Specifically, it has been shown that there is a strong correlation between
higher prokaryotic optimal growth temperature and higher GC content of structured RNAs
such as rRNA, transfer RNA, and many other non-coding RNAs (Galtier and Lobry 1997;
Dutta and Chaudhuri 2010). The TN93 model (Tamura and Nei 1993) distinguishes between
the two different types of base transitions (i.e. A ↔ G is allowed to have a different rate than
C ↔ T). Transversions are all assumed to occur at the same rate, but that rate is allowed to be
different than both of the rates for transitions. This method is useful when there are strong
transition–transversion and GC-content biases, as in the case of the general time-reversible
model of Tavaré (1986). This model assumes six substitution rate parameters (C ↔ G, C ↔ T,
C ↔ A, A ↔ T, A ↔ G, and G ↔ T) as well as four different base frequency parameters
(Tavaré 1986).

In addition to nucleotide substitution models, many amino acid substitution models also
exist. The most widely used amino acid replacement models are the PAM (Point Accepted
Mutation) and BLOSUM (Block Substitution Matrix) series of matrices (Dayhoff et al. 1978;
Henikoff and Henikoff 1992). The details of these replacement models are further discussed
in Chapter 3. For phylogenetic analyses, PAM matrices are considered suitable for comparing
closely related species, and BLOSUM matrices are generally considered more appropriate for
more evolutionarily divergent sequences (Henikoff and Henikoff 1992). For fine-tuned anal-
ysis, one may wish to analyze a set of sequences using several scoring matrices to determine
the influence of each on the result. Owing to the observed success of the BLOSUM62 matrix
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for detecting similarities in distant sequences, this substitution model is used as the default in
many sequence search algorithms, such as NCBI’s BLAST.

Tree Building

The process of tree building begins with an alignment. Sometimes, the output format of an
alignment program is not compatible with tree-building programs and the alignment will
require some reformatting; for example, there may be character limits on taxa or molecule
name labels and specifications regarding whether sequences must be interleaved or not. As
such, data input instructions are important to note before attempting further analysis. Phylo-
genetic program packages require an alignment, the selection of a substitution model, their
accompanying model parameters (with default settings being a good place to start), as well as
specifications for bootstrapping and rooting.

As previously discussed, tree-building algorithms are either distance based, which are usu-
ally less computationally intensive, or character based. Commonly used distance-based algo-
rithms include Neighbor-Joining (NJ), the Unweighted Pair Group Method with Arithmetic
Mean (UPGMA), Fitch–Margoliash (FM), and Minimum Evolution (ME). NJ acts by decom-
posing an unresolved “star” tree in several iterative steps (Saitou and Nei 1987). The algorithm
first identifies the pair of distinct sequences (annotated as taxa, genes, or proteins) with the
shortest distance between them, according to the selected substitution model. These taxa,
genes, or proteins are then joined to a newly created node that is connected to the central
node. The distance from each taxon to the node is calculated, and this value is used to identify
the next most closely related sequence, which is then used to create a new node (hence the
“joining of neighbors”). This process is repeated iteratively until all of the taxa are resolved
into nodes throughout the tree.

Given the variance in substitution models and the differences in bootstrapped datasets, this
process can generate different topologies, with differing support at each of the nodes. In this
case, a consensus tree, or a tree which contains the most nodes with the most agreement
between all possible trees, is identified. Nodes with bootstrap values over 70% are considered
well supported by some, while others say only >95% is considered well supported; higher is
better. It is important to remember that a high bootstrap value for a node does not mean that
the relationship between the taxa (or genes or proteins) is, in fact, true. It simply indicates that
that node is supported by the data and the analytical methods selected. Alterations in the align-
ment, such as the inclusion or exclusion of edited regions of sequence, addition or removal of
species, or changes to the computational parameters used can impact the resulting phyloge-
netic trees to different degrees. Furthermore, the inclusion of a severely misaligned sequence
in an alignment may result in very high bootstrap values supporting its separation as a distinct
clade, but that is simply due to the misalignment. Manual review of an alignment before phy-
logenetic analysis is always advised. A well-supported tree inspires confidence in the analysis
but, without a time machine to go back and check what actually occurred millions of years ago,
an investigator must remember that the result of a phylogenetic analysis simply represents a
very good hypothesis. One is always inferring a relationship. This is why the term phylogenetic
inference is often used.

UPGMA is another clustering algorithm that computes all closest neighbors (Sokal and
Michener 1958). This method differs from NJ in that NJ takes average distances to other
leaves into account. UPGMA implicitly assumes that all lineages evolve at the same rate (per
the molecular clock hypothesis) because it creates a tree where all leaves are equidistant from
the root. If the lineages are evolving at different rates (which they do in reality), the UPGMA
tree may not fit the distance data very well. As such, UPGMA is generally not considered
to be a very good approach for building distance-based trees. The ME and FM methods of
phylogenetic inference are based on the assumption that the tree with the smallest sum of
branch length estimates is most likely to be the true one (Fitch and Margoliash 1967; Rzhetsky
and Nei 1992). FM and ME methods perform best in the group of distance-based methods,
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but they work much more slowly than NJ, which generally yields a very similar tree to
these methods.

Commonly used character-based algorithms include Maximum Parsimony (MP) and Maxi-
mum Likelihood (ML) methods. The parsimony principle, basic to all science, posits that, all
things being equal, the simplest possible explanation is the best. In terms of tree building, the
MP method requires the fewest evolutionary changes or the fewest number of character-state
changes (Swofford et al. 1996). All of the character data are used in the analysis; however,
no branch lengths are calculated while the relationships between sequences are determined.
Although it is easy to score a phylogenetic tree by counting the number of character-state
changes, there is no algorithm to quickly generate the most parsimonious tree. Instead, the
most parsimonious tree must be found in what is commonly referred to as “tree space,” mean-
ing among all possible trees. MP analyses tend to yield numerous trees, often in the thousands,
which have the same score but different topologies. In this case, the tree with the topology con-
taining the most nodes in consensus with all equally likely trees is considered to be the one
that best supports the data.

When a small number of taxa are considered for MP, it is possible to do an exhaustive search
in which every possible tree is scored and the best one is then selected. For greater numbers of
taxa, a heuristic search that involves finding an approximate solution when an exact solution is
not feasible must be performed. It should be noted that the MP method performs poorly when
there is substantial among-site rate heterogeneity (Huelsenbeck 1995). Also, an optimal MP
tree will minimize the amount of homoplasy – convergent evolution where characters have
evolved independently. As such, MP methods sometimes suffer from long branch attraction
(Bergsten 2005). Long branch attraction can occur when different rapidly evolving lineages
are misinterpreted to be closely related, regardless of their true relationships. Often, this situ-
ation arises because convergent evolution of one or more characters included in the analysis
has occurred in multiple taxa. MP programs may erroneously interpret this homoplasy as a
synapomorphy, evolving once in the common ancestor of the two lineages.

In contrast, ML methods seek to find the tree that best explains the data given a particu-
lar model of sequence evolution, specified by parameter and distribution settings by the user.
Quartet puzzling is a relatively rapid tree-searching algorithm available for ML tree building
(Strimmer and von Haeseler 1996). With ML, the simplest explanation may not be considered
the most correct if additional information is known about the dataset (e.g. high rates of change
across sites). While the ML method is very slow and computationally demanding, it is thought
to produce the best representations of evolutionary processes. As such, the ML approach has
been the basis of a powerful statistical method known as Bayesian inference (Huelsenbeck
et al. 2002).

Bayesian inference is a method of statistical inference in which the probability for an evolu-
tionary hypothesis is updated as the algorithm progresses and more evidence or information
becomes available. The updated probability of an outcome is determined from a prior proba-
bility and a likelihood function. A prior probability is a set of parameters and distributions for
an outcome, which are determined before any data are examined. The prior probability helps
determine the chances of possible outcomes prior to knowing anything about what actually
happened. The “likelihood function” consists of sets of parameters and distributions for an out-
come when things are known about what could have happened. During analysis, updates in
the probability of an outcome occur through the use of a Markov chain Monte Carlo algorithm
that iteratively compares samples of likelihoods of outcomes (and their sets of parameters and
distributions) with the data and parses out the most likely outcomes; this then informs the
range of likelihoods to be further sampled (Yang and Rannala 1997). This process occurs as
many times as the investigator prescribes. Bayesian methods use the same approach as ML in
that the tree that best represents the data according to a model of evolution is considered the
“best tree”; however, the likelihood calculation is considered to be “more informed.”
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Table 9.1 Some common software packages implementing different phylogenetic analysis methods.

Software package Description

BEAST • Cross-platform program for Bayesian analysis of molecular sequences using
Markov chain Monte Carlo

• Produces rooted, time-measured phylogenies inferred using strict or relaxed
molecular clock models

MEGA • User-friendly Windows-based platform for sequence upload, alignment
(ClustalW or MUSCLE), and phylogenetic inference by a variety of methods
(maximum likelihood, evolutionary distance, and maximum parsimony)

MrBAYES • Program performing Bayesian inference of phylogeny using a variant of
Markov chain Monte Carlo

PHYLIP • Menu-based package of 35 different programs for inferring evolutionary trees
• Parsimony, distance matrix, and likelihood methods, bootstrapping and

consensus trees
• Data types that can be handled include molecular sequences, gene

frequencies, restriction sites and fragments, distance matrices
PhyML • Fast program for searching Maximum Likelihood trees

• Uses nucleotide or amino acid sequences
PAUP • Phylogenetic Analysis Using Parsimony (and other methods later than v4.0)

• Available as a plugin for Geneious

Popular software implementing these different types of methods are described in Table 9.1.
An example workflow of an NJ DNA sequence analysis using the classic PHYLIP program
package is shown in Figure 9.7.

When building a phylogenetic tree, it is important to look at the data from as many angles
as possible. Consistency of tree topologies generated by different methods suggests that the
analysis is a good estimate for the true phylogeny. Unfortunately, consistency among results
obtained by different methods does not necessarily mean that the result is statistically signifi-
cant or represents the true phylogeny, as there can be several reasons for such correspondence.
The choice of outgroup taxa can have as much influence on the analysis as the choice of
ingroup taxa. In particular, complications will occur when the outgroup shares an unusual
property (such as composition bias or clock rate) with one or several ingroup taxa. Therefore,
it is advisable to compute every analysis with several outgroups and check for congruency of
the ingroup topologies. Also, be aware that programs can give different trees depending on the
order in which the sequences appear in the input file. PHYLIP, PAUP, and other phylogenetic
software provide a “jumble” option that reruns the analysis with different (jumbled) input
orders.

If, for whatever reason, a tree must be computed in a single run, sequences that are suspected
of being “problematic” should be placed toward the end of the input file to lower the proba-
bility that tree rearrangement methods will be negatively influenced by a poor initial topology
stemming from any problematic sequences. In general, one should always consider any bioin-
formatic analysis in an evolutionary context when it is based on evolutionary assumptions.
For example, if a BLAST analysis was performed, one should ask questions such as: Which
of the hits in the BLAST analysis are likely orthologs versus paralogs? Which of the mem-
brane proteins identified in a search are likely homologs (ancestrally related) versus similar by
chance due to similarities in trans-membrane alpha-helical sequences? What domains seem
to be conserved in a set of aligned sequences? Are there indels associated with one clade and
not another, indicating that they may have functional significance?

Tree Visualization

There are several parts that make up the anatomy of a phylogenetic tree. The skeleton of the tree
consists of the nodes, branches, leaves, and (if included) the root. Labeling of leaves usually cor-
responds to gene, protein, or species names, but can also include common names of organisms,
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Figure 9.7 Workflow for a protein-based phylogenetic analysis using the PHYLIP program package. Protein sequences in FASTA format
are converted into PHYLIP format by READSEQ (which is not part of PHYLIP but is freely available online). SEQBOOT accepts the PHYLIP
file as input and sequences are bootstrapped a user-defined number of times. (For the purposes of this example, assume that the user
has specified 1000 bootstraps.) The resulting outfile can be used to calculate 1000 distance matrices for input into PROTDIST. In this
step, the actual amino acids are discarded and replaced by a calculated value that is a measure of the amount of divergence between
the sequences. The NEIGHBOR program joins nodes and branches according to these calculated values, creating 1000 trees from these
matrices. The CONSENSE program reduces the 1000 trees to the one that includes only those nodes that are present in the majority of the
trees in the set of all possible trees and indicates the bootstrap values by the nodes. TREEVIEW or TreeTool allow the user to manipulate
the tree (e.g. rerooting, making branch rearrangements, and changing fonts) and to save the file in a number of commonly used graphic
formats. Although TREEVIEW and TreeTool are not part of the PHYLIP program package (indicated by boxes with dashed lines), they are
freely available. The figure also shows the different file formats used during processing through the various stages of bootstrap analysis.
Periods to the right and at the bottom of a box indicate that files were truncated to save space.

sequence accession numbers, or types of characteristics under investigation. Species names
can be formatted using bolded, italicized, or color-coded characters. A typical phylogeny will
also include bootstrap values positioned beside their respective nodes, as well as a branch
length scale bar. This is a bar at the bottom of the figure accompanied by a number, usually a
fraction, that calibrates the number of changes per given number of characters. Branch lengths
can also be quantified and labeled on the tree. Branches, nodes, and leaves cannot generally
be removed from a tree visualization without removing those sequences from the alignment
and performing the analysis anew.

Phylogenetic trees can be visualized in different ways. For example, trees can be drawn
horizontally, vertically, circularly, or radially (Figure 9.8). Leaves and branches can rotate
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Figure 9.8 Phylogenetic relationships can be visualized using different types of tree views; however, the
relationships between species are the same. The Chlamydiales order of bacteria contain both human
(Chlamydia trachomatis, Chlamydophila pneumoniae) and animal (Chlamydia psitacci, Chlamydophila peco-
rum) pathogens, as well as lineages that are pathogenic to both (Simkania negevensis). The phylogeny of
this subset of Chlamydiales species is presented as a phylogram (a), as well as in linear (b), circular (c),
and radial views (d). For example, in all representations, Chlamydia psitacci is always shown to be most
closely related to Chlamydia ibidus, while Simkania negevensis is always shown to be the most distantly
related species.

about nodes without altering the relationships inferred. There are a number of tree-drawing
programs currently available for use on a variety of computing platforms, including TreeTool,
TreeDraw, PHYLODENDRON, TREEVIEW, FigTree, and the tree-drawing tool within PAUP;
all of these handle standard tree files. These programs facilitate not only the generation of trees
suitable for publication or other presentation but also facilitate viewing of the data in general.
For example, programs such as the freely available TREEVIEW enable the user to manipulate
the branching order view, root the tree, and perform other graphical manipulations that can
aid the user.

A more extensive list of phylogenetic tree-viewing software, including web-based views of
precomputed trees, can be found by following the Phylogenetic Tree Visualization Software
link in the Internet Resources section. Tree images/files can also often be exported to other
commonly used presentation and graphics software such as PowerPoint or Photoshop and
overlaid with other characteristics of biological relevance, such as clusters of phylogenetically
related isolates involved in a disease outbreak investigation that are distinguished from spo-
radic cases of illness.
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Marker-Based Evolution Studies

Genetic molecular markers are fragments of DNA that are associated with certain locations
within the genome. Molecular markers have been used to diagnose diseases such as cystic
fibrosis, resolve taxonomic affinity using 16S rRNA genes, and are used in molecular biology
as DNA barcodes, enabling the identification of particular sequences in a pool of unknown
DNA. There are many different types of molecular markers that can be used to generate hier-
archies of relationships between organisms or characteristics, such as the predisposition for
disease. As discussed, these markers can consist of single-nucleotide variants (SNVs) in genes
or amino acid substitutions in different proteins. While indels can be arbitrary inserts or dele-
tions, conserved signature indels are defined as only those protein indels that are present
within conserved regions of proteins; they are also restricted to a particular clade or group
of species (Gupta and Griffiths 2002). Conserved signature indels provide useful molecular
markers for inferring evolutionary relationships, as it is unlikely that the same insertion or
deletion event occurred at the same position in two independent evolutionary lineages.

SNVs can also be traced and compared between entire genomes to group sequences together
in a number of different ways. SNV markers include sequence motifs or short recurring pat-
terns in DNA that are presumed to have a biological function, such as those found in transcrip-
tion factor binding sites. When SNVs occur within enzyme restriction sites, they can affect
genomic DNA digestion patterns that can be detected using a technique called pulsed-field
gel electrophoresis (PFGE; Gerner-Smidt et al. 2006). Different types of isolates with identical
digested fragment patterns are considered the most closely related. The PFGE method has been
used for molecular microbial typing; it has also been used for the classification of isolates (at
the subspecies level) from clinical or environmental samples, such as foodborne pathogens for
outbreak investigation. Another microbial typing technique, known as multi-locus sequence
typing (MLST), classifies different patterns of SNVs at particular genetic loci to assign micro-
bial isolates to “sequence types” based on the sequencing of DNA fragments rather than their
electrophoretic mobility as in PFGE. MLST can be performed on a standard set of housekeep-
ing genes and is used to characterize strains by their unique allelic profiles (Margos et al. 2008).
Alternatively, MLST can be performed on whole or core genomes, and the vast number of alle-
les produced by this method are then compared using a matrix of pairwise differences that are
displayed as a tree (Achtman et al. 2012). MLST relationships are often visualized using what
are called minimum spanning trees; these trees connect all the nodes by the shortest possi-
ble path. Minimum spanning trees cluster sequence types together and attempt to identify the
founding (or ancestral) sequence type of each group (Salipante and Hall 2011). The ancestral
types are then connected in a radial view (Figure 9.9).

The molecular typing of different microbial organisms is based on different MLST schema
(collections of loci and alleles), as different loci are more informative than others in different
lineages owing to different rates of change and selective forces. Some schema have the power
to represent biological phenomena in silico, such as serotypes – the immunological properties
at the cell surface that can be used to distinguish different strains. A web-accessible tool for
Salmonella serotype prediction based on the core genome MLST schema is called SISTR (for
Salmonella In Silico Typing Resource; Yoshida et al. 2016). Such tools enable rapid identifi-
cation of Salmonella contamination to support food safety and public health investigations.
With the increasing adoption of genomic analyses in epidemiology to understand the distri-
bution and spread of infections, software such as eBURST (Feil et al. 2004) and SISTR, as well
as the databases housing schema and isolate data, will be critical for reducing the number of
preventable cases of infectious disease.

Although most eukaryotic DNA is packaged in chromosomes within the nucleus, mitochon-
dria also have a small amount of their own DNA. Mitochondrial DNA (mtDNA) is a small
double-stranded DNA found in most eukaryotes (e.g. human mtDNA contains only 37 genes)
and is maternally inherited (Anderson et al. 1981). As animal mtDNA evolves faster than
nuclear genes (Brown et al. 1979), it carries SNVs which are valuable tools in the fields of
forensic, population, and medical genetics (Kundu and Ghosh 2015; Sturk-Andreaggi et al.
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Figure 9.9 Excerpt of a Salmonella minimum spanning tree. Types of Salmonella bacteria cause food
poisoning associated with diarrhea, fever, abdominal cramps, and vomiting. Salmonella sequence types
(STs) from an outbreak are shown clustered together in star shapes to attempt to identify the founding
ST of each group of infections. The radiations off the circular hubs represent the closest relatives of the
founders. The size of the circle is proportional to the number of sequences with the same ST, while the
color of the circle represents different sources of bacteria (e.g. food product, environment, or sample
type). Epidemiologists and researchers can use this information to identify the source of Salmonella
contamination, and prevent further infections. Image courtesy of Nabil Fahreed-Alikhan (created using
EnteroBase software, Warwick University, UK).

2017; Theurey and Pizzo 2018). An example of a tools for examining relationships between
mtDNA sequences is mtDNAprofiler (Yang et al. 2013).

Plant-based molecular marker studies have been used for crop improvement. A number of
functional molecular markers have been developed which are readily identified by genetic
sequence analyses in wheat, rice, maize, sorghum, millets, and other crops (Kage et al. 2016).
For example, alleles identified in 30 different genes in wheat have been associated with food
quality, agronomic, and disease resistance traits, and used successfully in breeding programs
(Liu et al. 2012). Plant-based molecular marker studies famously led to advancements in agri-
cultural productivity in the world’s food supply in the 1960s, known as the Green Revolution
(Hedden 2003). Point mutations in wheat Rht1 and Rht2 genes enabled “dwarfing” of plants,
which increased stalk strength and consequently grain yield (Hedden 2003). Assays gener-
ated based on such analyses continue to enable farmers and scientists to screen new cultivar
genotypes for desired characteristics.

Phylogenetic Analysis and Data Integration

Phylogenies and evolutionary analyses are used to answer many types of biological questions.
For example, the function of hypothetical proteins can be inferred from branch patterns
when the protein under study clusters closely with well-annotated sequences in a process
called function prediction. Similarly, differences in branch patterns originating from sequence
divergence between orthologous and paralogous proteins may indicate a divergence of
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function. Different phylogeny-based protein function prediction tools are available, such as
SIFTER (Statistical Inference of Function Through Evolutionary Relationships; Sahraeian
et al. 2015), although many function prediction algorithms are built on alignment-based
similarity; these include BLAST and PredictProtein. In many cases, different types of data
from multiple sources must be integrated with phylogenetic information to answer a bio-
logical question. The frequency of SNVs can be assessed in populations, and their spread
across geographical regions can be understood through a discipline known as phylogeog-
raphy. GenGIS is a software platform that merges geographic, ecological, and phylogenetic
biodiversity data together in order to visualize phylogenetic relationships across a variety of
environments. GenGIS has been used to assess taxonomic diversity from the Global Ocean
Sampling expedition (Parks et al. 2009) and the spread of HIV-1 subtypes across Africa (Parks
et al. 2013). Similarly, MicroReact integrates genomics data with temporal, geographic, and
other metadata to create health-related visualizations (Argimón et al. 2016). This platform
has been used to reconstruct the Western Africa Ebola epidemic and transmission events of
various multi-drug-resistant organisms around the world. In addition to research tools, per-
sonal genomics companies such as 23andMe (see Internet Resources) use marker genes and
phylogeographic analyses to identify health risks and trace family ancestry around the world.

Genomic epidemiology applies WGS data to understand how genomic variation within
microbial populations (both microorganisms and viruses) affects the incidence, distribution,
and possible control of diseases and other factors relating to public health. The genomes
of microbial isolates, as well as clinical, exposure, geographic, and demographic data, are
compared in phylogenomic trees and other comparative tools (Tang et al. 2017). Patients
infected with isolates in clusters believed to be involved in outbreaks are investigated for
common sources of infection and modes of transmission, and this information is then used
to control the spread of disease (Robinson et al. 2013). Genomic epidemiology techniques
have been used worldwide for control of many types of infectious diseases such as tubercu-
losis, Salmonella, E. coli, and various viral diseases (Gardy et al. 2011; Croxen et al. 2017;
Moran-Gilad et al. 2017). For example, scientists involved with the 2016 Singapore Zika
outbreak used genomic epidemiology techniques to match hospital and mosquito viral strains
through Bayesian analysis; these results were then used to guide subsequent prevention
measures, such as where to increase larvicide deployment and where public awareness
programs should be initiated (Singapore Zika Study Group 2017).

Phylogenetics has also proven useful in the emerging field of microbial forensics, which
serves to link microbial DNA evidence from acts of bioterrorism or inadvertent microorgan-
ism/toxin release to potential sources for attribution purposes (Schmedes et al. 2016). For
example, in 2001, the U.S. Postal Service was the target of an anthrax bioterrorism attack.
Precise strain genotyping and phylogenetic analysis clustered sequences from seemingly dis-
parate infections in Connecticut, New York, Florida, and Washington, DC, to a single perpe-
trator while eliminating cases due to natural causes (Yang and Keim 2012). As U.S. health
and law enforcement officials pursued the perpetrator, knowing the exact strain type of Bacil-
lus anthracis was invaluable for narrowing the potential sources and for defining the crime
scene itself (Yang and Keim 2012). Advancements in sequencing technologies and bioinfor-
matic analyses continue to influence policies and practices with regards to biodefense, criminal
investigations, and intelligence acquisition (Schmedes et al. 2016).

Cancer is a genetic disease that arises when normal cellular functions are disrupted by muta-
tions arising in DNA. Cancer research involves a range of clinical and epidemiological data,
as well as molecular and evolutionary analytical approaches. Mutations occur at the level of
single cells and are then propagated into subpopulations as cells divide. Differences in growth
rates in subpopulations produce a complex tumor microenvironment consisting of many differ-
ent interacting and evolving cells (Beerenwinkel et al. 2016). The resultant intratumor genetic
diversity poses a huge problem for correctly diagnosing and treating tumors, especially as a
biopsied sample may not be representative of the entire tumor (Beerenwinkel et al. 2016).
Tumor phylogenetics provides insights into evolutionary mechanisms causing disease, and
is also providing insight into the prediction and control of cancer progression, metastasis, and
therapeutic responses (Box 9.1).
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Box 9.1 Predicting Cancer Progression and Drug Response Using Phylogenetic
Approaches

Tumor phylogenetics provides insight into evolutionary mechanisms causing disease. Can-
cer is a genetic disease in which the accumulation, diversification, and selection for muta-
tions are now known to promote tumor cell proliferation and impact survival according
to complex evolutionary mechanisms. The figure shows how tumors can contain a mixed
population of cells that have accumulated different types of mutations. Some mutations
enable cancer cells to metastasize, while others render cancer cells less susceptible to
treatment. Phylogenetic analysis has been applied to the understanding of predicting and
controlling cancer progression, metastasis, and therapeutic responses. Tumor phylogenet-
ics aims to reconstruct tumor evolution from genomic variations by exploring the space
of possible trees in order to explain a dataset. In particular, evolutionary theory and anal-
yses have been developed for determining the heterogeneity of tumor cells, specifically
the types of mutations associated with different clinical outcomes; these include copy
number variants, microsatellites (tracts of repetitive DNA in which certain DNA motifs
are repeated), and “mutation signatures” such as nucleotide biases linked to environ-
mental triggers. Rates of mutation, as well as the extent and intensity of selective pres-
sures, greatly affect treatment options and prognosis. Different treatment regimens lead
to selection that can, in turn, alter the dominant clones within tumors. Single-agent treat-
ment can lead to relapse by selecting for non-responsive clones and higher mutation rates
(intratumor heterogeneity), and has been linked with the ability to resist different types
of therapy. These types of tumor diversity studies depend highly on appropriate parame-
ter estimation and modeling of different mutational processes that have been validated
with observed data. Most studies of tumor phylogenetics to date have adapted standard
algorithms that were developed for generating phylogenies of different species (Schwartz
and Schaffer 2017).

Tumor Cell Evolution
Leading to Mixed Lung Cell

Population

Normal lung cell

Tumor cells

Treatable tumor
Mutation(s) leading to metastasis

Mutation(s) refractory to treatment

Phylogenetics is also being used to advance pharmaceutical development through the newly
emerging field of pharmacophylogenomics (Searls 2003). Pharmacophylogenomics is a field
of study that combines knowledge about genes, protein localization, gene/protein relatedness,
drugs, and drug targets to identify novel sources of therapeutics (Searls 2003). One of the best
known pharmacophylogenomics discoveries is the “druggable genome” – the identification of
the ∼3000 genes in the human genome that express proteins able to bind drug-like molecules
(Hopkins and Groom 2002; Sakharkar et al. 2007). For proteins that are both interacting and
evolving, such as receptors and peptide ligands (i.e. chemokines and their G-protein-coupled
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receptors), co-evolution is reflected in similarities in the topologies of their phylogenetic trees
(Searls 2003). Studies identifying evolutionary trends can be used to create algorithms for the
de novo prediction of molecular interactions. As pathways and networks often co-evolve in
parallel with their interacting partners, these studies also expand phylogenetic analysis from
genes and proteins to entire metabolic and physiological networks, widening the search for
potential sources of new drugs (Searls 2003).

The fields of metagenomics and metabolomics (see Chapter 14) are also rapidly expanding
our ability to explore the genetic diversity of novel terrestrial and aquatic environments.
Metagenomics itself is the study of genetic material recovered directly from an environmental
sample, explores the diversity of complex microbial ecosystems, including strains which can-
not be cultured (Handelsman 2004). The NCBI public repository offers access to sequences
from a wide range of environmental communities, including submerged whale carcasses,
sludge, farm soil, acid mine drainage sites, subtropical gyres, and deep-sea sediments,
to name a few (NCBI Resource Coordinators 2016). Phylogenetic profiling of these gene
repertoires provides an in silico form of analysis, which can help to focus the direction of
in vitro experimentation. For example, the characterization of the diversity and prevalence
of bacterial resistance gene products targeting 𝛽-lactams and A- and B-type streptogramins
were initially identified in human pathogens (D’Costa et al. 2007). Through metagenomic
phylogenetic analysis, sequences were also found in many environmental species, suggesting
an underappreciation of the soil resistome, which was also supported by in vitro studies
(D’Costa et al. 2007). Such findings provide much motivation for better antibiotic stewardship
and the judicious use of antibiotics in the clinic.

Future Challenges

Phylogenetic analysis is a powerful tool for answering many types of biological questions. Phy-
logenetic trees, however, are inferred, dynamic constructs – they depend on the methods used,
the regions of sequences included/excluded, the sampling of species, the parameters, the root-
ing, and other factors. Paradoxical as it may sound, by far the most important factor in inferring
phylogenies is not the method of phylogenetic inference but the quality of the original data.
The importance of data selection and of the alignment process cannot be overestimated. Even
the most sophisticated phylogenetic inference methods are not able to correct for biased or
erroneous input data. As such, an investigator should always look at the data and the results of
any analyses from as many angles as possible, checking that the results make general biological
sense.

As DNA sequencing technology continues to decrease in cost and improve in speed, read
length, and accuracy, so must the capacity to curate, analyze, store, and share sequence data.
Tools and integrative platforms for performing phylogenetic and other bioinformatic analyses
continue to proliferate as scientists innovate new uses and applications of sequence informa-
tion. In the era of “big data,” the barriers for phylogenetics and bioinformatics lie not in the
ability to produce data, but rather in the availability of individuals with sufficient expertise to
perform analyses, as well as in the infrastructure needed to perform the computations (Muir
et al. 2016). As such, analysts and bioinformaticians with the skills to carry out phylogenetic
analyses of genes, genomes, proteins, and other types of molecular and systems information
are, and will continue to be, in demand. Furthermore, the accuracy, sensitivity, and speci-
ficity (see Box 5.4) of tools and algorithms must be systematically and quantitatively assessed
in order to characterize the different strengths and weaknesses of each. This will allow the
community to decide which tools and algorithms are the most appropriate and how the results
from each can be compared and integrated.

Going forward, different types of integrative bioinformatic and phylogenetic analyses of the
vast amount of available data will provide new ways to understand our world, and teach us
new ways to adapt to our ever-changing environment. The evolution of phylogenetics, as well
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as life on Earth, is well summarized by one of the most popular misquotes of Charles Darwin
that is placed in the stone floor of the headquarters of the California Academy of Sciences:
“It is not the strongest of the species that survive, nor the most intelligent, but the one most
responsive to change.”

Internet Resources

ALIGN www.sequentix.de/software_align.php
BEAST beast.community
BLAST (NCBI) blast.ncbi.nlm.nih.gov/Blast.cgi
ClustalW/ClustalX www.clustal.org/clustal2
eBURST eburst.mlst.net
EnteroBase enterobase.warwick.ac.uk
FigTree tree.bio.ed.ac.uk/software/figtree
GenGIS kiwi.cs.dal.ca/GenGIS/Main_Page
MEGA www.megasoftware.net
Microreact microreact.org/showcase
MrBayes mrbayes.sourceforge.net
MUSCLE www.drive5.com/muscle
mtDNAprofiler mtprofiler.yonsei.ac.kr
PAUP paup.phylosolutions.com
PHYLIP evolution.genetics.washington.edu/phylip.html
Phylogenetic Tree
Visualization Software

en.wikipedia.org/wiki/List_of_phylogenetic_tree_visualization_software

PhyML www.atgc-montpellier.fr/phyml
PileUp www.biology.wustl.edu/gcg/pileup.html
PredictProtein www.predictprotein.org
SIFTER sifter.berkeley.edu
SISTR lfz.corefacility.ca/sistr-app
TreeDraw webconnectron.appspot.com/Treedraw.html
TreeTool github.com/neherlab/treetool
TREEVIEW taxonomy.zoology.gla.ac.uk/rod/treeview.html
23andMe www.23andme.com
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Expression Analysis
Marieke L. Kuijjer, Joseph N. Paulson, and John Quackenbush

Introduction

The sequencing of the human genome in 2003 gave us a preliminary catalog of all human genes
(Lander et al. 2001; Venter et al. 2001). Although the genome (and the collection of genes
encoded within it) has evolved significantly since that first draft sequence, many questions
about how gene expression is regulated and how the resulting data can be used to charac-
terize distinct phenotypic dates and explore their properties still remain. Indeed, we know
that, within a single individual, the same genome manifests itself distinctly in each and every
cell type and those gene expression profiles change between conditions, including health and
disease.

Scientists recognized the importance of these questions even before the genome was
sequenced and developed methods for assaying how RNA expression differed between
phenotypes. Although early techniques allowed only one or a small number of genes to be
tested, the emergence of DNA microarray technologies opened the door to test large numbers
of genes, enabling the analysis of genes across the entire genome (Schena et al. 1995). DNA
microarrays were widely used to explore patterns of gene expression in model organisms and
human disease (DeRisi et al. 1996; Spellman et al. 1998; Golub et al. 1999; Perou et al. 1999;
Callow et al. 2000; Konstantinopoulos et al. 2011).

The early days of gene expression analysis with microarrays produced significant challenges,
and many early studies were fraught with problems of irreproducibility (Ioannidis et al. 2009;
Ishmael et al. 2009). However, a significant investment by computational and experimen-
tal biologists resulted in laboratory and analytical procedures that led to improved consis-
tency in results emerging from DNA microarray studies, emphasizing the need for careful
experimental design and replication throughout (Hegde et al. 2000; Simon et al. 2002; Irizarry
et al. 2003, 2005; Bolstad et al. 2004; Larkin et al. 2005; Quackenbush 2005). The introduc-
tion of ultra-high-throughput sequencing technologies opened the door to RNA sequencing
(RNA-seq) experiments that were far less constrained by preconceived notions about what one
might measure (Kahvejian et al. 2008; Nagalakshmi et al. 2008). Despite using a very differ-
ent approach to assaying expression, the development of robust RNA-seq analysis techniques
built upon many of the same basic lessons learned during the development of DNA microarray
analysis technologies.

The goal of this chapter is to provide a step-by-step introduction to considerations and meth-
ods for gene expression assessment, starting with experimental design and moving through
questions of data normalization, comparison, and interpretation. Although introductory, we
hope that the material presented here will serve as the starting point for future investigations
and a more thorough examination of the methods we present.

Bioinformatics, Fourth Edition. Edited by Andreas D. Baxevanis, Gary D. Bader, and David S. Wishart.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/baxevanis/Bioinformatics_4e
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Step 0: Choose an Expression Analysis Technology

This may seem like an unusual place to start given that RNA-seq is the dominant technology,
but DNA microarrays are still widely used and have some advantages over RNA-seq that may
be worth considering when developing an experimental and analytical plan.

The application of both techniques begins with the extraction and purification of RNA from
samples of interest and the conversion of those RNAs to complementary DNA (cDNA) through
the use of reverse transcriptase, an enzyme derived from a retrovirus. The cDNA is then used to
determine, either through sequencing or hybridization, the relative abundance of genes within
the genome. These abundance levels are then used in downstream analysis to understand how
patterns of gene expression change between biological states and how those changes help us
understand the biology of the systems being studied. While the available technologies share a
common foundation, there are differences between them that are worth considering.

DNA Microarrays

DNA microarrays were the first technology developed that allowed genome-wide analysis of
gene expression. DNA microarrays rely on detection of hybridization events occurring between
labeled cDNA targets in solution and single-stranded, gene-specific DNA probes bound to fixed
locations on a solid surface. While DNA microarrays were initially plagued by noise and often
found to be irreproducible, advances in the technology and analytical methods have greatly
improved the quality of the data they can produce. DNA microarrays have a number of addi-
tional advantages that make them worth considering as an alternative.

First, the gene content of DNA microarrays is well defined, such that each gene or tran-
script being tested for expression is represented by one or more probes (or probe sets). This
has advantages in that we understand, ahead of time, which genes will be represented; there-
fore, we can generally determine with a reasonable degree of confidence whether a particular
gene is expressed and at what relative level. While there may be cross-hybridization or other
artifacts such as differential hybridization efficiencies, the quality of commercial arrays and
the robustness of today’s laboratory protocols have greatly improved the quality of the assays
and their reproducibility.

Second, because the technology is mature, there are robust, well-established analytical
methods for almost every aspect of microarray analysis. The largest single repository for
DNA microarray analytical tools is Bioconductor, where there are countless, well-established
methods for every aspect of microarray analysis.

Finally, there are extensive repositories of DNA microarray data available through the Gene
Expression Omnibus (GEO) and ArrayExpress databases. These databases provide additional
independent datasets that can be used for estimating required sample sizes to validate the
findings from individual experiments.

While Bioconductor does include many methods for RNA-seq data analysis, there is less
consensus as to best practices than there is with microarray analysis. Also, while GEO and
ArrayExpress include RNA-seq data, those data only make up a small fraction of the total data
volume found within these two resources. Although one can compare microarray data with
RNA-seq data to determine general trends, there is no way to compare microarray hybridiza-
tion intensities directly with RNA-seq read counts.

RNA-seq

RNA-seq can trace its roots back to cDNA sequencing in the 1990s and serial analysis of gene
expression (SAGE), a technique that allowed sequencing of short cDNA fragments, in the
early 2000s. However, RNA-seq really developed into its own unique approach over the last
decade with the advent of ultra-high-throughput sequencing, allowing for the generation
of tens of millions of sequence reads (or more) starting from minuscule quantities of RNA.
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RNA-seq has quickly become the dominant technology for gene expression profiling for a
number of reasons.

First, RNA-seq allows not only the expression levels of “genes” to be measured, but it can also
give information on the expression levels of individual alleles and transcript variants. While
this flexibility makes the technology unique and open ended, the truth is that very few studies
have taken advantage of this capability, with most analyses falling back on looking at the total
expression levels of the transcripts. The most significant counterexample to this is the use of
RNA-seq to identify fusion transcripts in cancer – something that would be impossible to do
with DNA microarrays.

Second, RNA-seq methods have dramatically improved over time, allowing smaller quan-
tities of RNA to be used as input material. RNA-seq applications include transcript profiling
from individual cells, which requires specialized analytical methods to deal with the sparsity
of the data (see Single-Cell Sequencing). The use of small quantities of starting material also
means that one can use small biopsy samples or multiple distinct data types (such as RNA-seq
and DNA methylation data) from a single biological sample, making integrated analysis
feasible.

Finally, RNA-seq is not limited by a pre-defined set of transcripts. RNA-seq experiments
can uncover the expression of “new” genes that have not previously been described, includ-
ing the transcript levels of non-coding RNAs. RNA-seq data can also be analyzed to detect
polyadenylated viral transcript sequences.

The Choice is Yours

Although microarrays remain a viable alternative, the cost differential between microarrays
and RNA-seq has fallen to the point that RNA-seq is typically the default. Given this, we will
emphasize RNA-seq analyses within this chapter, referring the reader to previous versions of
this book if interested in methods for microarray expression analysis. However, many of the
general principles of expression analysis are the same and can be used as a general template
for thinking about diverse large-scale genomic studies, and so some examples are included in
our discussion below.

Step 1: Design the Experiment

In biology, most successful experiments are designed around well-established ideas of hypothe-
sis testing. We begin by identifying a problem and postulating a mechanism. We then design an
experiment in which we perturb the system in a manner that tests the hypothesis, and we then
collect data that allow us to look for changes that are consistent with our postulated mecha-
nism. The response that we observe in the system either validates or invalidates our hypothesis.
In such experiments, we attempt to tightly control the variables so as to carefully measure their
influence, perturbing just a single parameter at a time. Good experimental design requires
sufficient replication to estimate the effects we wish to measure.

Genome-wide gene expression technologies have changed the way in which we can
approach biological questions. Rather than looking at single genes, we can now survey
the responses of thousands of genes in a particular system and look for altered patterns of
expression that are associated with changes in phenotype. We can use these large-scale exper-
iments to either test hypotheses or generate new hypotheses based on changes in patterns
of gene expression that can later be tested. However, the scope and scale of observations
enabled by genome-wide technologies do not mean we can ignore the need to carefully design
experiments and analyze the resulting data.

Like all experiments, a gene expression profiling experiment should begin with a
well-defined question and the experiment should collect the data necessary to answer that
question. The most common designs for experiments include comparison of two experimental
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groups (or cohorts), such as a treatment vs. a control group or a diseased vs. a healthy
population. One critical element of designing such a study is assuring that the experiment
has a sufficient number of independent biological replicates so that the treatment and control
groups are of sufficient size to make reasonable comparisons.

Power size calculations are notoriously difficult in large-scale transcriptional profiling exper-
iments, in large part because expression levels are so variable and relative effect sizes are
generally unknown prior to conducting an experiment. One strategy that can work is to do a
small pilot experiment to identify a potential signal that can be used to estimate effect size and
then to use that for doing a more rigorous power calculation and designing a full experiment.

An alternate strategy is to think beyond the original experiment, including a validation stage
in the experiment that uses an independent technology (such as reverse transcription poly-
merase chain reaction) to validate a small “significant gene set” or, better yet, including a
validation population that will be independently profiled to assess whether the original results
were valid.

Another important consideration is designing an experimental strategy that avoids con-
founding and eliminates batch effects. This includes both the experimental strategy that is
used to collect samples as well as the strategy that is used to collect the gene expression data.
This should include assuring that “treatment” and “control” samples are collected together
and under the same conditions and that samples are mixed when RNA is collected, libraries
are prepared, and sequence data are generated.

An important, and often overlooked, question is whether there are sufficient metadata on
the samples that will be analyzed. For example, if analyzing samples from breast cancer, it is
important to know the disease subtype of each sample and to have considered subtype distri-
bution in the experimental design. Without such data and given what are small sample sizes
relative to the number of genes being tested in an RNA-seq experiment, it is relatively easy to
end up in a situation in which expression differences are the result of some bias in how samples
are assigned to different groups.

For example, we previously analyzed a gene signature that claimed to predict lung metas-
tasis in breast cancer based on expression in the primary tumor, only to discover that all of
the samples with metastasis that were used to identify this signature were of the basal subtype
(which is the subtype most likely to metastasize to lung). This signature was a predictor of
the basal subtype, but not necessarily of metastasis. So, before analyzing the data, one needs to
consider whether there could be demographic differences between treatment and control pop-
ulations, or differences in the treatments experienced by patients within different subgroups.
Did the patients come from different hospitals or countries? Were the patient samples collected
and processed in different ways? Believe it or not, all of these confounding factors have been
identified in published studies, and all of these confounding factors could have been easily
avoided. It is well worth the effort to try to identify potential confounding factors before run-
ning the experiment, rather than trying to explain them away while analyzing the data that
were collected.

One approach that we have found to be extremely useful is to begin with the analytical strat-
egy you will use once the data are collected and to work backward to the experimental design,
ensuring that you have the requisite number of samples and the appropriate metadata to assure
that you have the appropriate data and information to answer your experimental question.

Step 2: Collect and Manage the Data – and Metadata

A transcriptional profiling experiment involves introducing a perturbation to a control system,
collecting the biological specimens, and then generating the data that will ultimately be ana-
lyzed. While it may seem obvious that one must collect and manage the relevant data, this is
an element that is often overlooked and can come back to haunt those who neglect it.
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There are many ways to approach this problem, from simply storing the data in a folder on a
shared drive or creating a database into which the data are ultimately placed. Regardless of the
strategy one chooses, the single most important thing to do is to be organized and to document
which data are associated with each project.

Step 3: Data Pre-Processing

Before data can be compared between experimental groups or used for any other purpose, one
must first map the raw data to specific genes or gene transcripts. Although this might seem
rather trivial, different approaches can be used – and, of course, these different approaches
can potentially lead to different final results. While there are many accepted methods for per-
forming this data pre-processing step, one should take note of and carefully document one’s
choices in identifying gene transcripts from raw data.

For DNA microarrays, mapping raw data might seem trivial, since one thinks of an array
of consisting of fixed probes for each gene profiled. However, many arrays – most notably,
Affymetrix GeneChip – use groups of probes or “probe sets” that together are used to define
the expression of a gene. In fact, the Affymetrix chip design includes not only sets of “per-
fect match” (PM) probes designed using the reference gene sequence, but also “mismatch”
(MM) probes that differ from the reference by a single base change in the middle of the probe
sequence. The PM probes provide an estimate of the hybridization signal, while the MM probes
are included to provide estimates of the background signal due to non-specific hybridization
and background fluorescence.

The mapping of probes to genes is typically contained in a “chip design file” (CDF) that
is included as input into the early stages of any analysis to provide a map between fluores-
cence intensity and gene expression levels. There has been considerable debate in the research
community regarding what data should be used to perform this probe mapping, with some
advocating using only the PM probes, others creating non-standard CDFs, and the majority
using the Affymetrix-supplied CDFs. As with many aspects of gene expression analysis, there
is no right answer; one just needs to make a rational choice and document that decision so
others can reproduce the analysis. However, one must always be aware of what gene identi-
fiers (and what release versions of these identifiers) the probes are mapped to – whether it be
official gene names, RefSeq IDs, Ensembl IDs, or something else – as these decisions can influ-
ence downstream analyses involving the mapping of expression data to biological pathways or
functional classification systems, such as Gene Ontology (GO), or the use of techniques such
as gene set enrichment analysis.

RNA-seq faces a similar set of challenges, although here the mapping is somewhat less
mysterious. The raw output from RNA-seq is a set of sequence reads that is mapped to
a set of genes or gene transcripts. To do this, the most common approaches perform an
“assembly on reference,” first mapping reads to gene transcripts, then assembling them
and quantifying the overall representation for each gene. Here, the choice of reference
database defines the mapping. One can choose RefSeq, Ensembl genes, or any other suitable
reference. There are a host of algorithms that have been developed to map, assemble, and
quantify the reads, including the Burrows–Wheeler aligner (BWA) (Li and Durbin 2009),
Bowtie/Bowtie2 (Langmead et al. 2009; Langmead and Salzberg 2012), and STAR aligner
(Dobin et al. 2013).

More recently methods have been developed to deal with ever larger RNA-seq datasets by
using pseudo-alignment and quasi-mapping; these methods include Salmon (Patro et al. 2017),
Sailfish (Patro et al. 2014), and Kallisto (Bray et al. 2016). These methods are designed specifi-
cally to attenuate the computational complexities introduced with large data, including mem-
ory restrictions. Pseudo-alignment and quasi-mapping bypass the use of a full alignment by
representing the transcriptome with k-mers and mapping those to either a de Bruijn graph
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representation (a graphical representation of overlaps between, and maps across, k-mers) or
suffix array (a sorted array of extensions, or suffixes, of a k-mer) using a hash table. Appropri-
ately defining hash functions allows for ignoring the majority of the reference and mapping
read queries to a limited number of potential targets.

As with many aspects of genomic data analysis, there is no clear consensus as to the optimal
choice, and methods are constantly evolving. What is important is to select from among the
standard methods, to apply it consistently to the data that you wish to analyze, and to document
your choices in a way that assures the analysis can be reproduced, including documenting
software and database versions.

Step 4: Quality Control

Any measurement we make as scientists includes errors. Some of these errors are random, and
statistical methods of analysis are designed to estimate the true signal given natural variation.
Some errors are systematic, and these too can be estimated and handled using statistical meth-
ods. However, some errors arise from failed assays, and the best approach is to identify and
eliminate the data arising from these failed assays. In the course of gene expression analysis
experiments, such errors arise from contaminants within RNA samples, poor quality experi-
mental reagents, or just simple laboratory error.

One of the single most important questions to ask once you have generated your raw data
is whether those data are of sufficient quality to move through your analysis pipeline. While
biological variability is something that you want to assure is represented in any dataset, failed
experiments should, quite simply, be removed from the datasets being analyzed. Expression
analysis in the laboratory involves many complex steps, and anything from degraded input
RNA to bad reagents to simple mistakes can produce data that are dominated by such high
levels of noise that they can derail any sort of meaningful analysis. Fortunately, there are a
host of tools that can be used to analyze data generated by both microarray expression analysis
and RNA-seq experiments to provide well-established sets of metrics for both microarrays and
sequence-based data. As is true with everything in this field, the tools used to analyze these
data will continue to evolve rapidly, so the reader is encouraged to keep abreast of literature
reviews or to reach out to colleagues actively performing gene expression analyses regarding
new approaches that may have come to the fore.

Quality Control Tools

The Bioconductor package arrayQualityMetrics provides a wide range of tools (including many
assembled from other Bioconductor packages) for assessing the quality of both single-color and
two-color microarray data. As input to the arrayQualityMetrics package, one provides a matrix
of microarray intensities and, optionally, information about the samples and the probes in a
Bioconductor object of class AffyBatch, ExpressionSet, NChannelSet, or BeadLevelList, which
are all objects that coordinate expression data from different technologies with phenotype.

The output from arrayQualityMetrics includes a false-color representation of each array and
an MA plot to assess its quality. In an MA plot, the M value is the log-ratio of two intensities
and the A value is the mean of the logarithm of the intensities. For two-color arrays, these plots
use intensities from each channel and, for single-color arrays, the value of M uses the median
intensity of each sample as the denominator in the ratio. An example of an MA plot on data
before and after normalization is shown in Figure 10.1, where the systematic curvature below
the horizontal axis is removed by the normalization process.

There are also a number of other diagnostic plots that can be used to identify bad single
arrays or overall bad datasets. These include the RNA degradation plot from the affy package
(Gautier et al. 2004), the relative log expression (RLE) boxplots and the normalized unscaled
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Figure 10.1 Example of an MA plot before (a) and after (b) normalization. A, or the mean of the
log-transformed expression levels, is shown on the x-axis; M, or the log-ratio of the expression lev-
els in the sample of interest and the median intensity of the expression levels of the probes across each
sample, is shown on the y-axis. M vs. A is drawn for each probe in the expression dataset using the
“smoothScatter” option in the function “ma. plot” from R package “affy.” In correctly normalized data, we
expect these points, on average, not to deviate from the horizontal blue line. In the figure made on the
non-normalized data, we see a slight downwards trend, which is removed after normalization.

standard error (NUSE) boxplots from the affyPLM package (Brettschneider et al. 2008), and the
QC stat plot from the simpleaffy package (Wilson and Miller 2005). The results obtained with
these quality control tools are assembled into an HTML document that provides a valuable
resource for understanding the raw data you have assembled.

For RNA-seq, FastQC is a widely used package that provides a collection of simple tools
for quality control checks on raw high-throughput sequence data in a manner very similar
to the microarray arrayQualityMetrics package. FastQC has a number of analytical modules
that allow users to explore various aspects of sequence quality, providing a number of sum-
mary graphs and tables and exporting the results to an HTML-based report. Within FastQC are
modules that provide basic statistics, including data on the number of reads, the read length,
and GC content. Users can also view box-and-whisker plots showing per base assessment of
sequence quality scores at each position along all reads. One can also get a plot of the distri-
bution of per sequence quality scores. Both of these provide a good overall assessment of the
quality of the sequence run.

Another useful plot to assess overall sequence quality is the per base sequence content. One
would expect that, for any genome, the GC content should be consistent along the length of any
random sequence read, with %A = %T and %G = %C. However, library preparation protocols
generally ligate short primer and adapter sequences to the 5′ end of the DNA to be sequenced,
and this is where one would expect to see substantial deviations in GC distributions. A related
measure is the per base N content, which quantifies how often a defined nucleotide has been
substituted for an N because of the inability to call a base with sufficient confidence; this infor-
mation can help identify failed cycles in the sequencing reaction.

An example of a histogram of the base mismatch (MM) rate, relative to a reference sequence,
for a set of samples on which RNA-seq was run is shown in Figure 10.2. While most samples
have a low MM rate, there are a few outliers that could be removed from downstream analy-
sis. There are also tools to identify aberrant levels of sequence duplication, over-represented
sequences, missed adapters, and over-represented k-mers. FastQC also has tools for analysis
of microRNAs, metagenomic sequences, and epigenetic assays such as methyl-seq.

One exciting new tool that provides an overview of a study’s quality is MultiQC. The tool
aggregates quality control reports on multiple samples from FastQC, as well as other tools,
and presents these in a single HTML report that is easy to read and digest and that can help
identify and subsequently remove poor quality samples from the analysis.
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Figure 10.2 Histogram of the base mismatch (MM) rate across multiple RNA-seq samples. Most of these
samples had a base MM rate <0.04%. One could decide to remove outlier samples based on the distri-
bution of the base MM rate.

Screening for Misidentified Samples: PCA on Y Chromosome Expression

One element we have not touched on is the quality of the annotation associated with each
sample. Any analysis will ultimately rely on assigning samples to different groups, compar-
ing expression levels between groups, and ensuring that there are no confounding factors that
might skew the analysis. The quality of the analysis (and the confidence we have in our con-
clusions) depends on the reliability of how individuals are assigned to particular groups; this,
in turn, depends on whether we can accurately associate each sample with appropriate anno-
tation metadata, such as an individual’s sex, age, treatment status, and other phenotypic data.
While this may seem relatively trivial, mis-annotation of samples is a far more frequent prob-
lem than one might expect. For example, 46% of studies available in GEO have been found
to have poor or incorrect annotations – errors that could have been easily identified prior to
submission by employing simple validation steps (Toker et al. 2016).

It is generally difficult to test for accuracy in sample annotation, as the purpose of most
experiments is typically to find differences between groups rather than to use known differ-
ences to assign samples to groups. That said, there is one test that can be run on virtually any
dataset that can give us some sense of the quality of the sample annotation: whether males
and females are annotated correctly. If one simply looks at the expression of Y chromosome
genes and performs principal component analysis (PCA; see Principal Component Analysis),
one would expect to find two distinct groups, as females do not express Y chromosome genes
(Paulson et al. 2017).

As an example, we analyzed colorectal cancer gene expression data from The Cancer
Genome Atlas (TCGA; from the Genomic Data Commons [GDC] Data Portal) and five
colorectal cancer datasets from GEO (GSE14333, GSE17538, GSE33113, GSE37892, and
GSE39582). When we used PCA (see Principal Component Analysis) to analyze expression of
Y chromosome genes, we found two distinct clusters of samples – one expressing those genes
(and therefore likely male) and a second with only expression at the level of background noise
(and therefore likely female). However, we found that 11 of 456 samples (2%) in the TCGA
were misidentified by sex, meaning that samples annotated as female grouped with the males
(thus expressing Y chromosome genes) and samples annotated as female grouped with the
males. However, when we looked at the GEO datasets, we found 85 of 1376 (6%) samples
misclustered by sex. Although we could remove the misidentified samples from downstream
analyses, we dropped an entire GEO study because the mis-annotation rate was nearly 15%,
leading us to question the veracity of the remaining sample annotation.
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Step 5: Normalization and Batch Effects

The Importance of Normalizing and Batch-Correcting Data

The output from any gene expression analysis can be represented as an expression matrix pop-
ulated by positive values that represent the observed expression levels for each probe or gene
in each sample. One can represent these data as an “expression matrix” or, for RNA-seq data,
as a “count matrix” (C), where each row is a gene, each column is a sample, and the entry at
each location is the observed number of reads mapped to that gene in that particular sample.

C =

⎡
⎢
⎢
⎢
⎢
⎣

c11 c12 … c1n
c21 c22 … c2n
⋮ ⋮ ⋮ ⋱ ⋮

cm1 cm2 … cmn

⎤
⎥
⎥
⎥
⎥
⎦

In a perfect world, one could directly compare the expression levels between any group
of samples by simply comparing the expression levels or read counts gene by gene between
those samples. However, there are many factors that can skew those data, including unequal
amounts of starting RNA, artifacts in library preparation, differential efficiency in hybridiza-
tion or sequencing, or a host of other issues.

Normalization is a common procedure in data analysis that allows us to make comparisons
between different samples or different datasets. For example, in northern blot analysis, one
commonly uses housekeeping genes such as actin or GAPDH to adjust hybridization signals
of other genes in each sample, as a way to compensate for variation in sample quantities in the
experiment. In this case, the assumption is that one or more genes are expressed at the same
level in all samples, and that one can use this “baseline” to adjust the measurements of other
genes. Broadly, there are a few types of normalization processes that can enable comparisons
between samples or genes.

FPKM and Count Data

In a DNA array, each gene is typically represented by probes that are roughly equivalent to the
probes used for every other gene. For example, on an Affymetrix array, genes are represented
by probe sets. Each probe in a probe set is 25 bp in length and has corresponding PM and MM
probes differing at a single base (exactly in the middle of the probe). In addition, each probe
set contains the same number of probes and is located near the 3′ end of its target transcript so
as to help assure near uniform efficiency in preparing hybridization libraries from the RNA.

Considerations regarding per gene normalization are somewhat different when analyzing
RNA-seq data. Here, libraries are prepared and sequenced and, if one simply counts the num-
ber of sequence reads per gene, larger genes are more likely to pick up more reads than shorter
genes. Consequently, raw count data are often transformed to either reads per kilobase mil-
lion (RPKM), fragments per kilobase million (FPKM), or transcripts per million (TPM) values.
The three measures differ subtly in how they are calculated, but all start by mapping reads to
transcripts and then scaling the results.

To determine RPKM, one simply counts the number of reads mapping to a transcript and
divides this by the number of reads per million that map to the genome, normalized by the
length of that gene. This last step is to account for the fact that twice as many reads will map
to a 2 kb gene than to a 1 kb gene. For example, if 4 million reads map to a genome, and 5000
reads map to a particular gene that is 2 kb in length, the RPKM value for that gene would be
625 ([5000/2]/4). FPKM is an extension of RPKM and is used when performing paired-end
sequencing, where both ends of an RNA-seq library fragment are sequenced. The concept
underlying FPKM is identical to that for RPKM, taking into account the fact that two reads
can map to the same fragment.

TPM values are similar to those discussed above but are normalized to a standard “per mil-
lion” value that can more easily be compared between samples. To calculate TPM, one starts
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with each gene and divides the number of reads (or transcripts) by the length of the gene in
kilobases, providing a reads per kilobase (RPK) value for each gene. The RPK values for all
of the genes in the genome are then added together to calculate a cumulative RPK value; this
value is then divided by 1 million to obtain a “scaling value.” Finally, each gene’s RPK value is
divided by the scaling value to calculate a TPM measure for each gene. This TPM is conceptu-
ally closest to the microarray measure in that it takes into account the length of each gene and
then compares these normalized transcript counts.

Sample and Quantile Normalization

As more and more analyses were being performed on high-throughput gene expression data
generated using DNA microarrays, it quickly became apparent that the assumption that there
were “invariant” housekeeping genes was simply not correct and that, in fact, all genes varied
in their expression levels. Lacking a solid reference, the focus of new normalization techniques
shifted to looking at the distribution of gene expression levels across all genes in a sample, then
adjusting the distributions to be similar to each other.

At first, normalization methods adjusting the mean or median expression levels for a sample
were used, but these methods failed to compensate for differences in distributions that may
be due to experimental artifacts. If one assumes that a cell can only make a certain quantity
of RNA, then one would expect that, as some genes increase expression, other genes must
decrease their expression levels such that the distribution of expression levels is the same for
related samples.

Conceptually, one easy way to do this is to look at the distribution of gene expression levels
and slice it into smaller segments, or quantiles. One then can adjust the data, quantile by quan-
tile, so that all the samples in an experiment have the same distribution and so that changes
in the expression of any particular gene can be compared between samples. Conceptually, this
sounds relatively simple, but it is worthwhile looking at (and understanding) the process in a
bit more detail.

The process of quantile normalization is depicted in Figure 10.3 using an example that
involves four samples and six genes. We represent these measures in a genes-by-samples matrix
and use three simple procedures to normalize the data. First, following the blue arrows in the
figure, one takes each gene and calculates a median value across all of the samples. These
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Figure 10.3 Overview of quantile normalization. We start with the box on the top left, which includes
expression data for four samples and six genes. To quantile normalize the data, we first calculate the
median expression of each gene and rank them from lowest to highest (blue arrows). We then rank
the genes in each sample based on their expression levels (lowest to highest; green arrow). Finally, we
replace the ranks in the rank matrix with the values that correspond to the same ranks in the ranked
medians (gold arrows).
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median values are then ranked from lowest to highest. Second, following the green arrows in
the figure, one looks at each sample being analyzed and replaces the expression value of each
gene with its rank from lowest to highest in that sample, producing a ranked matrix. Finally,
following both of the gold arrows in the figure, one combines the rank matrix and the ranked
set of medians, replacing the ranks in the rank matrix by the corresponding ranked median
values.

In the example in the figure, all rank 1 genes are assigned an expression level of 6, all rank
2 genes are assigned an expression level of 9, and so on, so that the original values are now
replaced by the ranked medians. An important assumption behind this approach is that the
reference is appropriate for all samples, which may not be true when the underlying biology is
different (e.g. when analyzing multiple tissue types). While this process might seem counter-
intuitive, this method has been shown to produce robust and reproducible expression values
that can be compared across samples (Bolstad et al. 2003).

Additional Methods of Sample Normalization

The choice of normalization methods is one of the greatest sources of contention in almost any
discussion of gene expression analysis, given that each method relies on some set of assump-
tions that might be more or less reasonable to anyone examining a particular dataset. Below,
we discuss four additional methods that have been widely used (Li et al. 2015).

Counts per Million The counts per million (CPM) scaling method is similar to TPM in that the
count values are normalized to a standard “per million” value that can more easily be compared
between samples. CPM and other scaling methods are based on the assumption that each cell
can generate more or less the same amount of RNA such that the total number of reads, or
counts, should be constant. To calculate CPM, one simply totals the reads for each sample and
then scales all sample read counts so that they are equal. CPM, TPM, and gene-length normal-
ized values were among the most widely used normalization methods, particularly in the early
days of gene expression analysis based on RNA-seq.

Upper Quantile Normalization This scaling method assumes that count distributions are sim-
ilar at the low- to mid-expression levels but deviate from each other above the 75th quantile.
This method simply scales each dataset such that the numbers of counts below the 75th quan-
tile are set equal to each other across samples and the normalized count, yij, is scaled such that:
yij = cij/q75j.

Relative Log Expression This method assumes that count values closely follow the geometric
mean of gene expression values across samples and that read count frequencies increase expo-
nentially with sequencing depth. RLE uses the geometric mean for each sample and scales
the reads in each sample so that the geometric means are the same. A normalizing factor is
calculated for each sample as the median of the ratio between feature read counts and the
geometric mean of read counts across all samples. This approach is used as the standard nor-
malization method by DESeq (Anders and Huber 2010) and DESeq2 (Love et al. 2014), which
are described below.

Trimmed Mean of M Values The trimmed mean of M values (TMM) approach is based on
the assumption that the majority of genes are not differentially expressed. Here, TMM makes
use of a single sample as the reference. The method then compares each sample with the
reference, calculates log fold-changes (what is often referred to as the “M” value in microarray
analysis), removes the outer 30% of M values, and calculates an average M0 value which is
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then scaled to be equal for all samples. TMM is used within the edgeR (Robinson et al. 2010)
testing framework (edgeR is described below).

Batch Correction

Batch correction is another important aspect of any large-scale genomic analysis – and, for
that matter, any scientific study that collects measurements in groups or of different samples
at different times. Batch effects are systematic sources of error that can be introduced because
measurements are made, for example, using different reagents, under differing laboratory con-
ditions, using similar samples collected at different times, and given the inherent variation in
how different people conduct the same assay. Given the large number of measurements made
on each sample, batch effects are particularly evident in high-throughput experiments.

The first line of defense against batch effects is good experimental design. One should
make every effort to collect all samples at the same time, then assay them at the same time
under the same conditions and using the same set of reagents whenever possible. While this
is generally not practical for large numbers of samples, the next best thing is to mix cases and
controls at each step so that sample groups are not confounded by batch effects. For example,
if one were to measure gene expression in controls on Monday and cases on Tuesday, then
any batch effect that might occur would be confounded with case/control status, making
it impossible to resolve differences. Here, mixing cases and controls would correct for any
underlying batch effects.

A very easy way to test for batch effects is to generate plots from a PCA (see Principal Compo-
nent Analysis) based on gene expression data so that each point in the plot represents a sample.
One could then color the points in this plot by condition (for example, cases and controls). In a
perfect world, one would expect to see a clear separation between conditions, but what you see
will depend on the signal and noise and potential batch effects. Next, one can recolor the plot
based on other relevant variables such as sample collection date, RNA extraction date, labeling
or library construction date, array batch or sequencer run, and so on, looking for patterns. In
an ideal world, there will be no patterns in the PCA plot except for a separation based on condi-
tion. However, patterns often appear that group samples from one batch together, or separate
different batches from each other. It is these differences that batch effect corrections attempt to
control for. In a more high-throughput fashion, highlighting the correlation between the PCA
components and phenotypic and batch variables is often a useful technique. An example that
walks the reader through this process is shown in Figure 10.4.

It should be noted that, although extremely useful, PCA generally only captures large batch
effects. Indeed, individual genes or gene subsets can be affected adversely by experimental
conditions, producing effects that might alter the conclusions of any downstream analysis.
Fortunately, methods have been developed that can address batch artifacts, identifying
experimental signals that are correlated with batches and correcting for those to better
allow identification of differentially expressed genes that are associated with experimental
groups.

Two widely used methods for batch correction are COMBAT (Johnson et al. 2007) and
surrogate variable analysis (SVA; Leek et al. 2012). Both of these examine the expression data
and look for genes whose expression is correlated with batch, or, in the case of SVA, other
non-biological variables. However, and as described above, these associations can only be
found and corrected for if the relevant biological variables are not confounded with these
non-biological variables. For example, if all cases are run in one batch and all controls in the
next, batch effects will confound the phenotypes; if there are differences that are due to some
non-biological factor, the batch effects will cause these differences to appear as real biological
differences. Finding and removing batch effects relies on having all experimental groups
represented, to the degree possible, in each of the laboratory batches.
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Figure 10.4 Batch effects principal com-
ponents analysis (PCA) example. Boxplots
and scatterplots of data simulated using
the BatchQC software. Data were simu-
lated using BatchQC, per the vignette. (a)
A PCA scatterplot of the first two principal
components where points represent sam-
ples and are colored by phenotype con-
dition. (b) Boxplots of the simulated gene
expression for multiple genes within each
sample are also highlighted and colored
by phenotype condition. (c, d) The same
data; however, each sample is colored by
sequencing “batch” and a large difference
can be observed in the first principal com-
ponent and gene expression values by
batch.
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Step 6: Exploratory Data Analysis

A commonly asked question when analyzing large-scale genomic data is whether there are
subgroups within a population that are defined by distinct patterns of gene expression. This is a
question that can only be reasonably answered when there are enough data available to search
for patterns that can be used to identify and distinguish groups. The methods that are used for
such unbiased searches are called unsupervised, as the searches find patterns rather than asking
if there are patterns that can distinguish pre-defined groups. There are many methods that fall
into this broad general class of methods, but the most commonly used ones are hierarchical
clustering, PCA, and non-negative matrix factorization (NMF).

As noted previously, a convenient way to represent transcript data is using an expression
matrix – a genes-by-samples matrix in which each row is a “gene vector” that represents the
expression levels for a particular gene across all samples and in which each column is a “sam-
ple vector” representing the expression levels for all genes in a single sample; each element
in the matrix represents a single gene in a single sample. A heat map is a representation of
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that matrix in which each cell in the heat map is colored based on the intensity of its sig-
nal. Both hierarchical clustering and NMF group subsets of samples and/or genes based on
shared patterns of expression and visualize results in the context of a heat map. PCA performs
operations on sample or gene expression vectors – the aforementioned columns or rows of
the matrix.

Hierarchical Clustering

Hierarchical clustering has become one of the most widely used techniques for the analysis of
gene expression data; it has the advantage that it is simple and the result can be visualized easily
(Eisen et al. 1998; Michaels et al. 1998; Wen et al. 1998). Initially, one starts with N clusters,
where N is the number of samples (or genes) in the target dataset. Hierarchical clustering is
an agglomerative approach in which single expression profiles are joined to form nodes; these
nodes are further joined until the process has been carried to completion, forming a single
hierarchical tree.

Hierarchical clustering essentially asks which vectors are closest to each other, then groups
samples together based on their distance from each other. Of course, there are many ways of
measuring distance between samples (or genes) based on their expression profiles; among the
most common are the Euclidean distance measure (which works well when the absolute level
of gene expression is important) and the Pearson correlation distance measure (which is best
when correlated patterns are important).

Having chosen a method for measuring distance (Figure 10.5), the algorithm proceeds in
a straightforward manner. The ensuing description assumes that samples are being grouped,
although the clustering process works in an identical fashion for genes.

1) Calculate the pairwise distance matrix for all of the samples to be clustered.
2) Search the distance matrix for the two most similar samples or clusters. Initially, each clus-

ter consists of a single sample. If several pairs share the exact same similarity score, one
typically chooses one pair at random, although other methods can be used decide between
those pairs.

3) The two selected clusters are merged to produce a new cluster that now contains two or
more objects.

4) The distances are calculated between this new cluster and all other clusters. There is no
need to recalculate all distances as only those involving the new cluster have changed.

5) Steps 2–4 of this list are repeated until all objects are in one cluster.
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Figure 10.5 A simple illustration of the process of hierarchical clustering. (a) The repeated search for
samples, or groups of samples that are “close” to each other and their subsequent merging to form
larger clusters. (b) The corresponding formation of a hierarchical clustering dendrogram, joining samples
together based on their assessed similarity.
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There are a number of variations of the hierarchical clustering method that reflect different
approaches to calculating distances between the newly defined clusters and the other genes or
clusters (what are referred to as agglomeration methods):

• single linkage clustering uses the shortest distance between one cluster and any other
• complete linkage clustering takes the largest distance between any two clusters
• average linkage clustering uses the average distance between two clusters.

Typically, the relationship between samples is represented using a dendrogram, where
branches in the tree are built based on the connections determined between clusters as the
algorithm progresses. To visualize the relationships between samples, the dendrogram is
used to rearrange the rows (or columns as appropriate) in the expression matrix heat map to
visualize patterns in the dataset (Figure 10.6).

The tree-line structure of the dendrogram makes it useful for identifying places where one
might divide the samples into some number of clusters simply based on their appearance.
However, rather than using the “eyeball test,” it is better to use an objective method for deter-
mining the number of clusters and their membership – and, fortunately, there are multiple
ways to search for such groups.
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Figure 10.6 Heatmap showing clustering of gene expression data of the 100 most variable genes in
three different heart tissues. The expression levels in this heatmap are row z-score normalized to best
show the differences in expression. Low expression is visualized in blue and high expression in red. The
dendrogram on top is obtained by performing hierarchical clustering using Euclidean distance. It shows
that samples from the three tissues (top color bar) cluster into three separate groups. The tissue on the
left (green) has low expression of these genes, while the center tissue (gray) and the tissue on the right
(orange) have higher expression of these genes. A small subset of the genes is highly expressed in the
tissue on the right, but is lowly expressed in the other two tissues.
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One method simply is to use the distances calculated in building the clusters as a measure
of the connectivity of the individual clusters. As one moves up the dendrogram from the indi-
vidual elements, the distance between clusters increases. Consequently, as one increases the
distance threshold, the effective number of clusters decreases. An alternative approach is to
use bootstrapping or jack-knife techniques to measure the stability of relationships in the den-
drogram, using this stability as a measure of the number of clusters represented. There are a
number of bootstrapping approaches that can be used, but the simplest is to perform sam-
pling of the dataset with replacement, each time calculating a new hierarchical clustering
dendrogram and simply counting how often each branch in the dendrogram is recovered; a
percentage cut-off on the dendrogram sets the number of clusters. In making a bootstrap esti-
mate for gene cluster stability, it is appropriate to resample the collection of biological samples,
whereas in estimating the number of clusters in the biological samples one bootstraps the gene
expression vectors. Jack-knifing is similar, but, instead of resampling, the appropriate vectors
are sequentially left out as new dendrograms are calculated, continuing until all vectors have
been considered. Again, the stability of each cluster is estimated based on how often a given
relationship in the dendrogram is recovered.

One potential problem with many hierarchical clustering methods is that, as clusters grow,
the expression vector that represents the cluster when calculating distances may no longer
accurately represent any of the elements within the cluster. For example, in clustering genes,
the “center” of each cluster is typically an average over all of the genes within that cluster;
the resulting linear combination of gene expression vectors is sometimes referred to as a
“metagene.” Consequently, as clustering progresses, the actual expression patterns of the
genes themselves become less relevant. Furthermore, if a bad clustering assignment is made
early in the process, that error is fixed in place and cannot be corrected. An alternative that
can avoid these artifacts is to use a divisive clustering approach, such as k-means, to partition
data (either genes or samples) into groups having similar expression patterns.

Although clustering approaches work with any dataset, in practice they often do not work
well for large datasets in which many of the genes do not vary between samples. Consequently,
it can be useful to first apply a statistical filter to the data, selecting only those genes that are the
most variable between experimental classes. However, this filtering can lead to biases in the
clustering. If one chooses genes that distinguish two experimental groups, then the most likely
result of the filtering will be two clusters in which the samples fall into the two pre-defined
experimental groups. A more unbiased approach is to simply calculate the variance of each
gene across the population of samples and then eliminate those genes that are not changing
significantly in the dataset, as these genes are the least likely to shed any light on subclasses that
exist in the sample collection. However, this latter approach relies on having a good balance
of samples across experimental groups.

Principal Component Analysis

If we look at a samples-by-genes expression matrix, we can imagine that each sample has its
own unique expression level for each of the 25 000 (or so) genes being evaluated. We can then
represent each sample as a point in that 25 000-dimensional “gene expression state space.” As
you might imagine, the collection of samples could be visualized as a cloud of points within
that 25 000-dimensional space. However, many of those genes are likely correlated in their
expression levels and, therefore, do not provide much information that can be used to separate
samples and to distinguish different groups of samples within the cloud.

PCA (Figure 10.7) is a dimensionality reduction method that searches for linear combina-
tions of variables – in this case, the expression levels of genes – that best explain the variance
between the samples, and then transforms the data such that the eigenvectors of gene expres-
sion (an eigenvector of a linear transformation is a non-zero vector of which all values change
by the same scalar factor when that transformation is applied to it) are ranked to best sepa-
rate the data. In this way, the data are transformed such that the first “component” explains
the largest amount of variation in the dataset, the second component explains the next largest
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Figure 10.7 First two components of
principal component analysis (PCA)
on the normalized gene expression
matrix for skin, whole blood, and
cell lines derived from those tissues
(data obtained from the Genotype
Tissue-Expression project (GTEx) v6).
Each point represents a sample and is
colored by its source. The first principal
component (PC1) separates tissue
types, the second component (PC2)
separates tissues from cell lines.
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amount of variation, and so on. Plotting the data using these eigenvector coordinates gener-
ally makes it easier to visualize the separation of samples into distinct groups. This, in turn,
can help in understanding whether the samples in an expression dataset group into specific
subsets with large differences in gene expression. PCA is also a good quality control tool, as
technical variation such as batch effects can easily be detected by visually inspecting the PCA
plots.

PCA is based on a number of simple linear algebra transformations on the underlying
genes-by-samples expression matrix. A schematic overview of how PCA works is shown in
Figure 10.8.

1) Begin by standardizing the matrix (in this case, the rows of the matrix) such that the range
of expression of each gene is on the same scale.

2) Calculate the covariance matrix, where the entry ij is the covariance between gene i and
gene j. The covariance between two genes basically measures whether they are correlated
in their deviation from average expression of all the samples in the population.

3) Calculate the eigenvectors and eigenvalues of the covariance matrix. An eigenvector is a
vector that, when multiplied by the covariance matrix, returns the same vector with each
value multiplied by a scale factor (the corresponding eigenvalue). The eigenvectors, or prin-
cipal components, are invariants of the matrix and are linear combinations of the genes (and
so are sometimes referred to as “eigengenes”).

4) Use the eigenvectors to recast the original data. This is accomplished by simply multiplying
the original expression matrix by the matrix of eigenvectors.

5) Plot the results in the basis of the new eigenvectors (which are orthogonal to each other,
much like the x–y–z axes).

In this framework, the first eigenvector explains the greatest amount of variation in the
data. The second eigenvector the second greatest amount of variation, and so on. In two- or
three-dimensional plots, it is common to examine the distributions, coloring the samples by,
for example, batch, the sex of the subject, or treatment group, to see how various systematic
and biological factors influence variation in the data.

Non-Negative Matrix Factorization

NMF is another dimensionality reduction method. It models gene expression data as a prod-
uct of two non-negative matrices by summarizing genes into a smaller number of so-called
“meta-genes.” In NMF, we start with an n × m (genes-by-samples) expression matrix R. We
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Figure 10.8 Principal component analysis (PCA) is a dimensionality reduction method that identifies
combinations of variables that capture the greatest variation in the data, and then plots the data in
principal component space. Here, points represent experiments in a higher dimensional “expression
space” in which each sample has its own unique expression profile (and therefore unique coordinates).
PCA identifies orthogonal axes along which the data have the greatest variation and calculates new
coordinate axes that are linear combinations of the individual genes. The samples are then projected
into “PC space,” where, typically, only the first principal components are plotted. Mathematically, PCA
decomposes our genes-by-samples matrix into a genes-by-patterns matrix (the columns of which are
the principal components) and a patterns-by-samples matrix. The principal components in this case are
sometimes referred to as “metagenes” since they consist of linear combinations of genes.

use an n × k features matrix P that has the centroid values for every gene in each of k clusters.
We multiply P by an n × k weights matrix Q that provides weights for representing columns
of R as non-negative linear combinations of the columns of P. The resulting product R̂ is an
approximation of the original matrix R:

R ≈ P × QT = R̂

Hidden in this explanation is the fact that NMF requires some advanced knowledge of how
many experimental groups (k) one might expect in the data.

In practice, one often does not know how many experimental groups to expect in any dataset,
so a common practice is to run the method with multiple values of k and then choose the
partitioning of the data that best explains the biology of the system under study. A quan-
titative measure that is useful in such an exploratory analysis is the cophenetic coefficient,
which measures how similar genes have to be such that they are grouped into the same clus-
ter – essentially, a measure of within-to-between cluster distance. A widely used approach is
to plot the cophenetic coefficient and then look for a precipitous drop in its value (indicating
that likely true clusters are being fragmented) to choose the optimal k. An example of such a
plot is visualized in Figure 10.9.

Step 7: Differential Expression Analysis

While exploratory data analysis can be very useful, most gene expression experiments are
designed to test the hypothesis that differences in phenotype are associated with differences
in the expression of functionally relevant genes. The most straightforward approach to testing
this hypothesis is to ask whether there are genes that have significantly different levels of gene
expression between the sample groups.
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Figure 10.9 Illustration of how one can select k when performing consensus clustering with
non-negative matrix factorization (NMF). The heatmaps show the consensus clustering based on dif-
ferent k values, ranging from 2 to 6. The color bars on top of the heatmaps show how the samples are
divided into 2–6 groups. The color bar on the right shows the consensus value, which ranges from 0 to
1, with 1 meaning that samples have similar expression levels. In this example, as k becomes higher,
the clusters become less precise. The “NMF rank survey” shows the cophenetic coefficient (y-axis) for
each k. As can be seen, at k = 2 and k = 3 the cophenetic coefficient is high, but at higher k it becomes
lower. Generally, one selects k based on the highest k before a breakpoint in the cophenetic coefficient
plot. In this example, that would be k = 3. Therefore, this example dataset likely contains three different
subtypes. This figure was generated using R package “nmf.”

The earliest applications in gene expression analysis simply applied a biological filter,
looking for genes that changed, on average, by a factor of 2 or more between conditions
(a fold-change filter). While an intuitive measure to many biologists, it ignored both the
magnitude and variability of gene expression. As a result, statistical measures of differential
expression quickly became the standard for assessing transcriptional differences.

The biggest problem with using statistical methods in gene expression analyses is that there
are tens of thousands of genes on which we have data, but typically only a few tens or hun-
dreds of samples. This leads to the problem of multiple testing – the observation that, with so
many more measurements than samples, it is likely that some genes will differ between sam-
ple groups simply by chance. Fortunately, there are ways to correct for such problems. We will
start by examining the various methods that are used to test for significant differences as these
methods, and the assumptions on which they are based, can help in understanding how we
can best identify significant differences.

Student’s t-Test: The Father of Them All

Student’s t-test, or more simply the t-test, is the most widely used method to determine differ-
ences between two groups in any field. The t-test can be characterized as a measure of signal
to noise in that it compares mean expression levels between two groups, then uses the stan-
dard deviation to determine whether the difference in means is significant. Essentially, the test
measures whether the difference in means is large compared with the variation in the data and
estimates the probability that the observed difference is due to chance.

The t-test comes in different flavors, such as a two-sided t-test (testing whether the expres-
sion of a gene is higher or lower in one group than in another), a one-sided t-test (used to test
whether expression of one gene is higher in one group than another), or a paired t-test (used
to test whether the difference in expression of a gene between groups is larger than one might
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expect). There is also a generalization of the t-test for use with more than two groups called
the F-test or analysis of variance (ANOVA).

The paired t-test is the most widely used in expression analysis when one has matched sam-
ples, such as patients and matched controls. In its native form, the t-test assumes that the
data have a normal distribution, so it does not correct for any potential mean-variance depen-
dency that can occur in gene expression studies. One possible way to overcome some of these
problems is to use an empirical t-test that permutes samples between groups and calculates
repeated t-statistics for each gene, testing whether the observed (actual) t-statistic with real
data is larger than what the permuted data tell you to expect.

However, all versions of the t-test suffer from the problem of multiple testing, which means
that, with many, many more genes being profiled than samples to constrain them, we risk find-
ing genes that are different between groups simply by chance. Consequently, there has been
a substantial investment of time and effort in developing more robust methods for identifying
genes that are differentially expressed between experimental groups. Here, as before, we sur-
vey widely used methods with the recognition that there are many other methods that have
been developed and used in the analysis of expression data.

Limma

The linear models for microarray and RNA-seq data (Limma) approach was, as its acronym
implies, first developed for the analysis of microarray data. Limma fits a linear model to the
expression levels for each gene and uses a moderated t-test to identify significantly differen-
tially expressed genes. The moderated t-test is constructed using an empirical Bayesian method
that differs from a standard t-test in that the variance is scaled based on expression levels, using
a pooled estimate of variance and degrees of freedom to better estimate significance; this pro-
vides a stable estimate of significance even for small sample sizes. The Limma method also
calculates an estimate of false discovery rates (FDRs) rather than a simple p value, as a measure
of significance; this is described in more detail in False Discovery Rate.

Voom

The negative binomial model is one of several statistical methods developed for use with count
data, but calculating a negative binomial distribution can be computationally difficult for large
numbers of samples, making methods like DESeq and edgeR impractical. While log trans-
formation of RNA-seq counts can help standardize the data, it often further skews variance
estimates. Variance modeling at the observational level (or Voom) empirically models the
mean-variance association for each gene, fitting the standard deviation of each gene’s loga-
rithm of the counts per million (log-cpm) value as a function of the average log count. Voom
then incorporates the mean-variance trend as a precision weight for each observation and uses
this within the Limma analysis pipeline. This has the advantage of providing an empirical
Bayes framework for linear modeling of RNA-seq data and then allows simple integration of
Voom into established pipelines for analysis. Voom’s compatibility with established methods
has made it one of the most widely used methods for RNA-seq analysis.

Negative Binomial Models

Differential expression analysis for sequence count data (DESeq) (Anders and Huber 2010;
Love et al. 2014) and edgeR (Robinson et al. 2010) are two widely used methods for identi-
fying differentially expressed genes from RNA-seq analysis methods. Both methods use the
RNA-seq count data which suffer from over-dispersion (meaning more variability than would
be expected for unbiased count data). Both DESeq and edgeR decompose the variance of a
gene’s expression level into both biological variability and technical variability. Biological vari-
ability contributes to differential expression between genes. The technical variability results
from various aspects of the experimental process, including errors introduced in sample col-
lection, RNA extraction, library preparation, sequencing, and other factors in the experiment,
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all of which can distort the actual RNA counts. Both methods assume that the amount of bio-
logical variability is directly proportional to the amount of over-dispersion – the increased
variability seen in a dataset compared with what would be expected using solely unbiased
count data. Both DESeq/DESeq2 and edgeR assume a negative binomial distribution (rather
than a Poisson distribution) and fit a generalized linear model to estimate and account for this
over-dispersion when identifying differentially expressed genes.

Fold-Change

As mentioned previously, measurements of fold-change were widely used in the earliest days
of DNA microarray genome-wide expression analysis. While statistical methods give an unbi-
ased estimate of the evidence supporting the differential expression for a particular gene, they
ignore the intuition of many biologists that small changes in the expression level of a particu-
lar gene should not be associated with large differences in phenotype. While one might argue
that small changes in the level of a transcription factor, a kinase, or some other protein might
have larger downstream effects, it can be difficult to interpret small absolute perturbations for
most genes. Consequently, many studies use a combination of fold-change and statistical sig-
nificance, filtering the statistically significant genes to include only those with a fold-change
greater than 2 (or some other threshold) in any downstream analysis.

Correcting for Multiple Testing

As noted previously, the large number of genes assayed in any RNA-seq experiment and the rel-
atively small number of samples increases the likelihood that one finds differentially expressed
genes simply by chance. For example, imagine analyzing 25 000 genes and ranking them by
some measure of significant difference between experimental groups (such as their t-statistic).
Each individual t-statistic represents an individual test on a single gene, and, with 25 000 genes,
that many individual tests are performed. If you were to take the top 5% of the genes based on
your statistical measure, you would have selected 1250 genes without being able to say with
confidence that any one of these is truly differentially expressed. Fortunately, there are meth-
ods for dealing with this multiple testing problem.

Family-Wise Error Rate The family-wise error rate (FWER) is a way of estimating the prob-
ability of making one or more false discoveries (false positives or type I errors; see Chapter
18) when performing multiple statistical tests. If we are performing some number c of tests
that have a pre-defined level of significance that we want to use for each test (𝛼), then we can
calculate the FWER as

FWER ≤ 1 − (1–𝛼)c

If we return to our example of 25 000 genes and an estimated level of significance of 0.05, then
we would expect (FWER probability close to 1) to have at least one false discovery, as computed
by

FWER ≤ 1 − (3.8 × 10−55)

The Bonferroni correction is a well-established FWER method for dealing with the multiple
testing problem. One simply divides the p value threshold by the numbers of tests that are per-
formed, replacing 𝛼 with (𝛼/c). However, this is known to be too stringent a criterion for gene
expression analyses; with 25 000 genes, a p value cut-off of p < 0.05 is reduced to p < 2× 10–6,
a threshold so low that most analyses fail to find even a single gene that meets this threshold,
even when comparing samples that are distinctly different. While there are adjustments to the
Bonferroni correction that can help mitigate its severity, the most widely used methods are
based on other measures that estimate FDRs.
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False Discovery Rate Benjamini and Hochberg (1995) introduced the FDR concept as a way of
dealing with statistical issues arising from multiple testing, an idea which was later extended
by Benjamini and Yekutieli (2001). While FWER estimates the probability of one or more false
positives, FDR recognizes that false positives will occur and tries to estimate the number of
false positives within a group of supposedly significant results, allowing the user to select a
tolerated proportion of significant results likely to be false positives. The FDR is essentially the
proportion of significant results that one would expect to be false positives. Note that the FDR
discussed here (which is specific to multiple testing and is formally an “FDR-controlling pro-
cedure”) is similar but fundamentally different than the FDR discussed elsewhere for binary
classification (see Box 5.4).

In its simplest implementation, calculating the FDR from the p values for any statistical test
is relatively easy. If we assume that we have N tests, and we calculate p values for each test,
then to calculate the FDR we perform the following steps.

1) Sort the individual p values from smallest to largest: p1, p2, …, pk, …, pN .
2) For an FDR of q, search for the kth p value such that

pk ≤ (i∕N)(q∕c(N)),where c(N) =
N∑

i=1
(1∕i)

One then declares as significant (at an FDR of q) those genes whose p values rank in the
range 1, …, k.

3) Methods that calculate FDRs often report a q value for each gene, which can be obtained
from the above equation and written as

qi = (piN∕i)c(N),where, as before, c(N) =
N∑

i=1
(1∕i)

4) However, the q values calculated in this way are not a monotonic function of the p values,
so Benjamini and Yekutieli introduced the adjusted q value, qi, where

qi = min qk for k ≥ i

Understanding FDRs and their use is extremely important for analysis of gene expression
data as most methods report FDRs or q values as a default. For methods that do not report FDRs
as a default, one can use functions such as the “p.adjust” function from the “stats” package
in R to compute them.

Step 8: Exploring Mechanisms Through Functional Enrichment
Analysis

Having identified a set of “significant” differentially expressed genes, the next step is to use
this list to explore the biology of the system under study. If you have a reasonable understand-
ing of the system you are studying, it is relatively easy to look at the significant gene list and
selectively describe one or more genes and their potential involvement in the process under
study. However, such “bio-poetry” means that any such interpretation is ultimately based on
anecdotal knowledge and can fail to capture real trends in the data. Rather than asking about
individual genes, a better approach is to look for biological processes that might be altered in
their overall expression patterns between states.

Fortunately, there are many resources that can be used to provide higher order annotation
for genes (see Chapter 13). Among the most widely used annotation systems is GO, a
well-established and well-curated system that uses the biological literature and other sources
of information to assign each gene to a classification in each of three aspects (see Chapter 7):

1) cellular component (CC) – the regions of a cell or its extracellular environment to which a
gene’s protein product localizes

2) molecular function (MF) – the primary function carried out by a gene product at the molec-
ular level, such as transport or binding



Step 8: Exploring Mechanisms Through Functional Enrichment Analysis 301

3) biological process (BP) – the collective process in which a gene product participates, such
as cell growth, signaling, or energy metabolism.

Among these, the GO biological process information is often the most informative. In
addition to GO, there are many pathway databases and other databases of “gene sets” that
can be used for classification, but the methods used with these are essentially identical. What
we want to know is whether there is one or more biological process (or pathway) that is
over-represented among the most significant genes distinguishing the study populations.
These methods are referred to as gene set enrichment analyses, or functional enrichment
analyses, and many different approaches, R packages, and online tools exist. The most widely
used methods are either list based, which uses a predetermined set of differentially expressed
genes, or rank based, which uses the entire gene list ranked by some metric of significance,
such as a p value or a q value.

List-Based Methods

Having identified a set of differentially expressed genes, the question is whether there are more
genes in that list mapping to a particular functional class than one would expect by chance.
Most of the methods used to make such an assessment are based on Fisher’s exact test (also
referred to as the hypergeometric test, but called “exact” since it does not use an approximation
to the hypergeometric function). The Fisher’s exact test relies on a selected set of genes (those
that have been identified as differentially expressed) and a background set. For microarrays,
the background set is the set of genes that appear on the array. For RNA-seq analyses, the
background is often the whole genome.

Fisher’s exact test is based on constructing a contingency table for each functional category
to be tested (for example, for each GO BP term). One maps significant and non-significant
genes to that GO BP term and then tabulates the others. So, if there were n genes in total, a
of which are significant and map to that BP term, c of which are significant but do not map
to that BP term, b of which are not significant but map to that BP term, and d of which are
neither significant nor map to the tested BP term, then the corresponding contingency table
would be of the following form.

Number of
significant

Number of
non-significant Row total

Annotated to tested BP term a b a+ b
Annotated to other BP terms c d c+ d
Column total a+ c b+ d a+ b+ cn

The hypergeometric distribution is then used to estimate the probability of observing such
a distribution by chance:

p =

(
a + b

a

) (
c + d

c

)

( n
a + c

) = (a + b)!(c + d)!(a + c)!(b + d)!
a!b!c!d!

So, if 10% of the genes in the genome are annotated to a particular BP term, there would be a
high likelihood of seeing 10% of the significant set also mapping to the same BP term. However,
if 20% of the significant genes mapped to that same BP term, that may well be significant. The
value of using this method is that it helps guard against over-interpreting the representation of
functional classes. Because there are many functional classes being tested, these p values must
be corrected for multiple testing.

An example of a widely used list-based method for pathway enrichment analysis that is based
on (a modified version of) the Fisher’s exact test is the Database for Annotation, Visualization
and Integrated Discovery, or DAVID (da Huang et al. 2009a,b). DAVID’s test is modified by
replacing a with (a− 1) in the contingency table, which makes the test more conservative in
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estimating significance. DAVID is a user-friendly online tool that can test a given input and
background gene list against different pathway annotation databases, including GO terms and
pathways from Biocarta and the Kyoto Encyclopedia of Genes and Genomes (KEGG). DAVID
has background gene sets for the most common microarray platforms, as well as whole genome
collections for RNA-seq analysis.

An R package that performs a similar type of analysis is topGO (Alexa et al. 2006). In addition
to performing a hypergeometric test, topGO can perform pathway analysis using algorithms
that are specifically designed to take into account dependencies between different GO terms.
An example is the elim algorithm found within topGO, which removes genes that are anno-
tated to a significantly enriched node (or GO term) from all its ancestor nodes in the GO tree
structure. In this way, less emphasis is placed on general cellular functions, with a greater
emphasis on the more specific GO functional terms that appear further down in the GO hier-
archical structure.

Rank-Based Methods

The problem with list-based methods is that they are sensitive to where one sets the threshold
for inclusion. One often finds that adjusting the FDR cut-off for significance up or down can
result in very different results because there may be a group of genes, just above or below the
significance threshold, that are all from a particular functional class. Rank-based approaches
get around the problem of significance thresholding by ranking all of the genes in the assay by
some measure of their significance (such as a p value, q value, t-statistic, signal-to-noise metric,
or some other method). The rank-based approaches then test whether genes annotated to a par-
ticular functional class (such as a GO BP term or a KEGG pathway) are over-represented near
the extremes of the rank-based list. The first implementation of this approach is called Gene Set
Enrichment Analysis (GSEA; Subramanian et al. 2005). GSEA is available as both an online
tool and a stand-alone Java program that can be called from other programming languages,
such as R. GSEA uses a weighted Kolmogorov–Smirnov test to determine a so-called enrich-
ment score of a gene signature, then uses permutations to identify whether the enrichment
score is significant (Chapter 13). The R package GSEAlm (Oron et al. 2008) uses a linear model
to calculate p values and then tests whether the distribution of p values for genes mapping
to a particular annotation class is different from the p value distribution for the background
gene set.

Step 9: Developing a Classifier

Many analyses have the identification and exploration of biological processes driving differ-
ences in phenotypes as their ultimate goal. However, one other common application of gene
expression profiling, particularly in clinical or translational applications, is to use the data to
develop a classification model to assign a new sample to one of the phenotypic groups under
study. To develop such a classifier, one must first select a set of features (in our case, genes)
that distinguish between biological classes and then fit the parameters of some model so that
it can accurately classify samples based on the expression of the feature set (called “training”
the algorithm). As with the other steps in gene expression analysis outlined here, there are
myriad choices that one could make in selecting features and in training and testing a classi-
fication algorithm. These include many statistical and machine learning methods that can be
used for classification, but there is no clear consensus in the field as to which methods might be
optimal. That said, it is clear that biomarkers, which include a feature set and a classification
method, need to be carefully validated using independent datasets.

One key element in developing a successful and reproducible classifier is starting with a good
experimental design. There have been thousands of gene expression biomarkers published,
most of which have not been used beyond the initial study in which they appear. While these
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were addressed in part in our earlier discussion about experimental design, there are a few
additional criteria that should be considered.

First, there should be a good balance of the different groups one wants to classify. If you are
studying a rare disease such that only 10% of your population has that disease, then you can
build a classifier that is 90% accurate by simply concluding that no one has the disease. So, one
should recognize this and either try to balance the groups or, better yet, clearly articulate the
criteria for success.

Second, one needs to consider having both training and test populations. In the standard
paradigm, one performs feature selection and parameter fitting/algorithm training on a single
test set and then validates the predictive model on an independent test set (meaning a set that
was not previously used to select features or to train the algorithm in any way).

If one has a small population from which to draw (for example, if dealing with a rare dis-
ease), cross-validation is an acceptable approach, but for each “fold” of the cross-validation one
should re-perform both the feature selection and algorithm training using the training subset,
then re-test the performance of the method on the independent test subset. The challenge with
a cross-validation method is that the result is not a single classifier but, rather, a collection of
classifiers, none of which can be easily validated relative to the others.

The other thing to recognize in developing classifiers is that one needs training and test
datasets for which there is an objective truth; otherwise, methods cannot be effectively trained,
nor can their performance be objectively assessed. One alternative way to look at this problem
is to turn the test set and training set paradigm on its head by using multiple, independent
training sets, learning a new classifier on each training set, and then testing the concordance
and stability of multiple classifiers on a single test set. In many ways, this yields a better metric
for classifier success as it speaks to how likely we are to make the same classification of an
individual patient, independent of where or how the algorithm was fit.

Measuring Classifier Performance

In measuring classifier accuracy, two commonly used measures are the sensitivity and speci-
ficity (see Chapter 7). Imagine that we have developed a classifier and that we want to test it on
an independent dataset for which we already know the classes of each sample. We can use the
classifier method, make a determination for each sample in the test dataset, and then check
how well we did. If we imagine that we have cases and controls and want to classify cases,
then we will consider the cases as positives and controls as negatives. We can then classify our
predictions as true positives (TPs) and true negatives (TNs), meaning that the predictions con-
firm the true classifications. In turn, false positives (FPs) and false negatives (FNs) represent
disagreements with the true classifications. We can then define the sensitivity, or true positive
rate (TPR, sometimes also called the hit rate or recall), as the proportion of TPs that were found
relative to the actual number of real positives:

TPR = TP∕(TP + FN)

We then define the specificity, or true negative rate (TNR), as the proportion of TNs that
were found relative to the actual number of real negatives:

TNR = TN∕(TN + FP)

A third measure that is sometimes useful is the precision, or positive predictive value (PPV),
defined as the proportion of TPs that were found relative to the number of called positives:

PPV = TP∕(TP + FP)

Finally, a very useful diagnostic plot that incorporates these concepts is the receiver operat-
ing characteristic curve (or ROC curve, named because of its development in radar detection
during World War II), where sensitivity is plotted against the specificity (or FPR). This graph-
ical representation is quite useful, as most classification methods include parameters that can
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Figure 10.10 Receiver operating charac-
teristic (ROC) curve for a model designed
to use microbiome data to predict whether
individuals have symptomatic diarrheal
disease (Pop et al. 2016). The area under
the ROC curve, or AUC, is a measure of how
accurately a classifier performs, balanc-
ing sensitivity and specificity. The diagonal
line (where sensitivity = specificity) repre-
sents the results expected by chance for a
random classifier. A good classifier has an
ROC curve that extends above the random
line and consequently has an AUC> 0.5. An
AUC< 0.5 would be expected for a classi-
fier with a negative predictive power.

adjust the sensitivity or specificity; understanding how the two affect each other can help
determine how to adjust the prediction model. A random classifier would have an equal TPR
and FPR and would appear as a diagonal in the ROC curve (Figure 10.10).

Feature Selection

As noted previously, a classifier has two components: a feature set and a classification algo-
rithm. The goal in feature selection is to use comparisons of sample groups in the training set
to identify a set of genes that distinguish those groups and that have sufficient discriminatory
power to classify new samples.

Differential Expression Testing It may not surprise you that one of the most common meth-
ods for feature selection is to use the statistical methods for differential expression analysis
described in step 7. The statistical tests for differential expression analysis will identify genes
that, in any given dataset, best distinguish the experimental groups. While intuitive, differ-
ential expression analysis may identify a large number of highly correlated genes that could
bias any downstream classification system. What one really wants is a set of features that have
the greatest discriminatory power between classes, based on the multiple patterns that might
be necessary to provide full class discrimination. Fortunately, there are a number of methods
that select such features, including those we describe below, such as minimum redundancy
maximum relevance (mRMR) and significance analysis of prognostic signatures (SAPS).

The challenge with feature selection was highlighted by Venet et al. (2011), who compared
published gene sets against random gene sets for their ability to separate breast cancer cases
into groups with significant differences in survival. The ability of random gene signatures to
outperform “significant” gene sets suggests that measures beyond statistical significance in
selecting gene sets for classification are needed.

Minimum Redundancy Maximum Relevance Statistically significant sets of genes often have
groups of genes that are highly correlated because they are co-expressed but that all represent
similar processes. If you use only the most significant genes in a classifier, you run the risk
of over-sampling large correlated gene sets and, in doing so, missing the range of biological
processes that might help to distinguish distinct phenotypes.

Consider a case where you are comparing different classes and ranking the genes by their
significance, selecting the most significant gene and then removing the genes that are highly
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correlated with it from consideration, then selecting the next most significant gene, remov-
ing correlated genes, and continually repeating the process. What this should yield is a set of
genes that are both highly predictive and relatively distinct from each other. As you now most
likely recognize, there are many ways of measuring similarity, including the use of Pearson
correlation coefficients and Euclidean distance.

A method that helps balance the representation of different biological processes when mea-
suring similarity is called minimum redundancy maximum relevance (mRMR) (Ding and Peng
2005). mRMR uses mutual information (a non-linear method of association) to simultane-
ously identify genes that best discriminate between classes and reduce the potential overlap
in expression profiles between genes. An implementation of mRMR in R is available in the
survcomp package and a parallel version can be found in the mRMRe (De Jay et al. 2013)
package.

Significance Analysis of Prognostic Signatures The paper by Venet et al. (2011) examined the
ability of random gene sets to predict survival, and their findings cast doubt on many predictive
methods that have been published based on selected gene sets. Part of what might underlie
this finding could be the relatively large number of genes that are used in many published
classifiers and correlations between the genes in the selected feature sets (and others in the
genome), among other reasons. SAPS (Beck et al. 2013) is a heuristic method that can address
the aforementioned considerations and is appropriate for use when attempting to determine
predictors of disease outcomes or survival, although the general procedure could be adapted
to other classification problems as well.

The method calculates a SAPS score for a candidate gene set based on three separate p
values – Ppure, Prandom, and Penrichment – each of which is estimated using a series of tests.

1) Ppure is calculated by first using k-means clustering (with k = 2) to separate patients into two
groups based on the selected set of genes, then computing a log-rank p value to estimate
the probability that the two groups of patient samples exhibit no difference in survival.

2) Next, random gene sets of the same size as the candidate gene set are selected and tested
as described in step 1 of this list to assess how well they separate the population into two
groups that differ in survival. Prandom is the proportion of random gene sets that have a
log-rank p value at least as significant as Ppure.

3) Penrichment examines the candidate gene set and the random gene sets to determine their
relative enrichment for highly predictive genes based on a concordance index. The con-
cordance index of a gene is the probability that, for a pair of patients randomly selected
in the dataset, the patient whose tumor expresses that gene at a higher level has a worse
outcome than the patient whose tumor expresses the gene at a lower level. Penrichment is cal-
culated by using a pre-ranked gene set enrichment analysis to determine the enrichment of
genes with high or low concordance indices in the candidate gene set relative to the random
gene sets selected in step 2 of this list. The significance of enrichment is estimated using a
permutation analysis.

4) Finally, these three scores, together with the direction of the association (direction, which
is “1” for positive and “−1” for negative associations) between the candidate gene set and
outcome, are combined to calculate the SAPS score:

SAPS score = –log10 max(Ppure,Prandom,Penrichment) × direction

The larger the absolute value of the SAPS score, the more significant the prognostic associ-
ation of all three p values. The statistical significance of the SAPS score can be estimated by
permuting genes, generating a null distribution for the SAPS score, and computing the pro-
portion of gene sets from the null distribution that have at least as large an absolute value of
the SAPS score as that observed with the candidate gene set. If multiple candidate gene sets
are evaluated, the raw SAPS p value of each gene set can be used to generate a corresponding
SAPS q value, which is the SAPS p value corrected for multiple testing.
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The value of methods such as mRMR and SAPS is that they provide a means of testing gene
sets for their quality before training and testing an algorithm. Using an optimal gene set can
greatly increase the chance that a classification method will perform well, although additional
validation of the gene set plus the classification algorithm are essential.

Classification Methods

Having selected a candidate gene set for classification, the next step in the process is choosing,
training, and validating a classification algorithm that can be used to assign a new sample to
one of the phenotypic subgroups under study. There are a large number of classification meth-
ods borrowed from statistics and machine learning for this purpose. These include nearest cen-
troid, shrunken nearest centroid, Gaussian subtype classification models, k-nearest neighbors,
support vector machines, random forests, linear discriminant analysis, quadratic discriminant
analysis, partial least squares, logistic regression, neural networks, and others (Hastie et al.
2001, 2009; Haibe-Kains et al. 2012) (see also Chapter 18).

While the details of each of these methods can differ substantially from the others, each clas-
sification method represents a mathematical function whose parameters are fit (“estimated”
in statistics, “learned” in machine learning), whose input variables are gene expression levels
for a particular sample, and whose output is a subgroup assignment for that sample. While
it would be wonderful to provide guidance as to the best method for classification, a survey
of the literature will demonstrate that there is no scientific consensus as to the best approach
to use (although many papers claim superiority of one relative to others). There is, however,
consensus that the performance of those methods should be rigorously tested and validated as
described in more detail below.

One important question to consider when training a classifier is the relative cost of FPs and
FNs. Most methods optimize overall performance, but there can be instances where there is
a real cost for over- or under-identifying members of a class. For example, in a clinical set-
ting, it might be far better to identify everyone who has a disease (increased sensitivity) at
the risk of having some level of FP identification (decreased specificity). Depending on our
application, we might decide it is important to minimize the FPR, the FN rate, the PPV, or
some other parameter. In most instances, optimizations are performed with equal value placed
on FPs and TPs and FNs and TNs. So, before fitting a model, it is useful to know whether
this is an appropriate assumption to make, or if there are some misidentifications that are
more costly than others. That decision will help guide the approach to both model fitting and
validation.

Validation of Predictive Models

A predictive classifier is only useful if it is accurate and reproducible. In breast cancer, for
example, there have been thousands of subtype classifiers published, but fewer than 10 are
used in a clinical setting. One common reason for the failure of these predictive models is that
their performance is often over-estimated because of methodological errors, a phenomenon
that is known as over-fitting. There are many reasons this can occur, and we will examine
three strategies that can help avoid over-fitting.

Validation of Population-Level Predictions Using Independent Test Sets The performance of
most classifiers is based on their ability to partition a group of samples into subgroups that are
defined by their underlying biology or some other measure like response to therapy or disease
survival. If we start with a test dataset for which we have subgroup information, we can per-
form feature selection and then train our method, fitting model parameters. If we applied that
same classifier to the test dataset, we should obtain a classification accuracy of 100%, but that is
not a fair test. The appropriate question is whether this classifier, applied to a truly independent
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test set, will provide a sufficient level of accuracy to be of use. Independent validation requires
the following.

1) Starting with a training dataset, using known sample classes to perform feature selection
and to fit model parameters.

2) Using an independent test dataset that has been completely unused in any prior study, with
class labels blinded, and applying the classification model that you have developed to assign
samples to each subgroup.

3) Unblinding the sample class labels, then comparing the predicted class with the true class,
calculating metrics such as the sensitivity and specificity before reporting the findings.

This is a relatively simple and well-established protocol, but there are some things to keep
in mind when using it. First, an independent dataset will give you more reliable answers if it
is truly independent. If you are using clinical samples, try to have training and test samples
come from different hospitals, have RNA extracted by different people, and have expression
measured by different facilities. If it is possible to generate multiple test sets that are indepen-
dent from the training set and from each other, then you are more likely to accurately estimate
performance.

One common mistake that was made often in the early days of transcriptome profiling was
to pool samples for feature selection and then to separate the pool for training and testing. The
problem with this approach is that biases in some samples can influence feature selection,
potentially inflating the final performance estimates. The important thing to keep in mind is
that training and test sets have to be kept truly independent from each other at every step in
the process.

Validation of Population-Level Predictions Using Cross-Validation A variation on the indepen-
dent training and test set paradigm, and one that is often used when there are only a lim-
ited number of samples available, is cross-validation. An n-fold cross-validation uses a single
dataset, dividing it into training and test sets n times, then repeating the training and test pro-
cess with each of the n “folds” of the process. There is no absolute right way to divide the initial
dataset or a correct number of folds to perform but, given that this approach is often used with
relatively small datasets (such as for a rare disease), a common split is 90/10 in training vs. test
and the use of at least 10 folds. The procedure mirrors the independent validation model.

1) For each fold, divide the dataset into separate training and test sets.
2) Use the known sample classes in the training set, perform feature selection, and fit model

parameters.
3) Use the fit model to classify the samples in the test set.
4) Calculate the performance of the classifier.
5) Repeat steps 1–4 in this list n-fold times, tabulating an overall average performance of the

classifier and its method.

Cross-validation is one of the most misused methods for classifier evaluation. One common
mistake is to use the entire dataset for feature selection, and then to use the various folds to train
the model and apply it. The problem here is that there may be biases in some of the samples that
get captured during feature selection and then inflate the performance of the overall method.
So it is essential that, within each fold, the training and test sets remain independent. Further,
the entire process should be run multiple times to ensure that a particular data split does not
bias the results.

The problem with cross-validation is that, at the end, there is no single classifier that
you can report. Instead, there are n feature sets and n classifiers, one for each fold in the
cross-validation. What some groups have done is to take the intersection (or sometimes the
union) of the classification gene sets and then report those as a biomarker set. Sometimes,
that consensus set is used to train the algorithm on the entire dataset, but there is no solid
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theoretical support for using this method and, while one might take this approach, the
overall performance of this new classifier would remain unknown until it is used with a truly
independent dataset.

Validation of Individual-Level Assignment Robustness Using Independent Training Sets Valida-
tion of classifiers using a training set and one or more independent test sets provides a very
good way of understanding how well a classification method will perform on a population, and
the sensitivity and specificity are good measures of population-level performance. However, if
you are a patient in a clinic and if the physician treating you is going to use some test for deter-
mining a diagnosis, the performance at a population level is probably far less important to you
than how reliably and consistently the test will assign you to the right treatment group.

In practice, this approach is relatively simple (Haibe-Kains et al. 2012; Beck et al. 2013). One
starts with multiple independent training sets for which the samples have a known classifica-
tion and a single independent test set.

1) For each training set, one identifies a gene set that distinguishes the classes; alternatively,
one can start with a candidate gene set based on some other criteria (such as a representative
gene set from known pathways or culled from the literature).

2) For each training set, and for the appropriate gene set, one fits the classification model.
3) Each classification model is used independently to predict the classes of the samples in the

test set.
4) The concordance between different classifiers is used to estimate the robustness of the

method, measuring how often classifiers produced with different training sets give the same
classification for each sample.

In many ways, this robustness assessment speaks to our intuition about how a good clas-
sification model should perform. It should not matter if the model was learned in London,
Paris, Sydney, Tokyo, or Boston. If the gene set and the predictive model are truly reliable, they
should give the same classification.

In practice, this approach can lead to the same difficulties that arise in cross-validation –
namely, that there is no single classifier. However, given that a good classifier is going to be
highly concordant independent of which dataset was used to train the method, one would
hope that all are more or less interchangeable. In any event, this means of evaluation should
be considered complementary to, but not a replacement for, validation using an independent
test set.

Single-Cell Sequencing

Although single-cell RNA sequencing (scRNA-seq) is relatively new, it is particularly exciting
as it allows the transcriptomes of individual cells to be profiled. Although the first scRNA-seq
experiments analyzed a single cell or a very small number of cells, we can now analyze thou-
sands of cells per experiment and there are a host of published protocols (SMART-Seq [Ram-
skold et al. 2012], CEL-Seq [Hashimshony et al. 2012], and Drop-Seq [Macosko et al. 2015]) in
use as well as robust commercial products such as the 10x Chromium system.

Unlike conventional applications of DNA microarrays and RNA-seq that analyze gene
expression in bulk tissue samples, scRNA-seq uses barcoding to create sequencing libraries
from each cell in a sample, producing expression profiles for individual cells in the orig-
inal sample. As such, scRNA-seq not only allows expression to be compared between
phenotypes, but also to define cell populations and to study how expression variation and
cellular heterogeneity is associated with phenotype. Published applications of scRNA-seq
include identification and exploration of cell types and their diversity, analyses of the
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stochasticity of gene expression, and estimation of gene regulatory networks across cells and
cell types.

The processing steps used in scRNA-seq are similar to those used in RNA-seq. Typically,
one performs quality control on sequence reads, aligning quality reads to an appropriate ref-
erence (using, for example, Salmon [Patro et al. 2017] or Kallisto [Bray et al. 2016]), and map-
ping quality control. At this stage, one typically uses methods that are unique to scRNA-seq
for normalization, for identifying subgroups based on expression, for testing for differential
expression, and for doing functional analysis. These include SCONE (Cole et al. 2018) for nor-
malization, Seurat (Butler et al. 2018) and GiniClust/GiniClust2 (Jiang et al. 2016; Tsoucas and
Yuan 2018) for finding cell populations, and web-based processing platforms such as Falco
(Yang et al. 2017) and ASAP (Chen et al. 2017; Gardeux et al. 2017) for providing integrated
analyses.

The reason the analysis path of scRNA-seq diverges from the analysis of bulk RNA-seq is
that there are a number of technical artifacts that are specific to scRNA-seq. One example is
the batch effects that occur as a result of cell isolation and amplification. But a more signifi-
cant problem is that of gene “drop-out” or sparsity. It is estimated that each cell has as many
as 300 000 RNA transcripts at any one time. However, in scRNA-seq, only a few thousands (or
tens of thousands) of reads per cell are typically recorded. Drop-out occurs owing to statis-
tics associated with the mRNA counting experiment – we miss some transcripts by chance.
While highly expressed transcripts are generally well represented in scRNA-seq data, moder-
ately to lowly expressed transcripts can be missed. And the overall pattern of “drop-out” genes
produces a cells-by-transcripts expression matrix that is sparse – meaning that there are far
fewer observed counts that might be expected. Fortunately, this problem has been explored
in the microbiome literature and many methods in use for scRNA-seq can trace their roots to
microbiome analysis.

However, these issues mean that, as of the time of writing, there is no general consen-
sus on many aspects of scRNA-seq analysis. For example, in normalization, both global and
scaling methods are frequently used and the TPM and CPM measures are common. In com-
paring expression, methods are being developed that account for the multi-modularity of gene
expression that results from cell populations. However, many published studies still rely on
established methods for phenotype comparison, including the t-test.

A new type of visualization that is now widely used in the scRNA-seq literature is
t-distributed stochastic neighbor embedding (t-SNE) plots (van der Maaten and Hinton 2008).
Similar to methods such as PCA, t-SNE reduces high dimensional data, but does so by solving
an objective function that attempts to preserve distances between similar genes or cells. While
t-SNE has proven to be extremely useful, it is memory and computationally intensive and the
run time scales with the square of the number of cells or genes analyzed.

Summary

This chapter provides a roadmap for the analysis of gene expression data and is, by the very
nature of the rapid changes in this field, incomplete. Since the first genome-wide analysis
of expression through the sequencing of expressed sequence tags was performed in the early
1990s, changes in technology, advances in analytical methods, and an explosion of ancillary
data (such as genome sequences from many organisms, as well as their gene annotations) have
transformed the field. While the choice of particular software tools or analytical methods can
be debated, and the best options today will be eclipsed by new methods tomorrow, the gen-
eral principles of good experimental design and sound analytical practice remain unchanged.
Rather than a cookbook, this chapter is best considered as a roadmap, guiding the researcher
along a path that will increase the likelihood of success and provide some confidence in the
results. In that spirit, we hope you find the methods outlined here a useful introduction and
guide.
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Internet Resources

ArrayExpress www.ebi.ac.uk/arrayexpress
Bioconductor www.bioconductor.org
Database for Annotation, Visualization and Integrated
Discovery (DAVID)

david.ncifcrf.gov

Gene Expression Omnibus (GEO) www.ncbi.nlm.nih.gov/geo
Gene Set Enrichment Analysis (GSEA) software.broadinstitute.org/gsea/index.jsp
Genomic Data Commons (GDC) Data Portal portal.gdc.cancer.gov
Genotype Tissue-Expression project (GTEx) gtexportal.org
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best practices.
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Proteomics and Protein Identification by Mass Spectrometry
Sadhna Phanse and Andrew Emili

Introduction

What Is a Proteome?

A proteome is the entire set of proteins expressed in a biological entity (cell, tissue, organ, or
organism) at any point in time during its life cycle. It is derived from the words protein and
genome and was first coined by Marc Wilkins in 1995 in reference to the functional study
of proteins using mass spectrometry (MS) (Wilkins et al. 1996). Proteomics is the large-scale
study of proteins that employs a systematic, shotgun, or targeted high-throughput approach to
elucidate their identity, localization, abundance, structure, function, or expression profiles.
Proteomics complements other “omics” studies, such as genomics or transcriptomics, to
expand on the identity of proteins that are encoded by genes and to determine their fun-
damental role in the cell. While a genome of an organism is relatively static, the proteome
is highly dynamic and differs from cell to cell and changes – in terms of the abundance,
post-translational modifications (PTMs), and stability and physical associations of the
expressed protein isoforms – in response to different environmental stimuli. This dynamic,
ever-changing nature makes the proteome significantly more complex than the genome.
For instance, the human genome comprises ∼20 000 protein-coding open reading frames
(Gaudet et al. 2017). On the other hand, mutations and alternative transcription and splicing
isoforms and other mechanisms can give rise to multiple different messenger RNA (mRNA)
transcripts from a single gene (Figure 11.1). In addition, site-specific chemical or enzymatic
modifications during or after translation can result in various diverse proteoforms (i.e.
different forms of proteins) that change over time, subcellular location, and physiological or
diseased conditions. This suggests that the human proteome may actually consist of millions
of chemically distinct entities.

Why Study Proteomes?

Major advances in DNA sequencing over the last decade have resulted in the determination
of the complete genomes of over 8000 organisms and the availability of partial draft genomes
for approximately another 37 000 species (Mukherjee et al. 2017). As a consequence, there
has been an exponential increase in the number of putative protein sequences, or “virtual
proteomes,” which has, in turn, created a vital need for the determination of the physical,
structural, and functional roles played by these proteins. Given the complex, dynamic nature
of the proteome, it is important to not only identify the cognate gene from which an expressed
protein comes but also to identify what form and what associations the corresponding protein
takes under particular biological circumstances. This is often called protein characterization.
In the 1990s, the advent of biological MS as a flexible, sensitive, and rapid way to identify
and quantify proteins in complex biological mixtures helped usher in the proteomics era

Bioinformatics, Fourth Edition. Edited by Andreas D. Baxevanis, Gary D. Bader, and David S. Wishart.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/baxevanis/Bioinformatics_4e

http://www.wiley.com/go/baxevanis/Bioinformatics_4e


316 Proteomics and Protein Identification by Mass Spectrometry

Genome DNA
replic’n

RNA
transcr’n

RNA
matur’n

Protein
transl’n

Protein
matur’n

gene
form

gene
form

gene
form

gene
form

gene
form

pre-
mRNA

pre-
mRNA

mature
mRNA

mature
mRNA

mature
mRNA

mature
protein

mature
protein

mature
mRNA

immat.
protein

immat.
protein

Gene PROTEOME

Figure 11.1 Gene(s) to proteoforms. This figure illustrates the complexity of the proteome. While the
one-gene, one-protein paradigm still generally holds true, as demonstrated by the Gene→DNA repli-
cation→RNA transcription→Protein translation→Protein model, it is complicated by the fact that
there exist alternative means to create protein variation at each step. These include variants arising
due to DNA polymorphisms, RNA polymerase slippage, alternative splicing, and RNA editing; protein
translation frameshifts generating recoded fusion proteins; as well as protein cleavage and diverse
post-translational modifications. All of these can result in different proteoforms arising from the same
gene.

(Pandey and Mann 2000). In turn, the publication of a draft human genome, the availability
of annotated protein sequences in public databases, the introduction of high-performance
MS platforms, and the development of better computational tools made the advent of
high-throughput proteome-scale analysis of proteins possible.

Before the application of MS to proteomics, the analysis of proteins was primarily done using
gel separation techniques such as two-dimensional gel electrophoresis (2DGE), followed by
traditional identification with Edman protein sequencing or the newer protein antibody arrays.
Although 2DGE was considered effective in terms of soluble protein separation for hydrophilic
proteins, the ability to identify the separated proteins was limited and time-consuming. How-
ever, breakthrough advances in protein MS have now made the large-scale study of proteins
possible. In particular, the development of electrospray ionization (ESI) and matrix-assisted
laser desorption ionization (MALDI) techniques by John Fenn and Koichi Tanaka, who shared
the 2002 Nobel Prize in Chemistry, were key. Likewise, advances in sample preparation pro-
tocols to handle small biological specimens, the development of database search algorithms
to identify known proteins using sequence databases (Eng et al. 1994), and the direct analysis
of increasingly complex protein mixtures (Aebersold and Mann 2003) have steadily increased
the power and utility of MS-based proteomics. Owing to these developments, it is now possible
to routinely identify and quantify thousands of proteins (and their modifications) with higher
speed and greater precision than ever before.

This chapter examines some of the more popular MS techniques, their affiliated software
tools, and database resources used in the interpretation and analysis of proteomics data.
The primary focus will be on protein identification, PTM mapping, and expression profiling
through the use of bioinformatics.
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Mass Spectrometry

MS is a versatile analytical technique that can precisely measure the molecular mass of the
compounds present in a sample. Molecular mass (or molecular weight) is a fundamental prop-
erty of all elements, chemicals, and molecules. If it is very accurately measured, one can deter-
mine the molecular formula and even the structure of a given chemical compound. The basic
principle of MS is to generate charged gas-phase ions from organic or inorganic compounds in a
specimen, followed by the separation and detection of these ions based on their mass-to-charge
ratio (m/z) and intensity (abundance). A mass spectrometer is commonly made up of a sample
ionizer, a mass analyzer, and a detector. The ionizer forms the gaseous ions from the specimen
of interest, for instance, by shooting the specimen with a laser. The mass of the ions is deter-
mined using the mass analyzer, which separates the ions based on their m/z ratios and directs
the different ions to the detector where they are sensed electronically; the corresponding signal
is converted to a digital output in the form of a mass spectrum.

Ionization

While MS has been the standard tool for the analysis of volatile organic compounds since the
1950s, its use in the field of proteomics gained momentum with the development of soft ion-
ization techniques like ESI (Fenn et al. 1989) and MALDI (Karas and Hillenkamp 1988) in
the 1980s. In ESI, the liquid sample is sprayed through a needle capillary into an ionization
source. A high voltage (in either positive or negative mode) is applied between the outlet of the
sample stream and the inlet of the mass analyzer. The liquid continuously absorbs the charge,
becomes unstable, and is released in the form of tiny highly charged droplets. Evaporation of
solvent from the spray, which can be facilitated by passage through a stream of drying gas (e.g.
nitrogen), generates charged analyte ions. Conversely, MALDI uses an ultraviolet laser beam
in a vacuum to blast (and ionize) sample molecules embedded in a chemical matrix situated
on a target plate. The matrix is typically made with highly conjugated organic acids such as
the commonly used 2,5-dihdroxybenzoic acid (DHB). The matrix sublimates into a gaseous
cloud by absorbing energy in the form of heat, causing desorption while allowing the analyte
to remain intact. The collision of molecules in the gaseous cloud causes the transfer of energy
from the matrix to the analyte. De-solvation occurs by proton transfer between the excited
matrix and analyte, resulting in protonated/deprotonated ions. The gentle but effective ESI
and MALDI methods, described above, that allow protein or peptide molecules to remain rel-
atively intact during the ionization process markedly raised the dynamic upper mass range of
detection from <1000 Da to >500 000 Da, thus increasing the efficiency of polypeptide detec-
tion by MS and making the routine analysis of the protein components of biological samples
possible.

Mass Analyzers

Ions produced by any of the aforementioned ionization methods can be sorted and measured
by mass analyzers. There are multiple types of mass analyzers associated with routine protein
analysis, each differing in the fundamental way in which they separate or fragment ions, in
their accuracy in determining the ion mass (mass precision), in their ability to distinguish
components with the same nominal or unit mass (resolution), and with respect to the range
of m/z ratios that can be measured by the mass analyzer (dynamic mass range capability).
Quadrupole, time of flight (TOF), Fourier transform ion cyclotron resonance (FT-ICR),
ion trap, and Orbitrap all represent major categories of mass analyzers, although there are
numerous variations available within each class. The quadrupole mass analyzer, which is a
low-resolution analyzer, is made up of four charged rods set in a grid and uses alternating
quadrupolar electric fields for the rapid separation and selection (transmission) of ions of
interest (Figure 11.2). By controlling the applied voltage, ions with certain m/z ratios can be
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Figure 11.2 Quadrupole mass analyzer. Schematic of a quadrupole mass analyzer, made up of four par-
allel cylindrical rods with each opposing pair connected electrically and a radio frequency voltage with
DC offset applied between them. Ions travel down the quadrupole between the rods; only molecules
with a certain m/z ratio having a stable trajectory (resonant ions) in the oscillating electrical field are
allowed to reach the detector for a given voltage offset, allowing filtering of sample ions. Ions with a
weak trajectory (non-resonant ions) strike the rods and are lost.

qualitatively selected and transferred to the detector. In a TOF mass analyzer, ions are acceler-
ated by an electric field of known strength. As the initial velocity of the ions depends on their
m/z ratio, they reach the detector at different times, with lighter and/or more charged ions
reaching first. Hence, ions can be distinguished by their “TOF” to the analyzer (Figure 11.3).
Ion trap analyzers use a combination of magnetic and electric fields to capture ions in an
isolated environment. Ions can be trapped using the Penning trap (FT-ICR), the Paul ion trap
(quadrupole ion trap), the Kingdon trap, and the Orbitrap – a radically improved implemen-
tation of the Kingdon trap. Various combinations of these mass analyzers are in wide use.
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Figure 11.3 Time of flight (TOF) mass analyzer. Schematic of a TOF mass analyzer, where the
mass-to-charge ratio is determined by the time taken by the ions to reach the detector. Ions are accel-
erated by applying an electrical field of known voltage and passing through a time-of-flight tube. The
velocity of each ion is based on its mass-to-charge ratio, so ions with lower m/z reach the detector before
those with higher m/z.
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A triple quadrupole mass analyzer is a variation of the quadrupole analyzer that uses a linear
series of three quadrupoles (essentially two mass spectrometers connected together by a central
quadrupole) for improved sensitivity and resolution. The central quadrupole can be used to
fragment ions, allowing one to perform a very useful technique called tandem MS, popularly
referred to as MS/MS or MS2, where selected ions of interest detected after passage through the
first analyzer undergo fragmentation in the second unit before detection in the third (Box 11.1).
Hence, in certain configurations, the mass spectrometer can fragment selected ion species in
order to deduce their corresponding molecular structures (e.g. polypeptide sequences) or to
derive deeper structural information (e.g. protein PTMs or folding states).

Box 11.1 Tandem Mass Spectrometry (Figure 11.4)

• Tandem mass spectrometry (MS) is an MS technique that involves multiple rounds of
analysis. Typically, ions formed in the ion source are separated according to their m/z
ratio in the first round of mass analysis (MS1). Ions are selected sequentially based on
their m/z ratio (precursor ions) and relative intensity, then subjected to fragmentation
through molecular activation by increasing their internal energy. The resulting product
ions are, in turn, separated and detected in the second stage of mass analysis (MS2).
Fragmentation results from the dissociation of molecular ions formed in the first round
of analysis and is a critical component of tandem MS. The activation methods used to
fragment ions can be collisional, electron based, or involve photo-activation. Popular
ion activation/fragmentation methods are collision-induced dissociation (CID; Jennings
1968), electron capture dissociation (ECD; Zubarev et al. 1998), electron transfer disso-
ciation (ETD; Syka et al. 2004), higher energy collisional activation dissociation (HCD;
Olsen et al. 2007), and infrared multi-photon dissociation (IRMPD; Little et al. 1994).

• Collisional fragmentation. CID, also known as collisional-activated dissociation (CAD), is
a commonly used technique to fragment ions in the gas phase. CID involves energetic
collisions between ions of interest and non-reactive gas atoms (typically helium, nitro-
gen, or argon). During collisions, the kinetic energy of a molecular ion is converted to
internal energy, the accumulation of which results in bond breakage and dissociation of
the precursor ions into smaller fragments for subsequent detection by MS2. HCD is a CID
technique specific to Orbitrap, in which fragmentation takes place external to the trap.
The high efficiency of most collisional methods makes them a top choice in virtually all
MS2 proteomics studies.

• Photo-activated fragmentation. IRMPD is a method that uses an infrared laser beam to
increase the internal energy of the trapped ions. The photons in the laser beam are
absorbed by the trapped ions, creating a vibrationally excited state that leads to release
of energy via bond dissociation, very similar to CID. The ions commonly generated
through collisional or photo-activated fragmentation are the b and y ions formed by the
dissociation of the weak amide bonds. These techniques are quite efficient with regards
to analysis relating to peptides, lipids, and small molecules but may remove PTMs.

• Electron-based fragmentation. In ECD, peptide ions of interest are irradiated with
low-energy electrons (∼0.2 eV), resulting in the capture of an electron and producing
an unstable charge-reduced species, which dissociates to give fragment ions that are
informative about peptide sequence. ETD is analogous to ECD, but dissociation is
induced by the transfer of an electron between oppositely charged ions. Regardless, in
both ECD and ETD, fragmentation occurs because of the cleavage of the N–Cα bonds,
giving rise to complementary c and z ions. ECD and ETD are now widely applied to
the study of full-length proteins (so-called “top-down” sequencing) and peptides with
labile PTMs, such as phosphorylation.

(Continued)
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Box 11.1 (Continued)

One disadvantage of MS/MS methods that use vibrational excitation (such as CID for
peptide fragmentation) is that they can cause biased cleavage of certain weaker bonds
present in either the peptide backbone or side chains. These include PTMs, such as
phosphate side groups, as a preferred site of cleavage, resulting in loss of PTM sites and
reduced complexity spectra that are hard to interpret on the sequence level. This, in turn,
leads to missed or incorrect identifications and site assignments. In contrast, ETD is a
gentler method of fragmentation that makes use of the low-energy electron transfer
through a more comprehensive non-ergodic process that preserves the modification
sites of PTMs, making it a method of choice for the fragmentation of PTMs.

Relative to quadrupole or triple quadrupole analyzers, TOF mass analyzers offer a much
higher mass resolution for analyzing polypeptide ions and their fragments, while FT-ICR and
Orbitrap mass analyzers offer the highest mass resolution of all analyzers but have more lim-
ited dynamic range.
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Figure 11.4 (a) Tandem mass spectrometry (MS). Schematic of a triple quadrupole mass spectrometer
used in tandem MS for peptide sequencing. (b) The first stage of liquid chromatography tandem MS
analysis is carried out as an MS1 precursor ion scan (quadrupole 1). In the second stage, the instrument
is operated in the MS2 mode wherein a selected precursor ion (defined as m/z) is passed to a collision
chamber (quadrupole 2) for fragmentation (e.g. by interactions with inert gas). The resulting peptide ion
fragments are then resolved on the basis of their apparent m/z ratios in quadrupole 3.
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Ion Detectors

After passing through the analyzer, the separated (peptide) ions strike the detector (or ion
collection system) and are then identified according to their m/z ratio and relative intensity
(which is correlated with abundance). Detectors are capable of signal amplification, and some
are sensitive enough to potentially pick out single molecules. There are several types of detec-
tors available for mass spectrometers. The most routinely used detector is the electron multi-
plier, which operates by detecting the secondary electron emission produced by the charged
ion striking the coated detector surface. In a tandem mass spectrometer, the ion collection sys-
tem is also capable of calculating the relative abundance of the resulting ion fragments at each
particular mass. Mass spectrometers are connected to computer-based software platforms that
record these mass spectra in a digital format. Subsequent data analysis allows identification
of the corresponding molecular species based on their m/z ratios and relative abundance, by
comparing them with a database of values for known molecules.

Mass spectrometers in use today are made up of any combination of the above-outlined ion-
ization methods, mass analyzers, and ion detectors, and they all record the output as a set of
sequential histograms, representing hits of ionized molecules on the ion detector, known as a
mass spectrum (Box 11.2).

Box 11.2 The Mass Spectrum (Figure 11.5)

The mass spectrum is represented as a two-dimensional bar graph of signal intensity
(on the Y-axis) versus m/z ratio (on the X-axis) containing many signal intensity peaks
corresponding to the m/z ratios and intensities of the detected ions. Here m represents
the mass of the ion and z represents the charge carried by the ion. The number of electrons
removed is the charge number (for positive ions); +1, +2, +3 represents ions with one, two,
and three charges, respectively. For ions with a charge of 1, the m/z ratio simply represents
the mass of the ion. The position of a peak, or defined signal, as they are usually called,
corresponds to the various m/z ratios of the ions produced from the peptides and serves
as an information-rich molecular fingerprint of the peptides and proteins present in a
biological specimen.

Tandem Mass Spectrometry for Peptide Identification

In combination with liquid chromatography, tandem MS (LC-MS/MS) involves multiple
sequential rounds of ion selection and fragmentation in a mass analyzer (Box 11.1). Fragmen-
tation of ions through various ion activation methods provides critical information on the
molecular structure of a molecule under study (e.g. peptide sequence) and is an essential part
of tandem MS. These ion activation methods, which typically are applied between different
stages of mass analysis and can be used individually or in combination, result in rich fragment
patterns that can provide precise information about the composition of the molecule. The
speed and specificity of MS2 data generation dictate the efficiency of LC-MS/MS for analyzing
complex biological samples (e.g. the depth of sequencing of polypeptide mixtures).

Each recorded MS2 spectrum is the result of the (often unique) fragmentation pattern
produced by a particular peptide upon cleavage of its (often distinct) backbone amide and/or
side chain bonds. As always in MS, peptide fragments can be detected by the ion detector
only if they carry a charge. If the charge is retained at the N-terminal end of the fragment,
the ion is classified as either an “a,” “b,” or “c” ion, depending on where the cleavage occurs.
If the charge is retained at the C-terminal of the fragment, it is classified as an “x,” “y,”
or “z” ion (Figure 11.6), with a subscript indicating the position or number of residues in
the fragment. The specificity and low chemical noise of MS2 allow for high peptide detec-
tion selectivity and sensitivity, permitting qualitative and quantitative analysis of complex



322 Proteomics and Protein Identification by Mass Spectrometry

m/z
100 200 300 400 500 600 700 800 900 1000 1100 1200

R
el

at
iv

e 
in

te
ns

ity
 (

%
)

100

50

Precursor ion [2+]
m/z 687.48

(M+ m/z 1374.96)

Base peak
448.99 

416.31

563.36482.26
729.46383.15 514.36

446.77

571.45

Fragment ions

Figure 11.5 Fragmentation tandem mass spectrometry (MS/MS, or MS2) spectrum. A mass spectrum is
a simple two-dimensional plot of experimentally determined ion mass-to-charge ratios versus intensity,
in this case representing the distribution or pattern of product ions produced by peptide fragmentation.
In the example shown, the highlighted base (most intense) peak at 448.99 m/z corresponds to the most
abundant ion (usually set to 100% relative abundance), while other peaks represent fragment ions of
a specific mass. The vertical axis shows the relative abundance or intensity, where the value displayed
represents the number of ions recorded by the ion detection system (i.e. the more abundant the ion, the
higher the peak). M+ is the parent molecular ion (i.e. an unfragmented peptide ion minus one electron).

protein mixtures. When combined with high-performance liquid chromatography (HPLC)
or ultra-high-pressure liquid chromatography (UHPLC) peptide separations, modern MS2

workflows can “shotgun” sequence thousands of distinct polypeptides in a single experiment.
The consecutive stages of mass analysis in MS2 can be performed in two ways: tandem-in-

space or tandem-in-time. Tandem-in-space refers to MS2 instrumentation wherein two sepa-
rate mass analyzers are coupled together sequentially such that m/z separation is done by ion
selection in the first mass analyzer, followed by dissociation in an intermediate region (such
as a collision chamber or ion trap); this is then followed by transmission to the second ana-
lyzer for product ion mass analysis. The second approach, tandem-in-time, uses a single mass
analyzer that performs all the steps of ion selection, activation, and product ion analysis in the
same device but sequentially in time. Examples of tandem-in-space instruments are combi-
nations of quadrupole and TOF mass analyzers, while an ion trap mass analyzer can perform
tandem-in-time analyses. In principle, both types of instrumentation can be expanded to allow
for multiple stage MS to provide more detailed structural information, generally referred to as
MSn, where n denotes the number of stages of fragment analysis.

Sample Preparation

The complexity, diversity, and high dynamic range of protein concentrations in a cell, tissue,
or biofluid (such as blood plasma) make the comprehensive identification and quantification
of proteins challenging, especially low-abundance and membrane-associated components. To
achieve better ionization efficiency and identification rates, polypeptides are typically digested
into smaller peptides by enzymatic digestion with a sequence-specific enzyme like trypsin.
Trypsin has exceptional cleavage specificity and cleaves the proteins by hydrolysis of the
peptide bond on the carboxyl terminal side of the lysine (K) or arginine (R) residues, except
when followed by proline (P); this produces peptides that are typically 6–20 or more amino
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Figure 11.6 Polypeptide backbone cleavage produces different product ion species. (a) Schematic showing typical sites of polypeptide backbone fragmentation annotated with the
standard Roepstorff–Fohlmann–Biemann nomenclature (Roepstorff and Fohlman 1984). Peptide fragmentation is the result of bond activation and breakage – for example, due to
collision with an inert gas (CID), resulting in b- and y-ions, or upon electron transfer (ETD), resulting in c- and z-ions. Ions are labeled from the amino terminus as a1, b1, and c1, where
the subscript represents the number of amino acid side chains contained by the ions. (b) When the charge is retained on the amino-terminal fragment, a, b, or c fragment ions are
produced, while x, y, and z fragment ions are produced when the charge is retained on the carboxy-terminal fragment.
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acids in length that are well suited to detection and sequencing by LC-MS/MS. Proteolytic
cleavage markedly enhances detection sensitivity, improving proteome coverage. Because
of its high proteolytic activity and stability under a wide variety of conditions, trypsin has
become the protease of choice in MS-based proteomics, but other enzymes can provide
complementary sequence coverage.

Before complex peptide mixtures can be analyzed by MS, they typically need to be processed
and simplified by biochemical separation, such as by reverse-phase LC or affinity capture to
enrich the peptides of interest. PTMs are of special interest, as they represent an important
and common regulatory mechanism by which protein activity or associations are modulated
after synthesis, either by enzyme-mediated addition of one or more covalent functional chem-
ical groups (e.g. phosphorylation) or by proteolytic cleavage inside a living cell (Box 11.3).
MS-based detection of PTMs can be highly informative biologically, as they influence virtually
all aspects of normal cell biology and homeostasis, ranging from protein function through
to physical binding events (e.g. protein–protein interactions). However, since PTMs are
often transient and sub-stoichiometric (meaning that they do not occur on all molecules of
a given protein at any one time), they can be difficult to detect. To enhance detectability,
modification-specific biochemical enrichment techniques such as affinity capture have been
developed to isolate PTM-modified proteins before or after digestion to aid in the detection
and characterization of modified peptides. For example, selective affinity capture and analysis
of serine and threonine phosphorylation is commonly achieved through the use of immo-
bilized metal ion affinity chromatography (IMAC), such as titanium dioxide (TiO2) beads.
The different chromatographic separation methods, used alone or in combination, are aimed
at producing a simplified mixture of molecules (peptides) that can be injected and ionized
with higher efficiency into the mass spectrometer. In addition to facilitating detection of
PTMs, sample simplification via pre-fractionation and targeted enrichment during sample
preparation also serves an important role in achieving high protein sequence coverage and
overall identification rates from increasingly diverse biological samples.

Box 11.3 Post-Translational Modification (Figure 11.7)

Protein post-translational modifications (PTMs) are a primary mechanism by which cells
respond to environmental stimuli. They play a key role in controlling cellular processes
such as signal transduction pathways regulating cell differentiation, degradation, gene
expression, and protein–protein interactions. PTMs, such as phosphorylation, glycosyla-
tion, ubiquitination, nitrosylation, methylation, acetylation, sumoylation, and proteolytic
processing, routinely influence virtually all aspects of normal cell biology and homeosta-
sis. As PTMs are often dynamic, sub-stoichiometric (incomplete), and transient (reversible),
they contribute to an exponential increase in the functional and structural diversity of the
proteome. Identifying and understanding their role is critical in the study of cell biology,
disease pathogenesis, and developing new treatments.

Phosphorylation is the most frequently occurring and studied PTM and there are more
than 58 000 experimentally determined modification sites with experimental evidence,
making “phosphoproteomics” an important sub-branch of functional proteomics. Phos-
phorylation, a key reversible modification, occurs by the addition of a phosphate group
at the serine, threonine, or tyrosine residues (also histidine in prokaryotes) of the pro-
tein and plays a critical role in maintaining the integrity of the myriad cellular processes
and signaling pathways in the cell. For example, plasma membrane receptor-associated
protein kinases are enzymes that catalyze the phosphorylation of tyrosine residues of crit-
ical intracellular signaling proteins that play an important role in the signal transduction
process. Genomic aberrations that disrupt the role of tyrosine kinases can lead to cell
transformation and cancer, as seen with the tyrosine kinase protein ABL. ABL mutations
leading to the formation of a BCR–ABL1 fusion protein drive the pathogenesis of chronic
myelogenous leukemia (CML), a curable cancer of the bone marrow that can be effectively
targeted by inhibitory drugs.
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Figure 11.7 Post-translational modifications (PTMs) take place at different amino acid residues in pro-
teins. While there are currently >50 PTMs listed in the UniProt database, the figure lists some of the
better studied PTMs.

Bioinformatics Analysis for MS-based Proteomics

The large volume of data obtained from an MS experiment, comprising tens of thousands of
data points in virtually every spectrum, is inherently noisy because of measurement errors,
missing values, and artifacts introduced during different phases of the experiment. Before
the spectra can be used for the identification of true signals such as peptide fragments, the
data need to be cleaned or pre-processed through the use of multi-variate statistics; this
reduces spectrum noise and complexity (dimensionality) to generate a much smaller and
statistically manageable set of defined peaks prior to peptide or protein identification. Most
commercial MS instruments include software that performs data pre-processing based on
various pre-specified parameters and algorithms to facilitate a variety of signal manipulations
that include baseline correction, smoothing, normalization, and peak-picking to produce
more easily interpreted MS spectra (Figure 11.8a). Data smoothing applies signal processing
techniques like Savitzky-Golay filtering, mean or median filtering, or Gaussian filtering
to remove low signal fluctuations present in the spectra due to instrument-derived noise.
Baseline correction involving methods like Top Hat filter, Loess derivative filters, or linear
splines (Bauer et al. 2011), enabling the removal of estimated chemical noise that can arise due
to trace contaminants present throughout the instrumentation workflow. While smoothing
and baseline correction is applied to each spectrum individually, normalization corrects for
systematic instrument variability by converting all spectra to the same intensity range to
make the spectra recorded within an experiment more comparable. A final crucial step is the
definition of peaks, or peak picking, which involves determining the precise mass, apex, and
intensity for each peak using one of several established methods based on signal-to-noise ratio
(SNR), centroid, Gaussian fit, or center-of-width at half-maximum height metrics. The resul-
tant peak list is subsequently used in further downstream statistical analysis and biological
interpretation.
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Figure 11.8 Data pre-processing workflow of a mass spectrum. Different steps in the pre-processing workflow of a mass spectrum. (a) Pre-processing steps include data smoothing,
baseline correction, and peak picking. Numerous algorithms are available for each step in the transformation of a mass spectrum into a peak list suitable for further statistical analysis
in the process of peptide and protein identification. (b) Illustration of a possible mass spectrum of a peptide fragment with a monoisotopic mass of 584.3124 at different (+1, +2, +3)
charge states. (c) The isotopic envelope of Gallus gallus protein lysozyme illustrating its monoisotopic and average mass.
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Several advanced processing techniques have been developed to define clusters of related
peptide peaks arising from the presence of multiple charge states, the natural prevalence of sta-
ble isotopes, and mass shift arising from PTMs. Since mass spectrometers measure m/z ratios
rather than mass per se, ions with identical mass but multiple charge states (e.g. +1, +2, +3,
stemming from the presence of one, two, or three proton ions) are detected with different m/z
ratios. For example, a peptide ion bearing a +2 charge (doubly protonated) versus a single (+1)
charge will differ in the detected m/z ratio by roughly half, while the third ion with a+3 charge
(triply protonated) will present with only one-third the m/z value, and so on (Figure 11.8b).
Whereas MALDI ionization usually produces ions with a low (+1) charge state, the ESI process
frequently produces precursor ions with multiple charge states. For the purpose of accurate
detection, it is desirable to transform each m/z spectrum to a mass representation indepen-
dent of charge state where all the multiply charged forms of a given peptide that are detected
by MS are recalculated into the corresponding singly charged form and grouped together to
account for total intensity and peak width. This process of reducing multiply charged states to
a single mass measurement is called charge state reduction or deconvolution. These processes
involve the use of software tools that exploit the high resolution of modern mass spectrome-
ters that are capable of resolving the distinct stable isotopic peaks for individual peptides. For
example, a peptide with a single 13C (heavy isotope) element will be measured as 1 Da heavier
than its corresponding 12C (bulk natural carbon) counterpart. As most biological molecules
natively display this kind of isotopic variation (here, as ∼1% of all carbon is 13C), multiple iso-
topic peaks are typically observed for each molecule, producing an ion envelope that exhibits
a characteristic mass shift in m/z ratios (Figure 11.8c).

Mass spectrometer systems produce data in two forms, as follows.

• Average mass. This is simply the weighted average mass of all observed isotopic forms of
the molecule and usually reported by low-resolution instruments that are unable to resolve
isotopes.

• Monoisotopic mass. This is calculated from high-resolution spectra as the sum of the exact
masses of the most abundant isotope of each element through the process of “de-isotoping”
to remove unwanted isotopes from the final peak list.

Monoisotopic mass is considered more accurate, given that average mass cannot be
determined as precisely because of variations in natural isotopic abundances. The detection
of isotope peaks and the monoisotopic mass also aid the process of charge deconvolution. For
example, a molecule with a +2 charge will have stable isotope peaks that are separated on the
spectrum by ∼0.5 (1/2) Da apart, +3 ∼0.33 Da apart, and so forth.

Mass shifts can also result from the presence of chemical adducts (like sodium) that asso-
ciate with a peptide in vitro, chemical modifications such as biological PTMs, or experimentally
induced alterations in vitro. For example, during sample preparation, it is common for methio-
nine residues to become oxidized, adding 16 Da in mass for each oxygen atom added. There-
fore, adduct and PTM detection relies on defining the alteration to the mass of a tryptic peptide
and the product fragments resulting from the modification of a specific amino acid residue side
chain. For accurate identification of the modification site, it is necessary to detect a character-
istic mass shift in both the precursor peptide ion and the subset of N- and C-terminal fragment
ions carrying the modified residue. With good MS2 data quality from high-resolution instru-
ments, it is possible to reliably identify and localize one or more putative modified residues of
individual peptides.

Proteomics Strategies

The two major proteomics strategies employed in the analysis of proteins are the “bottom-up”
and “top-down” approaches. The analysis of peptides obtained from proteolytic digestion
of proteins is generally referred to as bottom-up or shotgun proteomics and has formed the
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basis for the majority of proteomics research undertaken to date. As opposed to the bottom-
up approach, top-down proteomics (TDP) is a concept that applies MS to explore the “pro-
teoforms” of intact proteins. Bottom-up strategies may involve either a targeted or a global
approach. In targeted proteomics, only a small, pre-selected group of proteins is analyzed
exclusively by MS whereas, in global proteomics, one attempts to analyze all the proteins
present in a given sample with minimal bias.

Most standard bottom-up MS-based proteomics studies have three distinct stages
(Figure 11.9).

1) Extraction and purification of proteins from one or more biological sources using various
biochemical methods, followed by proteolytic digestion of the isolated proteins into pep-
tides and further liquid chromatographic fractionation of the resulting mixture.

2) Qualitative and/or quantitative mass spectrometric analysis of the resulting peptides.
3) Computational analysis of the recorded spectral datasets based on sequence database

searches to determine peptide amino acid sequences, with the goal of both identifying and
quantifying proteins followed by statistical analysis to ensure confident assignments.

Proteomics studies can differ in their scientific objectives and can be either qualitative or
quantitative. Qualitative studies focus on the systematic identification of proteins in a sam-
ple and the characterization of their PTMs, whereas quantitative proteomics aims to measure
absolute or relative protein levels such as differences in protein abundance between samples
(e.g. case versus control; Box 11.4). Quantitative proteomics is a powerful strategy for use in
both shotgun and targeted analyses to understand global protein expression dynamics and
changing PTM patterns in a cell, tissue, or organism under different conditions (such as patho-
physiological contexts) through the quantification of cognate molecular ions. This approach
has found a productive niche in the contexts of systems biology, biomarker discovery, and
biomedical research.

Box 11.4 Quantitative Proteomics (Figure 11.10)

• Label-free quantification. This is a relative quantification technique used to compare pro-
tein or peptide levels in between two or more liquid chromatography tandem mass
spectrometry (LC-MS/MS) runs. Here, the assumption is that, under ideal conditions,
identical peptides measured across different experimental conditions can be compared
directly using the recorded MS1 intensities or spectral counts. The advantages of the
label-free technique are that it does not require the extra experimental steps needed
for labeling and any number of experiments can be readily compared. A disadvantage
stems from the under-sampling problem inherent to MS/MS, in which not all peptides
present in a complex mixture are consistently detected between samples, even replicate
runs, leading to variance in abundance estimates that dampens statistical measures of
differential levels.

• Labeling strategies. Proteomics samples can be isotopically labeled through metabolic
labeling in vivo or by in vitro chemical tagging of the extracted proteins or peptides.
Since the incorporated light and heavy isotopic forms of a (poly)peptide are chemi-
cally identical, they typically co-elute together during LC fractionation and so can be
detected concurrently, yet distinguished according to their different masses evident dur-
ing MS analysis. Subsequently, the ratio of peak intensities recorded for heavy and light
labeled peptides measured across two or more experimental groups can then be com-
pared to determine changes in abundance in one sample relative to that of the other(s).
If the measurements are generated in a precise manner, statistically significant changes
can be reliably deduced. Various isotope labels or tags can be introduced at either the

(Continued)
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Figure 11.10 A schematic diagram comparing the label-free approach with the different labeling strate-
gies. The isotopic label represented by the red rectangle is introduced into the sample during various
different stages in the quantitative proteomics workflow, pooled and subjected to mass spectrometer
analysis.

protein or peptide level during sample preparation using in vivo and in vitro methods.
Different labeling strategies are discussed below.
– Metabolic labeling. Stable isotope labeling in vivo is done by growing the cells or

organisms under study in the presence of defined amino acids or nutrients con-
sisting of one or more heavy isotopes. One of the more popular metabolic label-
ing techniques is stable isotopic labeling by amino acids in a cell culture (SILAC;
Ong et al. 2002), where heavy isotopes present in the culture medium are intro-
duced into mammalian cells during growth, causing a predictable shift in the mass
of digested peptides during MS analysis proportional to the incorporation efficiency
of the label. Peptides in the differentially labeled samples analyzed by MS are typi-
cally detected as paired peaks, where the mass difference observed reflects both the
number and nature of the labeled amino acids used, allowing rapid comparison of
peptide and protein ratios. Heavy labeled lysine and arginine are used in SILAC exper-
iments, for double (or triple) labeling of two (or three) samples under comparison.
Other isotope labeling techniques primarily use in vitro methods and, as described
below, are usually carried out via covalent modification by means of chemical or
enzymatic processing of purified or proteolytic digested test and reference protein
samples.

– Chemical labeling. Isotope-coded affinity tagging (ICAT; Gygi et al. 1999) is a pioneer-
ing chemical labeling technique in which protein samples are coupled with either
an isotopically heavy or light reagent at cysteine residues. The ICAT reagent is made
up of three elements: a cysteine directed reactive group for labeling the amino acid
side chain, an eightfold deuterated (d8; which adds 8 Da to the molecular mass of the
peptide) or light (d0) linker region, and a biotin tag for affinity isolation of labeled

(Continued)
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Box 11.4 (Continued)

polypeptides. The labeled samples are then pooled, digested with an appropriate
protease such as trypsin, subjected to tag capture on streptavidin affinity columns,
and then eluted before undergoing MS analysis.
An alternative and less costly chemical labeling technique is dimethyl labeling,
which is applied after the proteolytic digestion of proteins and is based on the
reaction of peptide primary amines (peptide N-termini and the epsilon amino group
of lysine residues; Hsu et al. 2003). The dimethyl labeling reagent is composed of
formaldehyde and cyanoborohydride, with labeled forms containing a combination
of deuterated hydrogen and 13C atoms and can be used in triplex. This makes it
possible to quantitatively analyze three samples in a single MS run by comparing the
mass difference of the dimethyl labels to determine protein abundance in different
samples.

– Enzymatic labeling. Enzymatic labeling techniques, such as proteolytic labeling using
a protease like trypsin, can introduce 18O (or regular 16O) labeled water during the
cleavage (hydrolysis) reaction, generating isotopically labeled peptides. For example,
in a two-step reaction, an 18O or 16O atom is incorporated into the carboxyl terminus
of the resulting peptide upon hydrolytic cleavage of a polypeptide, followed by a
carboxyl oxygen exchange reaction which incorporates a second 18O (or 16O) atom
into the carboxyl terminus of each peptide (Miyagi and Rao 2007).
All isotope labeling techniques allow for relative quantification based on measuring
the mass difference between differentially labeled peptides but are limited by the
number of samples that can be studied (multiplexed) together in one experimen-
tal group. The mass difference concept is generally restricted to a binary (2-plex)
or ternary (3-plex) set of reagents, as higher order multiplexing leads to increasing
complexity and diminished discrimination in the MS1 spectra. This limitation can be
overcome to a certain extent by the use of isobaric tags (see Isobaric Tagging) that
are designed for higher multiplexing.

– Isobaric tagging. The isobaric tag for relative and absolute quantification (iTRAQ; Ross
et al. 2004) and tandem mass tag (TMT) reagents (Thompson et al. 2003) represent
two isobaric labeling techniques available for quantitative MS. Reagents for iTRAQ
are available in 4-plex and 8-plex forms, while TMT reagents are available in 2, 4, 6,
8, 10, and, most recently, 11-plex forms. These isobaric stable isotope tags are com-
posed of a mass reporter that has a unique number of 13C and/or 15N heavy isotope
substitutions, followed by a mass normalizer that balances the mass of the tag to
make all tags equal in mass so they form a common m/z peak during MS1 precursor
ion scans, and lastly a reactive region that cross-links the label to either amine or cys-
teine residues on the target polypeptides. Samples are labeled with individual mass
tags and combined for LC-MS/MS analysis. Since all tags have the same mass, iden-
tical peptides present in all samples display the same mass shift and elute together
as a single precursor ion peak by MS1. After MS2 fragmentation (e.g. through higher
energy collisional activation dissociation-based collisional activation), the reporter
tags are cleaved off simultaneously at a specific linker region to form molecular frag-
ment reporter ions with close but distinct masses, allowing for parallel quantification
of relative peptide intensities, together with the corresponding peptide fragment ion
series suitable for protein sequence identification.

There are two major approaches for comparative quantitative proteomics analyses: isotope
labeling versus label-free techniques. The MS2 methods used in quantitative proteomics are
largely the same as those used for protein identification but include an additional dimension
for making abundance measurements. In the label-free approach, each sample is analyzed
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separately by LC-MS/MS, and the measured ion levels are then compared based on the
MS2 spectral counts obtained per protein or PTM site in each specimen or sample set. In
a label-based approach, samples in an experimental group are isotopically labeled (e.g. via
chemical tagging in vitro or by in vivo metabolic labeling), then combined and analyzed
together in the same MS run, with the distinct masses of the isotopic labels distinguishing
both the source of the multiplexed samples and the corresponding relative levels of proteins
present in each specimen. Isotopic labeling strategies are generally considered more accurate,
since samples are compared directly, and can produce more reproducible results, as variation
due to sample processing and MS under-sampling is minimized; however, these strategies
are more costly and time-consuming to implement, more limited in terms of the number
of samples that can be pooled, and require specialized software tools for data analysis (see
PSM Software). On the other hand, while label-free approaches scale well with respect to
the total number of samples being analyzed and are easier to implement, they can be less
effective at detecting small differences in protein abundance and can suffer from lower
reproducibility.

Relative quantification compares protein or peptide levels between samples in two exper-
imental groups – such as measuring differences in the molecular profiles in healthy versus
diseased states, mutant versus wild-type cells, or progenitor versus differentiated cells (Filiou
Michaela et al. 2012) – while absolute quantification uses reference standards to determine
the precise quantities of one or more target protein or peptide in one or more samples, making
it useful for determining protein concentrations, protein complex subunit stoichiometry, and
the extent of PTMs (Gerber et al. 2003).

In addition, there are two different strategies commonly used in proteomics that encom-
pass targeted MS: discovery-based global profiling approaches and hypothesis-driven directed
approaches (Schubert et al. 2017). Discovery-based proteomics studies are open-ended and
can be performed when using bottom-up shotgun sequencing via data-dependent acquisition
(DDA) procedures in which all peptide ions above a pre-determined intensity are selected
for MS2 fragmentation and subsequently identified from the resulting fragmentation spectra
in an iterative (serial) manner. It is also possible to conduct data-independent acquisition
(DIA), where the co-fragmentation and identification of peptides in a sample is done in a
more systematic, multiplexed manner, most notably by analyzing all peptides simultane-
ously across a certain mass range. In comparison, hypothesis-driven proteomics uses prior
information to pre-select only one or a few proteins and peptides of particular interest for
MS2 analysis. This includes targeted MS detection such as selected reaction monitoring
(SRM), where the signal intensity patterns of a few pre-defined fragment reporter ions
specific to a target protein or peptide of interest are selectively screened by MS to confirm
molecular identity. Selective detection of these patterns in spectra identifies the corresponding
molecule. The advantage of targeted proteomics is that the selective screening allows for
more sensitive and specific protein detection. The detection of peptides bearing specific
PTMs, representing a well-defined molecular response, or candidate circulating biomarkers
present in trace levels in the blood are examples of where targeted proteomics is most
commonly used.

The shotgun approach, though popular and relatively simpler to implement, has to contend
both with ambiguity in terms of protein inference (peptide-to-protein assignments) and with
incomplete and inconsistent sequence/modification coverage. The connectivity between a
parental intact protein and the corresponding digested peptides is lost during the bottom-up
workflow, leading to complications during integrative analysis (i.e. the assignment problem).
As the TDP approach measures both the intact protein and fragment ion masses produced
by MS2, higher sequence coverage with fewer gaps can be achieved, facilitating character-
ization of protein variants such as proteoforms. Yet, while the TDP technique minimizes
inference problems, it is highly dependent on feature discrimination and deconvolution
(e.g. resolving highly complex multiply charged intact protein ion envelopes produced by ESI;
Kelleher et al. 1999).
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Now that readers have been introduced to the general concepts behind protein MS, sam-
ple preparation, and basic data analysis by biological MS, we can examine the more popular
MS-based proteomics techniques in use today.

Peptide Mass Fingerprinting

Peptide mass fingerprinting (PMF) is a conceptually simple protein identification technique in
which a single polypeptide (e.g. a gel band) is cut into smaller peptides with a sequence-specific
protease (typically trypsin), followed by accurate MS determination of the resulting peptide
masses. MALDI or ESI analysis provides a fast, accurate, and efficient way to identify
proteins in gel bands or spots. The premise of PMF is that any unique protein can be readily
described as a set of unique peptide masses that correspond to the amino acids constituting
specific sub-sequences generated by enzymatic cleavage. While certain proteins may be
highly similar (encoded by gene duplicates/paralogs), some portion of a protein’s sequence is
typically unique and therefore should produce specific, identifiable combinations of peptide
masses. Hence, if a particular polypeptide is cleaved in a specific manner, then the resulting
peptide masses obtained by MS form a unique “fingerprint” that maps back specifically to the
corresponding protein sequence, known in advance (i.e. obtained from a reference sequence
database).

Key to the PMF protein identification process is the comparison and matching of experi-
mentally determined peptide masses with theoretically predicted masses. Peptide masses can
be inferred in silico by taking annotated protein sequences (from a given organism) and com-
putationally cleaving them using the same enzyme (e.g. trypsin) rules used to process the
real samples. The mass of each peptide is calculated for each protein in the database, and the
pattern compared with the observed masses from the PMF analysis (Figure 11.11). Statistical
methods are used to determine which combination of theoretical peptides for a given protein
best match the observed peptides; this usually includes performing a significance assessment
to calculate a probability that the match occurs by chance (i.e. a false positive), with the best
correspondence within a pre-defined mass error range (mass tolerance) deemed the most likely
candidate. Obviously, PMF is more error prone with protein mixtures and cannot be used
if the organism under study has not been sequenced. Also, care must be taken in sample
handling to avoid the presence of irrelevant peptides originating from contaminants such as
from hair and skin or the autolysis of trypsin, as these can lead to spurious results. Protein
digestion is a stochastic process, and a protease may not fully cleave a polypeptide at every
occurrence of the cleavage site, resulting in missed cleavages. Incomplete proteolytic digestion
can result in long(er) peptides that are harder to detect or fragment. A theoretically digested
sequence database with all possible partially cleaved peptides will also result in an exponential
increase in complexity. Spurious results can also result if not accounting for the presence of
unknown PTMs or chemical modifications during sample preparation (e.g. oxidation) that can
increase or decrease molecular weight. The extent of modifications can either be incomplete
(variable modifications) or ubiquitous on all occurrences of a particular amino acid (fixed mod-
ification); for example, carbamidomethylation of cysteine, a reaction commonly used during
sample preparation in order to prevent cysteine cross-bridges after sample digestion, which
increases the molecular weight of cysteine. As only peptide masses (and not exact sequences)
are matched, the presence of PTMs can lead to ambiguous results. The theoretical number of
peptide masses in the database grows exponentially with each variable modification, resulting
in reduced match specificity and a large increase in search time. Hence, to reduce computa-
tional complexity, the number of variable modifications allowed needs to be restricted while, at
the same time, the reference database needs to account for all possible combinations of missed
cleavages and variable modifications.

The PMF database search concept was first implemented by Henzel and colleagues, who
developed the Fragfit computational algorithm in 1993 (Henzel et al. 1993). This program was
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used to accurately identify proteins isolated from an Escherichia coli cell lysate using only
three peptide masses per protein while searching a database consisting of 91 000 candidate
protein sequences, showcasing the use of computational software in conjunction with MS
for protein identification. While the central advantage of the PMF method is that only the
masses of (unique) peptides must be (accurately) measured, PMF algorithms are confounded
by mixtures containing more than one protein. Ideally, if the sequence of the peptides could be
determined, rather than just their masses, then the problem with protein mixtures and confi-
dence in protein identifications could be improved. As documented below, peptide sequencing
is actually possible by tandem mass spectrometric techniques.

PMF on the Web

Mascot

Mascot, a widely used commercial MS search engine, was one of the first search engines to
incorporate a probability-based scoring approach for peptide and protein identifications. It
was derived from the MOWSE probability algorithm, which was capable of only conducting
PMF searches and required pre-indexed enzyme-specific databases prior to computing peptide
mass values. This made it difficult to search for potential PTMs as a new database was needed
for each combination of modifications. Mascot was developed to overcome these limitations
by computing mass values directly from sequence databases “on the fly,” thus removing the
need for database indexing and adding additional support for PTMs and more flexible search
strategies (Perkins et al. 1999).

Data are submitted online in the form of peptide masses or peak lists. Other search-specific
parameters (see Table 11.2) include sample (species) taxonomy, protein reference database,
potential modifications, proteolytic enzyme, the number of missed cleavages allowed, MS scan
mode used, and whether to use monoisotopic or average mass values to calculate the peptide
mass; these, together with the protein mass window and match error tolerance, are provided
as input. At the end of a search, a detailed summary report is generated encapsulating the
putative peptide and protein identifications (Figure 11.12).

Mascot’s basic approach in peptide identification is to calculate the probability of observing
a match between the observed experimental data and a candidate from the reference database
by chance alone, with a peptide showing the lowest probability deemed the best match and is
reported as −10*log10(P), where P is the actual probability. Mascot also estimates significance
by calculating the false discovery rate (FDR; see Box 5.4) using a target–decoy approach in
which the search is repeated with the same parameters against a database where the sequences
are reversed or randomized. Since no true matches are expected from the “decoy” database, the
number of matches here can be used as a good estimate of the number of false positives in the
results. As the aim of any spectral matching probability-based scoring algorithm is to assign
a level of confidence to a peptide-spectrum match to weed out false positives, this approach
represented a huge advantage over other MS search tools of its time.

Proteomics and Tandem MS

While PMF is a simple and fast method of protein identification, it suffers from some impor-
tant drawbacks. The presence of multiple different proteins, unaccounted splice variants, and
PTMs causing unexpected mass shifts hinders its effectiveness. Only proteins with peptides
within the recorded mass range corresponding to defined sequences in a database can be iden-
tified. The introduction of tandem MS (MS/MS or MS2) helped to overcome many of these
limitations. Additional information gained from the secondary peptide fragmentation and the
better search algorithms has made the analysis of complex protein mixtures possible.
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(a)

Figure 11.12 Mascot peptide mass fingerprinting (PMF). PMF submission screen and search results showing the representative protein
summary report indicating matched peptides (red). (a) PMF submission form where search-specific parameters such as an enzyme, number
of missed cleavages, organism taxonomy modifications, and peptide masses can be selected. (b) Proteins search results page displays a
ranked list of proteins each with a −log10(P) protein score. The protein with the highest significance score is considered the most likely
match. (c) The protein view page displays the peptides identified (red) in the matched protein sequence, percent sequence coverage, and
the number of mass values searched and identified. (d) The continuation of the protein view page lists the position of identified peptide
sequences along with experimental masses (entered in the submission form) and the calculated and theoretical peptide masses from the
protein sequence database used in the search.
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(b)

Figure 11.12 (Continued)
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(c)

Figure 11.12 (Continued)
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(d)

Figure 11.12 (Continued)

Peptide Spectral Matching

The most common method of protein identification from biological mixtures, which involves
peptide sequence inference from shotgun LC-MS/MS datasets, is usually done by a database
search approach or through peptide spectral matching (PSM), where the acquired MS2 spec-
tra in one of the several MS data formats (see Reporting Standards) are searched against a
compiled set of annotated protein sequences obtained from a curated public database such as
UniProt or NCBI nr (see Chapter 1; Table 11.1). In all database search algorithms, each entry in
the database is first digested in silico by applying the same specificity rules as for the enzyme
actually used to digest the experimental sample. Then, each experimental MS2 spectrum is
correlated against theoretical fragmentation patterns constructed for each peptide using com-
mon fragmentation rules that consider ions for amino acids with the same (i.e. isobaric) mass,
the loss of ammonia and water ions, and the spectral intensity of ions, to find an appropriate
match. The search is typically restricted to a subset of peptides that meet criteria set by the user,
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Table 11.1 List of common sources of protein sequences (used in FASTA format).

Database Type URL

UniProt Reference proteomes www.uniprot.org/proteomes
NCBI – Protein Reference proteomes www.ncbi.nlm.nih.gov/protein
Ensembl Reference proteomes www.ensembl.org/info/data/ftp/index.html
PATRIC Reference proteomes www.patricbrc.org
WormBase Nematode genomes www.wormbase.org
FlyBase Drosophila genomes flybase.org

such as mass tolerance, proteolytic enzyme constraints, and allowance for missed cleavages or
the presence of a possible PTM.

The output of the search is a list of candidate matches (both peptide sequences and cognate
proteins) that are assigned a score and ranked to define the best possible candidate. Different
database search tools use different scoring schemes to compute a likelihood score for each
match to discriminate between potentially correct and likely incorrect assignments. Several
effective MS2 database search tools are currently available, including established and widely
used commercially distributed applications such as SEQUEST and Mascot, as well as freely
available ones such as X! Tandem, Andromeda/MaxQuant, and MS-GF+ (see Internet
Resources).

To make peptide identifications as reliable as possible, most algorithms also search the query
MS2 spectra against randomized or reversed decoy versions of the same reference sequence to
define and minimize the FDR (i.e. to calculate the number of random matches for a given score
as a function of non-random matches). Unreliable identifications are then filtered from the
results by setting a stringent scoring threshold that minimizes false positives while retaining
reasonable putative identifications. The finalized list of identified peptides is then assembled
into cognate proteins (protein inference) through data normalization and statistical assess-
ment following the database searching.

The identification of PTMs using MS2 is even more computationally intensive and error
prone, as it involves searching all potential combinations of mass shifts across most peptide
sequences in the protein database. This results in a combinatorial explosion in the number
of potential candidates to be matched. Hence, database search tools only recommend search-
ing for up to, at most, two or three different modifications in a single run. Most conventional
database search tools like Mascot, SEQUEST, and MaxQuant are limited to the detection of a
fixed number of pre-specified PTMs. However, more flexible algorithms employing a “blind”
or PTM-agnostic search strategies, like Sequential Interval Motif Search (SIMS), or through
hybrid search approaches like those implemented in GutenTag, InsPecT, and PEAKS PTM,
have been devised to identify unspecified PTMs. As the search space is largely unbounded,
as a pragmatic constraint, hybrid searches generate an initial error-tolerant de novo search
by which to narrow down potential candidate sequences, or even a first pass conventional
database search to filter down a smaller protein pool.

De Novo Peptide Sequencing

The standard sequence database search approach fails to identify novel peptides that are not
represented in the reference repository used and also cannot be used in cases where the cor-
responding genome sequence of the organism under question is unavailable or incomplete. In
such circumstances, de novo sequencing is an alternative approach where a peptide spectrum
is sequenced without prior knowledge of extant amino acid sequences.

De novo sequencing uses the sequential mass differences between two adjacent fragment
ions to cumulatively calculate the mass of the corresponding amino acid residues present in

http://www.uniprot.org/proteomes/
https://www.ncbi.nlm.nih.gov/protein/
https://www.ensembl.org/info/data/ftp/index.html
https://www.patricbrc.org/
http://www.wormbase.org
http://flybase.org/
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Figure 11.13 Peptide sequencing via tandem mass spectrometry (MS/MS) spectra interpretation. Anno-
tated MS2 spectrum showing peptide fragment peaks representing b- and y-ions. De novo sequencing
algorithms use the mass difference between proximal fragment ion pairs to calculate the mass of the
corresponding cognate amino acid residue in an iterative process to determine the sequence along the
peptide backbone. For example, the mass difference between the y5 and y6 ions is equal to 87.04 Da,
which corresponds to the exact mass of serine (S). Similarly, the next residue between y5 and y4 can
be determined as leucine (or the isobaric residue isoleucine) based on the corresponding mass differ-
ence. Screen shots showing the PEAKS de novo search engine, highlighting an annotated spectrum and
derived sequence of a candidate peptide.

the peptide backbone. Identification of discrete peak ion types is a crucial feature of the de
novo search algorithm (Figure 11.13). For example, using either the “b” or “y” ion series pro-
duced by collision-induced dissociation (CID) fragmentation, a set of amino acid sequences
is generated that is also consistent with the measured mass of the intact peptide (Box 11.1).
Based on a variety of criteria, such as spectral deconvolution and filtration of homeometric
peptides (different peptides with similar theoretical identical sets of b- and y-peaks), candidate
sequences (often in the tens of thousands) are narrowed down to best fit to the experimental
MS2 spectrum. The advantages of the de novo approach are that it is not affected by sequence
errors in the search database and can use partial sequences to search for PTMs. However, as
with blind PTM searching, it is a computationally intensive and error-prone process, and so is
especially dependent on high-quality MS2 spectra that are complete, of high accuracy, and free
of spurious noise. Some examples of popular de novo software tools include Lutefisk, PEAKS,
and PepNovo+ (see Internet resources).

Spectral Library Searching

Spectral library searching has emerged as an alternative method to traditional protein
sequence database searching, particularly for DDA-based data generation procedures. In
theory, for a given a sequence, a library MS2 spectrum represents the fragment intensities and
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types of observed fragment ions with greater fidelity than an in silico-predicted MS2 spectrum
generated computationally by a database search for the same peptide sequence. Once an
MS2 peptide spectrum has been confidently matched, using a traditional shotgun sequencing
proteomics pipeline, it is stored in an annotated spectral library (ASL) and can later be re-used
for rapid identification of additional MS2 spectra produced by the same peptide in another
experiment. As this approach does not rely on access to conventional protein sequences,
with a vast number of unverified candidates, it is extremely fast when compared with the
traditional database search methods. A pairwise spectral comparison takes milliseconds to
perform, as opposed to the minutes taken by standard database matching methods, hence
providing a more efficient and potentially more reliable way to identify MS2 spectra.

A spectral library search is essentially a pattern matching strategy that has been used in
analytical spectroscopy since the 1950s. However, its use as a proteomics search tool has only
become possible in the last two decades owing to the availability of proteome-wide MS2 spectra
of representative specimens that have made the construction of representative ASLs possible.
Spectral library searching is fast becoming an ideal tool in applications such as instrumentation
quality control, molecular scanners, and biomarker validation, where obtaining a speedy and
confident match to a pre-defined target is of the utmost importance.

The National Institute of Standards and Technology (NIST; Stein 1990) and Global Proteome
Machine (GPM; Fenyö et al. 2010) databases are two publicly available reference peptide spec-
tral libraries collectively containing over 6 billion annotated spectra from 16 million distinct
peptides. They are constantly being updated as more and more high-quality MS2 data become
available. Since the goal is rapid identification, a spectral library search engine simply requires
an annotated MS2 spectral library along with defined rules specifying the protease used in
protein digestion. The list of candidate peptide-spectrum matches obtained is first filtered by
aligning the precursor mass and then scored based on the calculated Pearson correlation with
the experimental MS2 spectrum. A match score is computed to capture the similarity between
the experimental and library MS2 spectrum. Candidates are ranked based on the scores, and the
highest scoring peptide from the library is assigned to the spectrum. Since the spectral library
is derived from experimentally observed MS2 spectra, this schema imparts a higher identifi-
cation sensitivity to library searches than traditional database searches. However, one should
always be aware of issues arising from peptide over- or under-representation in the spectral
library.

A spectral library search can even identify peptides with unexpected PTMs that are not
detectable when querying a traditional database that requires upfront knowledge of all PTMs
present in the sample. This improved efficiency and sensitivity have also led to the develop-
ment of spectral libraries that are specialized for the identification of PTMs. MS PepSearch
from NIST, SpectraST from PeptideAtlas, and X! Hunter from GPM are some of the spectral
library search algorithms in use today.

Hybrid Search

A hybrid search is an approach that combines elements of de novo sequencing and database
sequence search approaches. In hybrid search, short peptide sequence tags (PSTs) (three to
five amino acid residues long) obtained from MS2 spectra are subjected to an error-tolerant
database search – that is, a search that allows one or more mismatches between the sequence
of the peptide that produced the MS2 spectrum and the database sequence. A PST is a short
amino acid sequence with prefix and suffix mass values designating its starting and ending
positions in the whole peptide (Figure 11.14). In peptide sequence tagging, runs of amino acids
are extrapolated from the spacing of the fragmentation peaks and these “peptide-words” are
then used to identify proteins in a sequence database. This tagging technique limits the search
space down to peptides in the database that contain the sequence tag, resulting in a significant
reduction in search time. Representative PST search algorithms are GutenTag and InsPecT.
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Figure 11.14 Peptide sequence tag searching. Schematic illustrating how a sequence tag (PST) or “word”
is used to identify an unknown peptide from an MS2 spectrum. For protein identification, the PST (LRL in
the example provided) is combined with complementary information on the mass of peptide fragments
before (N-terminal) the sequence tag (mass1) and after (C-terminal) the sequence tag (mass2).

Top-Down (Intact Protein) MS

Early top-down studies were hampered by restrictions on sample heterogeneity and protein
sizes. However, current advances in analytical separations, such as nanoflow reverse phase
liquid chromatography (RPLC), gel-eluted liquid fraction entrapment (GELFrEE), hydropho-
bic liquid interaction chromatography (HLIC), capillary electrophoresis (CE), and isoelectric
focusing (IEF), coupled with the increasing resolution of MS instrumentation and improved
ion fragmentation based on photon and electron capture methods, such as surface-induced
dissociation (SID) and ultraviolet photodissociation (UVPD), have made intact protein charac-
terization from increasingly complex mixtures feasible. Recent studies have shown the utility
of the top-down approach for decoding the components of multi-proteoform-containing
macromolecular complexes. Studies have even established the use of TDP in monitoring
proteoforms in clinical samples, such as cerebrospinal fluid for biomarkers in pediatric brain
tumor prognosis and saliva for biomarkers of early-onset Alzheimer disease in patients with
Down syndrome. Some open source top-down analysis tools in use today are ProSight PTM,
TopPIC, MS-Align+, and the recently released Informed-Proteomics.

Database Search Models

The massive amounts of MS2 spectra generated by modern proteomics platforms (often mil-
lions of spectra per study) can only be analyzed by the use of automated search engines or
software platforms. Numerous scoring algorithms have been devised, but those in use today
can be separated into two general classes: those that require interpretation for selection of spe-
cific ion mass features based on the ion peaks present in a spectrum prior to sequence searching
and scoring, and those that require no interpretation and that attempt to score all available
mass peaks. De novo sequencing algorithms (that infer polypeptide sequences from scratch)
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belong to the first class, while standard database search algorithms (that perform sequence
matching) follow the uninterpreted approach. Both types of algorithms have advantages and
disadvantages, but either type can be used to effectively identify polypeptide sequences from
high-quality MS2 spectra.

Uninterpreted search algorithms can be further subclassified into four different subtypes
on the basis of the scoring approach used for PSM: descriptive, interpretative, stochastic, and
probability-based matching. Descriptive algorithms are based on matching the experimental
to the theoretical spectrum through correlation analysis, while interpretative models try to
interpret a partial sequence from an MS2 spectrum prior to a database search. Probability-based
matching models derive the probability of the peptide identification by establishing a statistical
relationship between the experimental spectrum and the database, and the stochastic scoring
models make use of training sets of known spectra to derive the probability of the best match.

PSM Software

The aim of all search engines is to decipher an MS2 spectrum obtained from the fragmentation
of a peptide by selecting a list of best matching candidates using various scoring schemes to
define a match and for assembling multiple identified peptides into their associated proteins.
While search engines using a probabilistic scoring approach attempt to discriminate between
true and false identifications, non-statistically scoring search engines depend on the subse-
quent application of a statistical tool such as PeptideProphet, StatQuest (Kislinger et al. 2003),
or Percolator to convert the initial matching score into a likelihood or probability. Some search
engines can be used as stand-alone applications on the identification and even quantification
for data obtained using specialized MS techniques, while others are integrated into large soft-
ware packages or platforms that allow for more complete and user-friendly MS data analysis.
Some tools (such as MaxQuant and MS-GF+) are open access and freely available, while oth-
ers are proprietary commercial packages that need to be licensed for use. Certain tools offer
online versions that allow restricted analysis, with the latest trend being the use of cloud com-
puting services such as Amazon Web Services (Halligan et al. 2009) and ProteoCloud (Muth
et al. 2013). However, most applications need to be run on a local computer or cluster with
sufficient computing power. While an in-depth discussion of all the key attributes of the many
currently available search tools is beyond the scope of this chapter, some aspects of the more
widely used tools are covered briefly below.

SEQUEST

The SEQUEST search algorithm is a robust descriptive scoring approach introduced by Eng,
Yates, and colleagues at the University of Washington (Eng et al. 1994). It was the first and
now one of the most widely used automated database search tools devised for peptide identi-
fication from MS2 data. The SEQUEST algorithm pre-processes MS data through an iterative
peptide-spectrum matching strategy based on the precursor mass and a user-specified toler-
ance, followed by peak binning and normalization. The pre-processed data are then scored
using a two-step scoring approach, wherein a preliminary score (Sp) is first calculated based on
the number of ions in the MS2 spectrum that match with the experimental data. Theoretically
constructed spectra are then generated for the top-ranked 500 candidate peptides and systemat-
ically evaluated against the experimental spectrum to generate a normalized cross-correlation
score (XCorr), which is a scalar dot product with a correction factor (Figure 11.15). The peptide
with the highest XCorr value is deemed the best match, with match quality and uniqueness
further judged based on the difference between the top and next best match by calculation of
a Delta correlation (ΔCn) score. This cross-correlation analysis is the primary function imple-
mented within SEQUEST and makes the tool particularly sensitive albeit computationally
intensive (i.e. slow).
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Figure 11.15 Peptide spectrum match (PSM). Annotated MS2 spectrum showing matched ion series for a representative BSA (bovine serum
albumin) peptide identified using the SEQUEST search algorithm.

The ability to identify dynamic (variable) modifications was added in subsequent updates,
and SEQUEST was later integrated into the commercial Proteome Discoverer software suite.
Efforts to develop faster versions of SEQUEST were subsequently introduced by adding a
pre-computed indexing function to speed up the calculation of XCorr. TurboSEQUEST was
developed as part of the Crux software suite, followed by a much faster implementation called
Tide. By means of algorithmic enhancements and better use of limiting computer resources,
Tide is geared toward high disk usage and can be used for parallel execution on a CPU cluster
by running multiple program instances. It is freely available for academic and non-profit use
as a part of the Crux software toolkit.

X! Tandem

X! Tandem is an open source search engine within the X! suite of database matching algo-
rithms that is distributed as part of the GPM. It was originally implemented as a collabo-
rative effort between Robertson Craig and Ronald Beavis as a free open source search tool
called TANDEM (Craig and Beavis 2004), in contrast to most popular search tools that were
proprietary and offered limited scope for further improvement. The implementation of TAN-
DEM was undertaken with a view to optimizing speed and improving identifications, and
was designed to run from the command line. It pre-processes experimentally derived spec-
tra to remove spurious peaks (noise) and to generate enzyme-specific theoretical spectra from
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a protein sequence while considering potential post-translational and chemical modifications
when matching the observed and predicted spectra. A hyperscore based on the hypergeomet-
ric distribution is then calculated as the dot product of the sum of matched peak intensities
and the factorial of the number of matched b and y ions.

Two additional scoring metrics – the K-score and S-score – have been introduced to
measure the similarity between peptide MS2 spectra and sequence candidates. Similar to the
native hyperscore, the K-score includes a pre-processing step that takes input from noised
and unmatched peaks to give a more sensitive match, while the S-score divides the sum of
log intensities of matched peaks by the square root of the sequence length, with statistical
significance assessed by an expectation (e) value. Once the peptide evidence is established, the
protein-level inference is estimated using a Bayesian model based on the number of peptides
identified for a given protein and their respective scores.

TANDEM was one of the first programs to use Biopolymer Markup Language (BIOML;
Fenyö 1999), an Extensible Markup Language (XML) format designed for annotation of protein
sequence information and generating input and output files according to the standard report-
ing formats of analytical instruments, allowing for easy integration into MS search pipelines.
TANDEM has been integrated into the Trans-Proteomic Pipeline (TPP) software suite, one of
the more popular public MS2 analysis platforms, but is still maintained as part of the X! suite
of tools by GPM with the latest version at the time of this writing being Alanine (2017.02.01).

MaxQuant (Andromeda)

Andromeda is a database search engine developed for the powerful MaxQuant software suite
(Cox et al. 2011) that implements a probabilistic scoring algorithm for PSM scoring. It is capa-
ble of handling MS2 spectra generated with high fragment mass accuracy and can assign, score,
and quantify complex patterns of PTMs such as multiply phosphorylated peptides, while main-
taining the ability to search efficiently across large sequence databases.

As with most search engines, a user specifies allowed peptide and protein modifications,
the enzyme(s) used for protein cleavage, and the reference protein sequence database to be
searched. A list of all peptides in the database is then generated using these parameters and
indexed using a two-layer structure based on peptide mass for fast retrieval. Based on the pep-
tide sequence and configuration of fixed and variable modifications for a given peptide, the
theoretical fragment ions are calculated after averaging and deconvolution of multiple charge
states. The Andromeda scoring function is based on the binomial distribution probability for-
mula. The MS2 spectrum is divided into mass ranges of 100 Th (mass-to-charge ratio units);
the score calculated as 10 times the logarithm of the probability of the number of matches
between the experimental peaks and theoretical fragment masses across the spectrum range
while taking into account peptide length, number of missed cleavages, and potential pres-
ence of modifications. Peptide identifications are then filtered using a statistically determined
cut-off based on a target–decoy-derived FDR and mapped to cognate proteins.

Andromeda was developed with a robust architecture and unlimited scalability. It can
function independently or as a search engine integrated within the MaxQuant computational
platform, using a graphical user interface that was specifically developed for high-resolution
(Orbitrap) MS data. This includes peak detection in the raw data, quantification, scoring of
peptides, reporting of protein groups, and support of both quantitative label-free (e.g. spectral
counts) and isotopic (e.g. stable isotope labeling of amino acids in a cell culture, SILAC)
and isobaric (e.g. tandem mass tag, TMT) labeling techniques. Both tools are freely available
(see Internet Resources) and can be run on a Windows desktop computer, eliminating
client–server setup and network communication issues. For searching individual spectra,
Andromeda is also accessible via a web server and can be run from the command line. To assist
biological interpretation, further downstream biological analysis of MaxQuant/Andromeda
results can be done using a separate module called Perseus.
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PSM on the Web

A restricted web accessible version of Mascot for MS2 is available for single sample searches. It
is very similar to the PMF search with some modifications. Here the data are submitted online
in the form of peak lists obtained from converting raw data through a process known as peak
picking (Figure 11.8a). Each peak list is made up of the observed peptide ion mass values and,
optionally, associated intensity values where available. It can also be submitted as a Mascot
generic format or .mgf file. The current version of Mascot also supports vendor-specific formats
such as .dta (SEQUEST), .asc (Finnigan), .pkl (Micromass), as well as standard formats adopted
by the proteomics community such as .mzML and .mzData (see Reporting Standards). Apart
from the regular search-specific parameters (see PMF on the Web), other additional parame-
ters that can be set include MS2 or fragment ion error tolerance and the quantitation method
for labeled or label-free samples. One can also select the type of MS instrument and ion acti-
vation method used from the list provided, the charge state of peptide fragments, and whether
to run a decoy search to calculate the FDR. At the end of a search, a detailed summary report
is generated encapsulating the putative peptide and protein identifications (Figure 11.16). In
its current iteration, Mascot supports PMF, PST, and standard database searching of MS2 spec-
tra, along with PTM identification and relative quantification using label and label-free tech-
niques. A free (but restricted) version for all three search types is available online (see Internet
Resources); high-throughput operation is accessible commercially.

Reporting Standards

One of the pivotal elements for development and progress in any field of research is the need
for collaboration and easy exchange of data. For that to happen, it becomes crucial that MS
data adhere to a common standard to allow interoperability between software tools and com-
puting platforms, as well as for deposition of proteomics data in public repositories to facilitate
sharing, reuse and, ultimately, new biomedical insights leading to clinical translation. In
order to establish MS data standards, the Human Proteome Organization (HUPO) formed the
Proteomics Standard Initiative (PSI) in 2002 (Orchard et al. 2003). The goal of this effort is to
develop community standard reporting formats using minimum information guidelines and
controlled vocabularies; it also promotes the development of public resources and tools for
data distribution through group charters addressing different aspects of MS-based proteomics.
These include PSI-MI (Proteomics Standard Initiative – Molecular Interactions), a data format
for reporting and exchange of molecular interactions (Chapter 13), MIAPE-MS (Minimum
Information About a Proteomics Experiment – Mass Spectrometry) for experimental data,
MIAPE-MSI (Minimum Information About a Proteomics Experiment – Mass Spectrometry
Informatics) for MS data analysis, MIASSPE (Minimum Information About Sample Prepa-
ration for a Phosphoproteomics Experiment) for PTMs such as phosphoproteomics, and
MIAPE-Quant (Minimum Information About a Proteomics Experiment – Mass Spectrometry
Quantification) for proteomics quantification experiments. These guidelines define the basic
data elements and metadata required for MS data release, while the data formats provide
models for reporting the information to be shared. The latter include ad hoc formats that
represent the needs of a specific group or developer. In addition to ad hoc formats, there are
de facto standards, such as pepXML and protXML developed as a part of the TPP suite, that
have not been through a standardization process but are nevertheless commonly accepted.
Actual standards, such as mzML, are defined through a formal standardization process,
which defines the structure of the XML format after extensive testing and review.

Proteomics XML Formats

Many proteomics data formats exist. Unfortunately, vendor-specific proprietary MS data for-
mats do not allow data to be easily manipulated or shared. To overcome these problems, several
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(a)

Figure 11.16 Mascot search engine. Mascot MS2 database search submission window and representa-
tive peptide spectrum match (PSM) search results. (a) Tandem mass spectrometry (MS/MS) ion search
submission form where search-specific parameters such as an enzyme, number of missed cleavages,
organism taxonomy modifications, quantitation, precursor m/z, MS instrument, and ion activation (frag-
mentation) mechanism can be set or selected. (b) The search results page displays a ranked list of
proteins each with the −log10(P) protein score. The protein with the highest significance score is con-
sidered the most likely match. Clicking on the protein name brings up the corresponding peptide view
for that protein. (c) The peptide view page displays a scrollable panel for viewing the mass spectrum
of each peptide identified for the protein along with the fragmentation table listing the masses of the
peaks in the mass spectrum. A scored list of peptides identified for that protein is also displayed.
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(b)

Figure 11.16 (Continued)
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(c)

Figure 11.16 (Continued)
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open data formats have emerged over the past decade. The latest recommended open standard
proteomics format is mzML, developed and supported by HUPO PSI and building upon ear-
lier open mzData and mzXML standards; these standards were initially widely used to store
raw MS data such as spectra and chromatograms. While mzML is the best standard currently
available, older formats, such as the mzXML format developed by the Institute for Systems
Biology (ISB, Seattle, Washington), are still widely used. These standards are written in XML
and contain a textual representation of proteomics data structures with emphasis on simplicity
and usability that make them both human and machine readable.

Since its inception, PSI has defined other data formats such as TraML for devising transition
lists as input to target-directed SRM experiments, mzIdentML for peptide and protein iden-
tifications, mzQuantML for quantitative MS data, mzTab for proteomics and metabolomics
results, gelML for protein separation methods, and spML for sample processing. The defini-
tion and availability of these PSI data formats have helped to streamline the development of
MS algorithms and software platforms leading to increased interoperability and data exchange.
Examples of the many tools capable of standard-compliant implementation of PSI formats in
use today are ProteoWizard, PRIDE, and OpenMS.

Proteomics Data Repositories

The endpoint of most proteomics projects is reached when a manuscript is published. In the
early days of proteomics (up until the mid-2000s), standard practice was to release the final
processed data as supplemental information at the time of publication. As a result, there was
no way for the community to access the unprocessed data or raw experimental results unless
requested of the authors. Even that could be problematic if the data were not archived properly
and could not be traced. In the mid-2000s, many journals began requesting proteomics data
deposition into a public repository coincident with the publication, similar to the established
practice in the DNA sequencing field. With steady advances in MS data generation, demand
for access to raw proteomics data has increased manifold, resulting in mandatory deposition of
enormous amounts of experimental data into public repositories. Access to data allows re-use
and re-analysis by other researchers, allowing the definition of MS-observable proteomes or
annotated spectral libraries.

Leading data repositories for proteomics data include PeptideAtlas, PRIDE, GPMdb, the
Mass Spectrometry Interactive Virtual Environment (MassIVE), jPOST, iProX, Chorus, and
the PeptideAtlas SRM Experiment Library (PASSEL). The ProteomeXchange (PX), represent-
ing a consortium of repositories, was developed to manage the integration of public repositories
and data sharing with the scientific community.

ProteomeXchange

The PX Consortium (Deutsch et al. 2017) was launched to oversee standardization of submis-
sion guidelines for proteomics MS data. PX provides a user-friendly data deposition procedure
and framework to coordinate the resources of existing database repositories, including
PRIDE, MassIVE, jPOST, iProX, PASSEL, and PeptideAtlas. Mandatory data and metadata
required for submission are MS output (raw data in a binary format or the standard mzML
format), processed identification results, and metadata that describe experimental conditions.
Other information such as peak lists and quantification results can also be provided. Once
submitted, authors are able to cite an assigned PX accession in their pre-publication. While
the first five databases store user-submitted data and are considered a primary resource,
data in PeptideAtlas are re-processed through the TPP pipeline, similar to what is done by
GPMdb, and constitute a secondary resource. In addition to PeptideAtlas, PASSEL was set up
as a repository for target-driven SRM data. To date, more than 4500 datasets covering over
900 organisms have been submitted, with Proteome Central serving as an access portal with
browsing and advanced visualization features.
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PRIDE

The Proteomics Identifications database (PRIDE; Vizcaíno et al. 2016) is a repository for MS
data that includes actual spectra, as well as tentative peptide and protein identifications and
PTM site assignments. Data supporting a scientific publication can be deposited in PRIDE
before or during the peer review process and is assigned a PX accession number. After publica-
tion, the data are made publicly available and can be downloaded using the provided accession
number. The database can be queried by PX accession, protein accession, PubMed accession,
or any of the keywords included in the metadata, and the data stored in a number of for-
mats using multiple tools: the PRIDE Converter tool can convert uploaded MS spectra and
identifications to the PRIDE XML format, PRIDE Inspector is an XML validator for verify-
ing data formatting prior to submission, the PRIDE Archive web page can be used to query the
database, and PRIDE Cluster can group spectra in the repository based on similarity, with clus-
ters queried using a peptide sequence or consensus spectrum. Additionally, species-specific
spectral libraries can be downloaded.

The submission process can be in the form of a complete submission, where the processed
identification data are first converted to PRIDE’s XML format. PRIDE also supports partial
submissions, where the PSI de facto mzXML format and standard mzML or mzIdentML are
provided; the corresponding peak list file of the search engine used must also be included.
Complete submission ensures that processed data are integrated into PRIDE, supporting the
connection of processed results directly with the mass spectra, enabling quality assessment
using the database’s visualization tools.

PeptideAtlas

PeptideAtlas (Farrah et al. 2013) was primarily developed as a database for the annotation of
eukaryotic peptide sequences but has expanded to serve as a framework for storage, exchange,
and integration of proteomics data. PeptideAtlas re-processes high-throughput data to a
stringent FDR assessment using the TPP before mapping the resultant peptide annotations
to genomes (unlike PRIDE, which stores and presents peptide and protein identifications as
submitted by the investigator). After data are uploaded to PeptideAtlas through its submission
interface, the reprocessed data are organized into “builds” belonging to a proteome (or
sub-proteome). PeptideAtlas also provides statistical validation tools, like PeptideProphet and
ProteinProphet, to control false-positive identifications and is now a highly curated protein
expression database. More recently, PeptideAtlas has begun to serve as a resource to build
spectral libraries and SRM-related tools and is now a part of the PX consortium.

Global Proteome Machine+ GPMdb

The GPM was developed with the aim of consolidating and gleaning information from bur-
geoning proteomics data sources for broader use in biomedical research (Craig et al. 2004). To
accomplish this, the GPMdb database was set up to facilitate community access to MS2 data
for proteome-wide analysis using their popular open source X! suite of search tools, which
includes X! Tandem and X! Hunter. Since its inception, the GPM has become a well-known
protein expression database that continues to provide expansive content through the acquisi-
tion of proteomics data repositories and user submissions. The data are re-processed prior to
storage for rigorous validation of peptide MS2 spectra, tentative protein identifications, and
PTM mappings, and are saved as ASL XML files that are indexed and stored in a MySQL
database.

The GPM’s X! suite of search engines allows a user to run database searches on their own
data while retaining the option of submitting the results to GPMdb’s annotated spectrum
library. GPM also allows users to perform spectral library searches using the X! Hunter
spectral library search engine and analyze data through the proteotypic peptide profiler
X! P3. GPMdb categorizes the information in the database in the form searchable interfaces,
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including pYST, which provides a list of PTMs; SNAP, which provides lists of protein amino
acid polymorphisms; MRM (Multiple Reaction Monitoring), which lists peptides observed
in MS2 experiments; and PEPTIDE, which provides species-specific peptide sequences for
download. All peptides are mapped to Ensembl genome database identifiers.

Other ways of searching the GPM web interface include by accession number, peptide
sequence, chromosome location, keywords, Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways, gene Ontology (GO) terms, PTMs, protein amino acid polymorphisms,
BRaunschweig ENzyme DAtabase (BRENDA), and tissue ontology. The GPMdb undergoes
daily updates and has data covering ∼829 million proteins and 8.6 billion peptides as of build
5600 (June 2019). For example, the frequency of identification of a particular protein in the
GPMdb can be used as an indirect measure of confidence of how likely the protein will be
identified in an MS2 experiment.

Protein/Proteomics Databases

The other major type of public resource accessed by most proteomics workflows in MS spectral
searching is protein sequence databases. Proteomics data closely resemble transcriptomic
data (Chapter 10) or metabolomic data (Chapter 14), in that the resulting long lists of proteins
(proteomics), genes (transcriptomics), or metabolites (metabolomics) need to be compared,
analyzed, annotated, and biologically interpreted. The annotation and interpretation process
for proteomics requires access to comprehensive protein sequence and annotation databases.
These resources play a vital role in data-driven biological discovery and hypothesis generation.
The vast amounts of MS spectra generated by high-throughput proteomics studies created
a critical need for rigorously curated databases to aid researchers in making connections
between their results and existing knowledge. Depending on the experimental design,
proteomics strategies usually generate information regarding protein location, abundance,
and PTMs, so functional annotation within these databases is essential in establishing the
biological relevance of the identified proteins. For example, it may be possible to infer the
function of a differentially regulated protein, such as its role in a biological pathway based
on the functions of the interacting partners that interact or co-localize with it through data
mining of functional annotation databases. In addition to well-known databases, such as
the National Center for Biotechnology Information’s (NCBI) RefSeq (Chapter 1), Ensembl
(Chapter 4), and the Protein data Bank (PDB; Chapter 12), a few other databases relevant to
proteome annotation and inference are discussed below.

UniProt

The UniProt Consortium is an authoritative and a comprehensive data store for functional
information on protein sequences (Chapter 1). UniProt serves as the database of choice
for protein sequences needed for MS spectral searches, as it houses proteome-level protein
sequences for well-studied model organisms and other reference species with fully sequenced
genomes. UniProt also contains UniRef, a database of reference sequence clusters, and Uni-
Parc, a sequence archive. Collectively, UniProt is an information-rich resource with carefully
derived annotations, taxonomic information, and qualitative functional information, such
as protein subcellular locations, PTMs, and pathway and disease associations, with links to
available pertinent cross-references and extensive literature citations. UniProt can be used
to find curated information on proteins of interest – for example, the domain structure of
a protein, its biological function, subcellular location, known PTMs, role in a biological
pathway, or involvement in disease as gleaned from peer-reviewed papers. It can be used to
compare protein sequences to determine similar (homologous) proteins and to see associated
functional information.
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PTM Databases

Owing to the important role played by PTMs in regulating cellular processes and the need
for a comprehensive description of PTMs by the research community, the dbPTM database
was released in 2006 (Huang et al. 2019). dbPTM contains a list of all experimentally verified
PTMs gleaned from public databases and putative PTMs in the UniProt database; it also offers
a web-based portal for integrated access to this information, along with tools for PTM analysis.
The experimentally verified subset has proved to be an excellent benchmark for evaluating the
predictive power of various PTM prediction tools. This subset has also been mapped to all cor-
responding PDB entries to define 347 984 putative modification sites as of this writing. dbPTM
also incorporates metabolic pathway information and protein–protein interactions relevant to
PTM networks. The current version of dbPTM contains 908 917 non-redundant experimen-
tally verified PTM instances, representing over 34 types of modifications, including 571 032
phosphorylation sites.

Another highly curated database for experimental mammalian PTMs is PhosphositePlus
(PSP). Launched in 2003, PSP now houses over 400 000 non-redundant modification sites
linked to 20 268 protein groups and 2.4 million peptides, covering 14 different modifi-
cation types acquired from over 21 000 publications. While PSP incorporates data from
low-throughput studies, over 95% of the PTMs are from high-throughput data, so the acquired
data are re-analyzed using a common analysis standard to retain only site assignments with
high probability (p ≤ 0.05). PSP also includes structural topology and functional information
about putative modification sites and provides tools for the functional analysis of PTMs with
respect to protein function aspects such as disease, tissue expression, and domains.

Owing to the critical role of PTMs in cellular signaling and regulation of cellular processes,
PTMs identified by proteomics studies need to be properly interpreted to gain insight into
the significance of the role they may play in disease causation. Hence, databases like dbPTM
and PSP serve as a valuable resource for researchers who can use them to benchmark their
findings.

Selected Applications of Proteomics

The overall objective of proteomics is to study the properties of a proteome and determine
the change reflected in response to various physiological states such as the cell cycle, signal-
ing, cell division, or disease. These can be broadly classified using differential, functional, and
structural proteomics strategies (Figure 11.17).

Differential Proteomics

Differential proteomics, or proteome-scale expression profiling, investigates the differences in
the expression patterns of proteins between two physiological states (e.g. normal versus can-
cer). In biomedical research, a comparative methodology is typically used for the identification
of significantly upregulated or downregulated proteins in a context- or disease-specific manner
to investigate cellular responses, for use as diagnostic biomarkers, or as potential drug targets,
as well as to understand the mechanistic basis of biological processes at the molecular level.
Examples of differential proteomics techniques include a study identifying some of the impor-
tant regulatory systems controlling glucose responsiveness in the metabolic pathway affecting
diabetes (Schuit et al. 2002), the discovery of genes producing abnormal regulatory proteins
in Alzheimer disease (Butterfield et al. 2003), and the identification of proteins involved in
progressive dilated cardiomyopathy and heart failure (Gramolini et al. 2008).

Functional Proteomics

There are many different areas of study covered by functional proteomics, a wide-ranging
term encompassing protein identification, abundance, and turnover measurements across
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3D protein structure
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Functional inference
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Protein complex assembly

Post-translational modifications
Protein localization

Proteomics

Structural Differential Functional

Figure 11.17 Proteomics. A broad classification of proteomics and the biological applications of pro-
teomics studies currently and commonly being performed. 3D, three-dimensional.

changing conditions, all the way through to PTM mapping, protein localization, interaction
mapping, and functional inference. For example, multi-protein complexes are known to
play leading functional roles in the molecular machinery of the cell, and thus the systematic
characterization of protein–protein interactions and their dynamic assembly into macro-
molecular assemblies is critical toward understanding their role in driving cellular signaling
networks and metabolic pathways. Notably, the function of an uncharacterized subunit
of a multi-protein complex physically associated with annotated components of known
function can be inferred using the “guilt-by-association” (or “guilt-by-correlation”) principle
(Gavin et al. 2002; Krogan et al. 2006). PTMs play an especially important role in functional
proteomics, given their role in determining protein activity by impacting physical interactions
such as PTM-dependent binding to proteins and nucleic acids, as well as in communicating
extracellular cues via intracellular signaling cascades or driving key cellular processes as
a result of protein phosphorylation/de-phosphorylation events that trigger cell division,
differentiation, apoptosis, or metabolic/anabolic states.

Structural Proteomics

Proteomics studies in which the goal is to determine protein location and associations in a cell
and their three-dimensional shape or structure within macromolecular complexes is called
structural proteomics. Structural analyses can support functional characterization by provid-
ing clues about the biochemical role of a target protein through complementary information
regarding biological activity and pathophysiological significance. Traditional protein biochem-
istry methods, while typically limited to single proteins or protein classes, can be combined
with unbiased mass spectrometric techniques to study various structural aspects of protein
assemblies on a growing scale (Sinz 2014).

Drug target identification is yet another application of structural proteomics, where MS is
used to identify the interactions of bioactive small molecule ligands with their cellular pro-
tein targets and to define potential drug binding site(s) and three-dimensional models of a
protein–ligand complex; this is a critical step toward better defining a compound’s mode of
action and structure–activity relationships, as well as to assist the process of “rational drug
design” and drug discovery (Djuric et al. 2016).

Summary

Similar to other areas of bioinformatics, sophisticated data analysis pipelines and algorithms
are used in proteomics analysis. Careful consideration needs to be given to the quality
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Table 11.2 Standard search parameters used with sequence database search engines.

SEQUEST !X Tandem MaxQuant

Enzyme Trypsin Trypsin Trypsin
Number of missed
cleavages

2 2 2

Peptide mass tolerance 0.5 Da 0.4 Da 4.5 ppm
Maximum number of
modifications per peptide

3 10 5

Fixed modifications Carbamidomethylation Carbamidomethylation Carbamidomethylation
Variable modifications Oxidation, acetylation Oxidation, acetylation Oxidation, acetylation
Parent mass type Monoisotopic mass Monoisotopic mass Monoisotopic mass
Fragment mass type Monoisotopic mass Monoisotopic mass Monoisotopic mass
Minimum peptide length 6 6 7
Maximum peptide length 40 50 25
False discovery rate 0.01 0.01 0.01
Precursor mass tolerance 10 ppm −2.0 to 4.0 Da 6 ppm
Fragment ion method CID CID CID

CID, collision-induced dissociation.

of data submitted and the parameters chosen so as to obtain optimal results. There is no
“one-size-fits-all” solution that works perfectly under all circumstances, and most software
tools are tailored to a specific task. The source and quality of MS data are also of the utmost
importance, underlying the importance of having a thorough knowledge of the biological
problem under consideration before beginning any analysis. Depending on the type of
MS instrument used, the quality and type of data generated, and the kind of experimental
characterization being performed, critical database search tool parameters (described in
Table 11.2) need to be carefully set prior to achieving optimal performance.

Important factors that need to be considered in the context of all proteomics experiments
and analyses include:

• the proper calibration of the MS instrument (e.g. using known standards)
• understanding the expected mass resolution and accuracy of the instrument
• the specification of proper proteolytic cleavage rules relevant to the protease used in protein

digestion
• capturing the MS data acquisition (instrument) settings, such as:

– ionization and fragmentation methods used, as well as the ion series identified within
each spectrum

– precursor and fragment ion mass, scan range, and match tolerance
– presence of stable isotopes or multiple charge states
– defining variable or pre-defined post-translational (e.g. phosphorylation) or chemical

(e.g. acetylation) modifications
• the presence of contaminating species, such as trypsin autolysis products, keratin, and other

experimental artifacts
• selecting the reference protein sequence database for the search
• processing and measuring the signal-to-noise ratio of each spectrum.

A good understanding of how these parameters influence the scope of the search and ulti-
mately impact the quality of the results is of vital importance.

In general, there are two ways to ensure the quality of the results. The first is a selection of
optimal parameter settings, which can be achieved by systematically varying the search param-
eters until a satisfactory result is obtained. For example, increasing the initial MS scan range
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from 375–1500 to 400–1800 m/z can improve peptide coverage and signal to noise; broadening
the search space by including orthologs from closely related but better annotated species can
also provide more informative results. Another strategy to ensure high-quality search results
is to integrate the results from multiple programs to achieve better coverage while minimizing
false positives. Since search engines vary in their scoring schemes, taking into account differ-
ent features of the input data, one algorithm may detect a feature missed by another (Kwon
et al. 2011).

In all, two major considerations dictating the success of bioinformatics analysis of
LC-MS/MS studies are to know the properties of the data and to be mindful that protein
identification is only a first step in any proteomics analysis workflow. We trust the chapter
has provided some helpful guidance in this respect.
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Internet Resources

Crux crux.ms
dbPTM dbptm.mbc.nctu.edu.tw
Global Proteome
Machine (GPM)

www.thegpm.org

GPM DB ftp://ftp.thegpm.org/repos/peptides
GutenTAG fields.scripps.edu/downloadfile2.php?name=GutenTag&

filename=GutenTag.zip&id=3
Human Proteome
Organization (HUPO)

www.hupo.org

Informed-Proteomics github.com/PNNL-Comp-Mass-Spec/Informed-Proteomics
InsPecT proteomics.ucsd.edu/Software/Inspect
iProX iprox.org
jPOST jpostdb.org
Lutefisk www.hairyfatguy.com/lutefisk
MassIVE massive.ucsd.edu/ProteoSAFe/static/massive.jsp
Mascot www.matrixscience.com/cgi/search_form.pl?FORMVER=2&

SEARCH=PMF
MaxQuant www.coxdocs.org/doku.php?id=maxquant:common:download_and_

installation#download_and_installation_guide
MS-Align+ bix.ucsd.edu/projects/msalign
MSblender github.com/marcottelab/MSblender
MS-GF+ omics.pnl.gov/software/ms-gf
MS PepSearch chemdata.nist.gov/dokuwiki/doku.php?id=peptidew:mspepsearch
OpenMS www.openms.de
PEAKS www.bioinfor.com/download-peaks-studio
PepNovo+ proteomics.ucsd.edu/Software/PepNovo

http://crux.ms/
http://dbptm.mbc.nctu.edu.tw/
http://www.thegpm.org/
ftp://ftp.thegpm.org/repos/peptides
http://fields.scripps.edu/downloadfile2.php?name=GutenTag&filename=GutenTag.zip&id=3
http://fields.scripps.edu/downloadfile2.php?name=GutenTag&filename=GutenTag.zip&id=3
https://www.hupo.org/
https://github.com/PNNL-Comp-Mass-Spec/Informed-Proteomics
http://proteomics.ucsd.edu/Software/Inspect/
http://iprox.org/
https://jpostdb.org/
http://www.hairyfatguy.com/lutefisk/
https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp
http://www.matrixscience.com/cgi/search_form.pl?FORMVER=2&SEARCH=PMF
http://www.matrixscience.com/cgi/search_form.pl?FORMVER=2&SEARCH=PMF
http://www.coxdocs.org/doku.php?id=maxquant:common:download_and_installation#download_and_installation_guide
http://www.coxdocs.org/doku.php?id=maxquant:common:download_and_installation#download_and_installation_guide
http://bix.ucsd.edu/projects/msalign/
https://github.com/marcottelab/MSblender
https://omics.pnl.gov/software/ms-gf
https://chemdata.nist.gov/dokuwiki/doku.php?id=peptidew:mspepsearch
https://www.openms.de/
http://www.bioinfor.com/download-peaks-studio/
http://proteomics.ucsd.edu/Software/PepNovo/
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PeptideAtlas www.peptideatlas.org
PeptideProphet peptideprophet.sourceforge.net
Percolator percolator.ms
PRIDE www.ebi.ac.uk/pride/archive
ProSight PTM prosightptm.northwestern.edu
ProteinProphet proteinprophet.sourceforge.net
ProteomeXchange www.proteomexchange.org
ProteoWizard proteowizard.sourceforge.net
Proteomics Standards
Initiative (PSI)

www.psidev.info

SEQUEST www.proteomicswiki.com/wiki/index.php/SEQUEST_installation_
instructions

SIMS emililab.med.utoronto.ca
Tide noble.gs.washington.edu/proj/tide
TopPIC proteomics.informatics.iupui.edu/software/toppic
TPP tools.proteomecenter.org/software.php
UniProt www.uniprot.org
X! Hunter ftp://ftp.thegpm.org/repos/xhunter
X! Hunter ASL ftp://ftp.thegpm.org/proteotypic_peptide_profiles
X! Tandem ftp://ftp.thegpm.org/projects/tandem

Further Reading

Nature Milestones in Mass Spectrometry (www.nature.com/milestones/milemassspec) is a
collaborative effort involving five Nature Publishing Group journals. Each milestone article,
written by a Nature Publishing Group editor, focuses on a key technical development in mass
spectrometry covering one breakthrough. Each article highlights the main papers that contributed
to the advance and the applications that stemmed from these advances.
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Protein Structure Prediction and Analysis
David S. Wishart

Introduction to Protein Structures

Over the last several chapters, we have seen how proteins can be conveniently represented and
analyzed as character strings (sequences). Indeed, much of what we call bioinformatics today
is based on using computers to manipulate, store, and compare sequences or character strings.
However, it is important to remember that the field of bioinformatics encompasses more than
just sequence analysis and that many of the most interesting and exciting applications in bioin-
formatics today are actually concerned with structure analysis – or, as it is sometimes called,
structural bioinformatics. In fact, the origins of bioinformatics actually lie in the field of struc-
tural biology, as many of the first bioinformatic programs and the very first bioinformatic
databases were developed to store, compare, and analyze protein structures (Bernstein et al.
1977; Hagen 2000). Interestingly, many of the concepts used in sequence analysis (such as
archiving, aligning, and visualizing) actually have close parallels in structure analysis. How-
ever, the analysis of protein structures also has an added layer of challenges owing to their
inherent complexity.

Proteins are perhaps the most complex chemical entities in nature. No other class of
molecule (large or small) exhibits the variety of shapes, sizes, textures, and mobility that can
be found in proteins. Proteins are so inherently complex that scientists have gone to great
efforts to develop efficient methods to determine their structures, to visualize their shapes,
to measure their motions, to simplify their descriptions, to compare their folds, and to look
for underlying structural commonalities. In fact, the challenge of characterizing protein
structures has been deemed so significant that, since 1960, more than a dozen Nobel prizes
have been awarded to scientists who have determined or developed methods to characterize
protein structures.

This chapter is intended to provide an overview of the bioinformatic tools and databases
needed to analyze, archive, visualize, predict, and evaluate protein structures. It is organized
into eight sections, providing a short introduction to protein structure, a brief review of
how protein structures are determined, a summary of how protein structures are described,
a description of the main protein structure databases, an overview of selected structure
visualization tools, a description of bioinformatic tools for structure prediction, a summary
of how proteins may be evaluated and, finally, a description of how proteins can be classified
and compared.

How Protein Structures are Determined

Figure 12.1 provides a flow diagram describing how protein structures can be determined
or “solved.” As can be seen from this diagram, there are three experimental techniques that
can be used to generate detailed structural information about proteins at atomic resolution:
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Clone and purify
protein

Test crystallization
conditions

Create derivatives

X-ray NMR Cryo-EM

Test NMR solution
conditions

Freeze sample in
vitreous ice

Solve phases
Fit electron density
Generate structure

Measure H–H
distances

Generate ensemble

Visualize structure
Analyze structure

Perform single
particle analysis

3D reconstruction

Collect X-ray
diffraction data

Collect 2D and 3D
NMR data

Collect EM data
for multiple

particles

Figure 12.1 A flow diagram illustrating the steps used to experimentally prepare and solve (i.e. deter-
mine) the three-dimensional (3D) structures of proteins using X-ray, nuclear magnetic resonance (NMR),
and cryogenic electron microscopy (cryo-EM) experimental techniques.

X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and electron
microscopy. All protein structures must be determined from highly purified proteins that may
be subsequently crystallized (for X-ray crystallography), placed in special solvents (for NMR
spectroscopy), or frozen (for electron microscopy). X-ray crystallography is the oldest (and
most precise) method, NMR is the next oldest (and least precise), and electron microscopy
is the newest. In X-ray crystallography, small protein crystals (measuring less than 1 mm)
are exposed to an intense beam of X-rays. The X-rays, which have a wavelength about the
size of an atom (1–2 Å or ångstroms, which is 1× 10−10 m), are scattered or diffracted by the
protein atoms in the crystal. The diffraction pattern arising from this typically appears as tens
of thousands of tiny spots arrayed in complex circular patterns. These diffraction patterns are
recorded on a digital X-ray camera. The positions of the diffraction spots, along with their
intensity (and some phase information), is actually sufficient for a computer to calculate
an electron density map of all the heavy atoms – carbon, nitrogen, oxygen, sulfur – in the
diffracting protein. From this map, crystallographers determine the x,y,z coordinates of all
the atoms using the known sequence of the protein. Note that, in X-ray crystallography, even
though the diffraction pattern arises from trillions of proteins contained in the crystal, the
result is a structure for just a single “average” protein.

Protein crystallography is an experimentally challenging and computationally difficult pro-
cess, so the brief synopsis given here does not do it justice. Excellent overviews of protein
crystallography can be found in several high-quality textbooks (McCree 1999; Drenth 2006).
The first X-ray structure of a protein (myoglobin) was determined in the late 1950s (Kendrew
et al. 1958) and, since that time, more than 120 000 protein structures have been determined
by X-ray techniques. X-ray crystallography permits the determination of very large macro-
molecular structures (hundreds of kilodaltons – even ribosomes and viruses), including both
cytoplasmic and membrane-bound proteins. Recent computational, robotic, and instrumental
advances (including the use of powerful synchrotrons) have made X-ray crystallography even
more powerful and have greatly accelerated the structure determination process. Whereas it
often took 6–7 years to purify, crystallize, and solve a protein structure in the 1970s, it is now
possible (albeit rarely) to do it in as little as 6–7 days. As a result, more than 90% of all protein
structures have been determined by X-ray crystallography.
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Nevertheless, X-ray crystallography is not infallible. Crystallography, as the name implies,
requires that proteins be studied in an “artificial” solid-state (crystalline) environment that
does not resemble the normal physiological (aqueous) environment of the cell or body. As
a result, the structures generated by X-ray crystallography are often altered by crystal pack-
ing and solvent exclusion effects. Likewise, not all parts of a protein (especially highly mobile
regions) can be seen in an X-ray structure. Consequently, these “fuzzy” regions can be open
to interpretation – or misinterpretation. It is also important to remember that X-ray structures
of proteins are typically underdetermined, especially compared with X-ray structures of small
molecules. The R factor (a measure of the agreement between the calculated structure and the
experimental data) for “good” protein structures is typically 0.25, whereas, for small molecules,
it is 0.05. Given that the highest R factor possible is 0.59 (for a completely wrong structure), one
is led to the conclusion that even good protein structures are not without their faults. Indeed, it
is not unusual for many protein structures to have some errors, ambiguities, or inaccuracies in
their atomic positions (±0.5 Å). Likewise, it is not unusual for a protein structure to be missing
a few atoms or residues.

Compared with X-ray crystallography, NMR spectroscopy is a much newer (the first pro-
tein was “solved” in 1983) and somewhat more complicated technique. Therefore, a detailed
explanation of the technique is beyond the scope of this chapter. An excellent overview of
protein NMR can be found in a textbook written by Cavanagh et al. (2006). NMR is unique
in that it allows one to study the structure and dynamics of molecules in a liquid state or in
a near-physiological environment. In NMR spectroscopy, one determines protein structures
not by measuring how X-rays are diffracted by atoms but, instead, by measuring how radio
waves are absorbed by atomic nuclei such as hydrogen (1H), isotopically labeled carbon (13C),
or nitrogen (15N). This absorption measurement allows one to determine how much nuclear
magnetism is transferred from one atom (or nucleus) to another. In NMR, this magnetiza-
tion transfer is measured through chemical shifts, J-couplings, and nuclear Overhauser effects
(NOEs). These parameters, which can be best observed for individual hydrogen atoms, must
be determined for as many protein atoms as possible using complex multi-dimensional NMR
experiments with whimsical acronyms such as COSY, TOCSY, NOESY, and HMQC. Once mea-
sured, these parameters define a set of approximate structural constraints that can be fed into a
computer-based constraint minimization calculation (distance geometry or simulated anneal-
ing). The result is a series (15–50) of similar protein structures that satisfy the experimental
constraints. Therefore, unlike X-ray methods that yield just one structure, NMR methods gen-
erate multiple structures – all of which are overlaid or superimposed on each other to produce
so-called “blurrograms” (Figure 12.2). The quality of an NMR structure determination effort

Figure 12.2 An example of a nuclear
magnetic resonance (NMR) “blurro-
gram” of a structure ensemble for
Escherichia coli thioredoxin (Protein
Data Bank database identifier: 4TRX).
This represents a superposition of
33 near-identical structures of E. coli
thioredoxin that satisfy all (or nearly
all) of the measured NMR constraints.
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is typically given by how closely matched these superimposed structures may be, with root
mean square deviation (RMSD) values of <1 Å being indicative of a good structure and RMSD
values of >2 Å being typical of a poorly determined structure (Box 12.1). Interestingly, these
blurrogram structures are probably more reflective of the true solution behavior of proteins as
most proteins seem to exist in an ensemble of slightly different configurations.

Box 12.1 The Meaning of RMSD

Protein sequence alignments are evaluated in terms of an expect (E) value, a bit score, or
percent identity. In the case of structure comparisons or structure alignments, these are
often scored using a measure called root mean square deviation, or RMSD – something
that is, interestingly enough, an archaic term for standard deviation. In other words, RMSD
is calculated the same way a standard deviation is calculated. Once two structures are
superimposed, the sum of the square of the differences in distance (in ångstroms, or Å)
between C𝛼 atoms is calculated and divided by the number of atoms compared. The square
root of this number is called the RMSD, and it is normally reported in ångstroms. When
more than two structures are superimposed, as is the case with NMR structure ensem-
bles, a hypothetical average structure for the ensemble is first calculated, then the sum
of the distance differences is calculated relative to this average structure. RMSD values
are frequently used by NMR spectroscopists, structure modelers, and X-ray crystallogra-
phers when comparing structure ensembles, looking at related structures or characterizing
structure families. Table 12.1 provides a rough guideline in terms of what a given RMSD
value corresponds to in terms of structure quality for an NMR structure. The second col-
umn in the table provides a similar qualitative guideline for what RMSD values mean in
terms of structure similarity.

Table 12.1 Relationship between backbone root mean square deviation (RMSD,
in ångstroms) and structure quality for nuclear magnetic resonance (NMR) struc-
ture ensembles (column 1) and for protein structure comparisons (column 2).

RMSD (Å) NMR comment Structure comparison comment

>12 Random coil Completely unrelated
7.0 Major problems Dubious relationship
5.0 Not quite converging May be structurally related
4.0 Poor fit Good structural relationship
2.0 Converging Closely related
1.5 Barely acceptable Very closely related
0.8 Typical NMR structure Differences are not obvious
0.4 Best case NMR structure Essentially indistinguishable

As there is no experimental requirement for crystals, NMR sample preparation is inherently
easier than X-ray sample preparation. Furthermore, because NMR is a liquid-based system,
NMR structures more likely resemble those seen in the normal physiological (liquid) environ-
ment of the cell or body. However, NMR is often limited by the size of the molecule being stud-
ied (the practical upper limit is ∼40 kDa), the solubility of the molecule (membrane proteins
cannot be studied), and the requirement for special isotopically labeled molecules (expensive).
Furthermore, NMR structures are inherently less precise than X-ray structures. Continuing
computational and instrumental improvements have made NMR much easier and much faster
than ever before. Indeed, it is now possible to determine a protein NMR structure in a few
weeks. Approximately 10% of all known protein structures have been determined by NMR.

The most recent addition to the structural biologist’s arsenal of tools is cryogenic electron
microscopy (cryo-EM or three-dimensional [3D] cryo-EM). Unlike NMR spectroscopy or X-ray
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crystallography, both of which are “indirect” methods requiring sophisticated mathematics
to transform complex X-ray diffraction or NMR absorption data into structural information,
cryo-EM is a direct technique. In other words, what you see is what you get. Direct visual-
ization of atomic structures has always been a dream for structural biologists and cryo-EM
now offers that possibility. In cryo-EM, protein samples are quickly frozen in water (creating
vitreous ice) and then placed under powerful electron beams with electron wavelengths of
1–2 Å. By using newly developed electronic optics called phase plates, better and more sen-
sitive detection systems, very fast “freeze frame” data collection methods and sophisticated
image averaging, it is now possible to determine protein structures with atomic-level resolu-
tion quite routinely (Bai et al. 2015). Cryo-EM sample preparation is much easier than sample
preparation for X-ray crystallography and cryo-EM structures likely resemble those seen in
the normal liquid environment of the cell. Like NMR spectroscopy, cryo-EM is limited by the
size of the molecule being studied – except in the opposite way. Big proteins (>100 kDa) are
preferred, as small molecules are typically too small to be seen (although this is changing).
Other than the size restriction, cryo-EM has relatively few limitations. Indeed, some cryo-EM
structures are now even more precisely determined than X-ray structures. While only 1% of
known protein structures have been solved by cryo-EM, rapid computational and instrumental
improvements are making protein structure determination by cryo-EM the preferred route for
many structural biologists. Indeed, the 2017 Nobel Prize in Chemistry was awarded to Jacques
Dubochet, Joachim Frank, and Richard Henderson for “developing cryo-electron microscopy
for the high-resolution structure determination of biomolecules in solution.”

How Protein Structures are Described

Today, the most common approach to describing protein structures is known as the hierarchi-
cal method. In this schema, a protein is viewed as having different “levels” of structure with
progressively greater complexity (Figure 12.3). The simplest level is called the primary struc-
ture. By definition, a protein’s primary structure is simply its amino acid sequence. Of course,
proteins are not just letters printed on a page. In reality, they are made of different combina-
tions of amino acids covalently connected together by peptide bonds. The resulting polymer

(a) (b)

(c) (d)

MVLSPADKTNVKAAWGKVGA
HAGEYGAEALERMFLSFPTT
KTYFPHFDLSHGSAQVKGHG
KKVADALTNAVAHVDDMPNA
LSALSDLHAHKLRVDPVNFK

Figure 12.3 The different levels of protein structures illustrating: (a) primary structure; (b) secondary
structure; (c) tertiary structure; and (d) quaternary structure for hemoglobin.
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exhibits much of the chain-like flexibility and behavior as most other polymers. However, the
partial double bond character of each peptide bond, the varying chemical nature of the dif-
ferent amino acid side chains, along with the steric restrictions imposed by the presence of
these side chains means that proteins do not (or cannot) exist as an extended string of amino
acids. In other words, proteins have a natural proclivity to fold up and form more complex
structures.

The next level up in the structural hierarchy is called secondary structure (Figure 12.3b).
Secondary structures are defined as the repetitive hydrogen-bonded shapes or substructures
that make up sequentially proximal components of proteins. Some of the most common protein
secondary structures are helices (∼35% of all residues) and beta-pleated sheets (∼25% of all
residues). Both kinds of secondary structures were originally predicted by Linus Pauling in
the 1950s (Corey and Pauling 1953). These structures are characterized by regular hydrogen
bonding patterns that persist over three or more consecutive residues. In addition to these two
very abundant forms of secondary structure, there also several other kinds of less abundant
but still important secondary structures, including beta turns (sharp chain reversals), omega
loops (characterized by loops having a shape resembling the Greek letter omega [Ω]), and 3/10
helices. Together, these five general classes of secondary structure can be routinely assigned
(manually or automatically) to about 55–65% of all the amino acids in proteins (Willard et al.
2003). The remaining unclassified or unclassifiable substructures are typically called random
coil or, more properly, unstructured regions.

By assembling different pieces of secondary structure together it is possible to create a com-
plete protein structure. This assemblage of different secondary structural components is called
the tertiary structure (Figure 12.3c). Tertiary structure is just another term for the 3D struc-
ture of a protein. Unlike secondary structure, tertiary structure is primarily determined or
mediated by hydrophobic interactions between distal parts of the polypeptide chain. Just as
with secondary structures, there are several different classes or groupings of tertiary struc-
tures. These classes have been identified by careful inspection of thousands of X-ray and NMR
structures by skilled structural biologists and bioinformaticians. The simplest tertiary structure
classification scheme refers to the relative content of different secondary structure elements
(Levitt and Chothia 1976). This includes the all-alpha (>50% helix; <10% beta sheet), all-beta
(>30% beta sheet; <5% helix), and mixed or alpha/beta (everything else) structural classes.
More refined tertiary classification schemes exist that take into account common topologies,
motifs, or folds found in a large number of non-homologous proteins. Common tertiary folds
include the 𝛼/𝛽 barrel (superoxide dismutase); the four-helix bundle (cytochrome C550); the
Greek key (immunoglobulins); the E-F hand (calcium binding proteins); the zinc finger, and
so on. Some examples of these protein folds are shown in Figure 12.4. Among the 120 000
protein structures that have been solved so far, approximately 1200–1300 distinct “folds” have
been identified. What is particularly intriguing (and exciting!) is that this number is very close
to the predicted number of all biologically feasible protein folds, which is about 1500 (Levitt

(a) (b) (c)

Figure 12.4 Examples of different types of protein folds including (a) the four helix bundle; (b) the
alpha–beta barrel; (c) the immunoglobulin fold.



How Protein Structures are Described 369

2007; Schaeffer and Daggett 2011). This suggests we may not be too far from creating a kind of
“periodic table” of protein structures or substructures.

Beyond the tertiary structure level is something called quaternary structure (Figure 12.3d).
Quaternary structure refers to the assemblage of two or more independent tertiary structures
into a larger superstructure such as the two chains of insulin, the four chains of hemoglobin,
or the 50+ peptide chains in bacterial ribosomes. Many proteins need to form quaternary
complexes to function, and so understanding or identifying quaternary structure is key to
understanding protein–protein interactions (see Chapter 13).

Protein structures are almost always described in terms of Cartesian (i.e. x,y,z) coordinates of
the constituent atoms using a standard format known as the Protein Data Bank (PDB) format
(Box 12.2). X-ray and cryo-EM structure files are limited to containing coordinates of only the
heavy atoms (C, N, O, and S), while NMR structure files typically contain both the heavy atoms
and the attached hydrogen atoms as well. Most protein data files will have several thousand
atoms and, therefore, several thousand lines and several thousand coordinate positions associ-
ated with each atom. As all proteins are made up of amino acids, there is a relatively standard
geometry for each atom in each amino acid – that is, every atom is at a well-defined bonding
distance or bond angle relative to every other atom (Figure 12.5). As seen in this figure, each
amino acid is made up of a nitrogen (N) atom bonded to a central carbon atom (C𝛼), with the
N–C𝛼 bond being 1.47 Å in length. Likewise the distance between the C𝛼 atom and the car-
bonyl atom (C) is 1.53 Å, while the distance between the carbonyl carbon (C) and its oxygen
(O) is 1.24 Å. The central C𝛼 atom is also connected to a central hydrogen atom (H𝛼) that is
1.00 Å away and to a side chain carbon (R or C𝛽) that is 1.56 Å away. The peptide N–C bond
is always 1.32 Å in length. Given this geometric consistency, it is actually possible to describe
protein structures in terms of internal coordinates or internal angles instead of Cartesian coor-
dinates. Internal coordinates are coordinates that do not need or are not defined by an origin.
By using a class of planar angles called “dihedral” angles (Figure 12.5) – also known as torsion
angles – it is possible to compactly describe the backbone or general topology of protein struc-
tures. The two most important backbone dihedral angles are the angle defined by an amino
acid residue’s H, N, C𝛼, and H𝛼 atoms (called phi or 𝜙) and the angle defined by an amino
acid residue’s H𝛼, C𝛼, C, and O atoms (called psi or 𝜓). In other words, the 𝜙 angle is along
the N–C𝛼 bond, while the 𝜓 angle is along the C𝛼–C bond. Each residue in a protein can be
defined by one 𝜙 and one 𝜓 angle. Therefore, the entire protein backbone can be defined by
the set of all 𝜙/𝜓 angles for all residues in the protein.
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Figure 12.5 An illustration of standard amino acid residue and peptide bond geometry. Typical bond
lengths are shown along with standard backbone dihedral angles.
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Box 12.2 PDB Format

The standard format for protein structure files is called the Protein Data Bank (PDB) for-
mat (Figure 12.6). This is a machine- and human-readable format that allows information
about the protein, the depositors, the sequence, the secondary structure, and the x,y,z coor-
dinates to be stored and read by a computer. The PDB format is quite old, reflecting the
state of computation in the late 1970s when the PDB was established. As a result, each
line in the PDB file must have a seven-letter (or less) tag, followed by an exact number
of spaces, which in turn is followed by the information (all in upper case) relevant to
that tag. Each PDB file is structured almost identically with the first few lines (labeled
by HEADER, CMPND, SOURCE, AUTHOR, or JRNL), where HEADER provides the protein
function, PDB ID, and deposition date, CMPND provides the protein name, SOURCE pro-
vides the source organism, AUTHOR lists the authors, and JRNL lists the journal where
the structure was published, respectively. The next set of lines (labeled REMARK) pro-
vide additional details on the resolution, R factor (a quality measure), methods used to
solve the structure, number of molecules in the asymmetric unit, and so on, mostly in free
format. The sequence is presented (labeled SEQRES) using the now archaic three-letter
amino code, followed by HET and FORMUL labels indicating the names and chemical
formulae of hetero-atoms (non-amino acid moieties found in the structure). The sec-
ondary structure, as identified by the depositor, is indicated by HELIX, SHEET, TURN, and
SSBOND tags.

These first 100 or so lines constitute the “header” of a PDB file and provide a useful
overview of the protein and the quality of the structure. The next set of lines in a PDB
file provide the atomic coordinates. These are always labeled by the ATOM tag. Up to
10 columns of text and numbers follow each ATOM tag including the atom number, atom
label (CA= alpha carbon, C= carbonyl carbon, etc.), residue name (three-letter code), chain
number or letter, residue number, X coordinate (in ångstroms), Y coordinate (in ångstroms),
Z coordinate (in ångstroms), occupancy (usually 1.00), and thermal B factor (a measure of
mobility).

The PDB format, while generally easy for a human to read, can be quite confounding
for a computer to read. For instance, there are frequent exceptions and variations in the
labeling, numbering, and formatting of many PDB files, particularly those deposited prior
to 1995. Furthermore, the programs that read PDB formatted files must have certain chem-
ical knowledge built into them – that is, the connections and bonds between atoms must
be known (or inferred), as this connectivity information is not provided in the PDB file.
Additionally, there is no formal data dictionary that describes all the rules for writing or
reading a PDB file. This makes writing programs to handle, analyze, and view PDB files
quite a challenge.

Given the inconsistencies, informality, and archaic nature of the PDB format, there have
been a number of efforts to correct or migrate PDB files to a more consistent and modern
file format. Over the past number of years, the PDB has been storing its files (internally)
in a format called mmCIF (for macromolecular Crystallographic Information File) that is
based on the CIF format used by small-molecule crystallographers (Hall et al. 1991). The
mmCIF format is a simple and consistent data representation for exchanging and archiving
structural data that is endorsed by a number of international agencies. As of 2011, the PDB
now maintains all of its data in the PDBML/XML format. PDBML stands for PDB Markup
Language (Westbrook et al. 2005). This newer format provides a representation of PDB
data in XML format according to the PDBx/mmCIF Exchange Data Dictionary. However,
because so many software packages have already been written to handle PDB formatted
files and relatively few have been written to handle PDBML, it is likely that the legacy PDB
format will be around for a long, long time to come.



How Protein Structures are Described 371

HEADER ELECTRON TRANSPORT 19-MAR-90 2TRX 2TRXA 1
COMPND THIOREDOXIN 2TRXA 2
SOURCE (ESCHERICHIA $COLI) 2TRX 4
AUTHOR S.K.KATTI,D.M.LE*MASTER,H.EKLUND 2TRX 5
JRNL AUTH S.K.KATTI,D.M.LE*MASTER,H.EKLUND 2TRX 7
JRNL TITL CRYSTAL STRUCTURE OF THIOREDOXIN FROM ESCHERICHIA 2TRX 8
JRNL TITL 2 $COLI AT 1.68 ANGSTROMS RESOLUTION 2TRX 9
JRNL REF J.MOL.BIOL. V. 212 167 1990 2TRX 10
JRNL REFN ASTM JMOBAK UK ISSN 0022-2836 070 2TRX 11
REMARK 2 2TRX 31
REMARK 2 RESOLUTION. 1.68 ANGSTROMS. 2TRX 32
REMARK 3 2TRX 33
REMARK 3 REFINEMENT. BY THE RESTRAINED LEAST-SQUARES PROCEDURE OF J. 2TRX 34
REMARK 3 KONNERT AND W. HENDRICKSON AS MODIFIED BY B. FINZEL 2TRX 35
REMARK 3 (PROGRAM *PROFFT*). THE R VALUE IS 0.165 FOR 25969 2TRX 36
REMARK 3 REFLECTIONS IN THE RESOLUTION RANGE 8.0 TO 1.68 ANGSTROMS 2TRX 37
REMARK 3 WITH FOBS .GT. 3.0*SIGMA(FOBS) 2TRX 38
REMARK 3 2TRX 39
SEQRES 1 A 108 SER ASP LYS ILE ILE HIS LEU THR ASP ASP SER PHE ASP 2TRX 74
SEQRES 2 A 108 THR ASP VAL LEU LYS ALA ASP GLY ALA ILE LEU VAL ASP 2TRX 75
SEQRES 3 A 108 PHE TRP ALA GLU TRP CYS GLY PRO CYS LYS MET ILE ALA 2TRX 76
SEQRES 4 A 108 PRO ILE LEU ASP GLU ILE ALA ASP GLU TYR GLN GLY LYS 2TRX 77
SEQRES 5 A 108 LEU THR VAL ALA LYS LEU ASN ILE ASP GLN ASN PRO GLY 2TRX 78
SEQRES 6 A 108 THR ALA PRO LYS TYR GLY ILE ARG GLY ILE PRO THR LEU 2TRX 79
SEQRES 7 A 108 LEU LEU PHE LYS ASN GLY GLU VAL ALA ALA THR LYS VAL 2TRX 80
SEQRES 8 A 108 GLY ALA LEU SER LYS GLY GLN LEU LYS GLU PHE LEU ASP 2TRX 81
SEQRES 9 A 108 ALA ASN LEU ALA 2TRX 82
HET MPD 606 8 2-METHYL-2,4-PENTANEDIOL 2TRX 107
HET MPD 607 8 2-METHYL-2,4-PENTANEDIOL 2TRX 108
HET MPD 608 8 2-METHYL-2,4-PENTANEDIOL 2TRX 109
FORMUL 3 CU 2(CU1 ++) 2TRX 110
FORMUL 4 MPD 8(C6 H14 O2) 2TRX 111
FORMUL 5 HOH *140(H2 O1) 2TRX 112
HELIX 1 A1A SER A 11 LEU A 17 1 DISORDERED IN MOLECULE B 2TRX 113
HELIX 2 A2A CYS A 32 TYR A 49 1 BENT BY 30 DEGREES AT RES 39 2TRX 114
HELIX 3 A3A ASN A 59 ASN A 63 1 2TRX 115
HELIX 4 31A THR A 66 TYR A 70 5 DISTORTED H-BONDING C-TERMINS 2TRX 116
HELIX 5 A4A SER A 95 LEU A 107 1 2TRX 117
HELIX 6 A1B SER B 11 LEU B 17 1 DISORDERED IN MOLECULE B 2TRX 118
SSBOND 1 CYS A 32 CYS A 35 2TRX 143
ATOM 1 N SER A 1 21.389 25.406 -4.628 1.00 23.22 2TRX 152
ATOM 2 CA SER A 1 21.628 26.691 -3.983 1.00 24.42 2TRX 153
ATOM 3 C SER A 1 20.937 26.944 -2.679 1.00 24.21 2TRX 154
ATOM 4 O SER A 1 21.072 28.079 -2.093 1.00 24.97 2TRX 155
ATOM 5 CB SER A 1 21.117 27.770 -5.002 1.00 28.27 2TRX 156
ATOM 6 OG SER A 1 22.276 27.925 -5.861 1.00 32.61 2TRX 157
ATOM 7 N ASP A 2 20.173 26.028 -2.163 1.00 21.39 2TRX 158
ATOM 8 CA ASP A 2 19.395 26.125 -0.949 1.00 21.57 2TRX 159
ATOM 9 C ASP A 2 20.264 26.214 0.297 1.00 20.89 2TRX 160
ATOM 10 O ASP A 2 19.760 26.575 1.371 1.00 21.49 2TRX 161
ATOM 11 CB ASP A 2 18.439 24.914 -0.856 1.00 22.14 2TRX 162
ATOM 22 CE LYS A 3 21.620 21.104 2.844 1.00 25.84 2TRX 173
ATOM 23 NZ LYS A 3 20.830 20.757 1.615 1.00 25.55 2TRX 174

Figure 12.6 An example of a Protein Data Bank formatted file showing the first ∼50 lines of the
Escherichia coli thioredoxin entry (Protein Data Bank database identifier: 2TRX).

Interestingly, if these 𝜙/𝜓 torsion angles are plotted (for known protein structures) with
𝜙 on the horizontal (X) axis and 𝜓 on the vertical (Y ) axis, a clear distribution can be
seen (Figure 12.7). This kind of graph is called a Ramachandran plot (Ramachandran
et al. 1963), and was developed by the Indian crystallographer Gopalasamudram Narayana
Ramachandran. Empty regions in this Ramachandran plot (accounting for ∼75% of the area)
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Figure 12.7 A Ramachandran plot for the thioredoxin protein (Protein Data Bank database identifier:
2TRX) as generated using the program VADAR (Willard et al. 2003). Each black point in the plot corre-
sponds to a single residue in the protein. A square corresponds to a residue in the “allowed” or “core”
region, a triangle corresponds to a glycine residue, and an “X” corresponds to a residue in a “disallowed”
region (see key). The “core boundaries” or red regions on the plot delineate the areas on the Ramachan-
dran plot where ∼85% of residues should be found in good quality structures. The “allowed boundaries”
(green regions) delineate the portion of the plot where ∼10% of residues should be found. Residues
falling in the “generously allowed boundaries” (yellow regions) or outside this region indicate residues
that may have serious steric problems. Glycine residues (marked with an “X”) are the exception as they
can appear anywhere in the plot.

indicate where steric clashes of the amino acid side chains prevent these torsion angles from
being accessed. When amino acid residues have torsion angles in the upper left quadrant
(centered around 𝜙=−120∘ and 𝜓 = 120∘) of the Ramachandran plot, they are in beta strands.
When amino acids are in the lower left quadrant (centered around 𝜙 = −60∘ and 𝜓 = −40∘),
they are in alpha helices. Ramachandran plots have found considerable utility in assessing
the quality of protein structures. By studying a large number of high-quality structures
and looking at their Ramachandran plots, it has been discovered that very good structures
exhibit very tight clustering patterns and that relatively few residues are found to lie outside
these tight clusters or “allowed” dihedral regions (Laskowski et al. 1993). Protein structures
that are found to have a high percentage (>15%) of non-glycine residues in disallowed
regions inevitably are found to be poor quality structures. Given their utility and simplicity,
many protein structure software packages now include Ramachandran plots as part of their
structure visualization and evaluation tools (Laskowski et al. 1993; Willard et al. 2003).

While protein structures can be described in terms of torsion angles, most representations
still use Cartesian coordinates. However, it is important to remember that proteins are not sim-
ply composed of point-like atoms with point-like x,y,z coordinates. Indeed, atoms and amino
acids occupy space or volume. Consequently, proteins have volumes and shapes. These shapes
also have surfaces (both exterior and interior), which are defined by a surface area. These sur-
faces are quite rough and convoluted, and it is this surface “roughness” that gives proteins their
unique properties, including their ligand binding sites or their protein interaction sites. Not all
protein surfaces are accessible by other molecules or other atoms, so protein surfaces are often
defined by their so-called accessible surface area, or ASA (Richards 1977). As nitrogen and
oxygen atoms also carry partial charges, the atomic surfaces of proteins can also have positive
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or negative charges, which attract opposite charges or repel like charges. Uncharged atoms
(such as C) are typically hydrophobic and hydrophobic atoms will tend to attract each other.
This “volumetric,” space-filling view of proteins is quite important when thinking about how
proteins work and how they fold. More details about how proteins can be rendered and viewed
will be described in Visualizing Proteins.

Protein Structure Databases

Just as sequence databases serve as the foundation to most elements of conventional bioinfor-
matics, structural databases are the foundation to all of structural bioinformatics. Indeed, the
very first electronic database in bioinformatics was a protein structure database – the PDB. The
PDB was originally set up at the Brookhaven National Laboratory by Walter Hamilton in 1971
(Westbrook et al. 2003). When this effort began, there were just seven protein structures in the
PDB and their coordinates were stored and distributed on punch cards and computer tape.
Since then, the PDB has grown to contain more than 120 000 experimentally determined 3D
structures of proteins, nucleic acids, carbohydrates, and their complexes. Furthermore, coor-
dinate distribution and deposition is no longer done on punch cards – now it is done over the
web. To cope with these changes and the rapid expansion of the database, the management
of the PDB was moved from Brookhaven to the Research Collaboratory for Structural Bioin-
formatics (RCSB) in 1998, which included Rutgers University, the San Diego Supercomputing
Center, and the Scripps Research Institute.

In 2003, the RCSB-PDB joined with other protein structure databases in Europe and Asia,
including the European Macromolecular Structure Database or MSD-EBI (now known as
PDBe) and the Japanese version of the PDB (known as PDBj), to create the Worldwide PDB,
or wwPDB. In 2006, the wwPDB was expanded to include the BioMagResBank (BMRB),
incorporating NMR structure and NMR experimental data. Currently, the PDB archive is
managed by the Worldwide PDB Organization, which now includes the US regional data
center (RCSB-PDB), the European regional data center (PDBe), the Japanese regional data
center (PDBj), and the global NMR data center (BMRB). Each of these data centers annotates,
validates, and disseminates standardized PDB data to the rest of the world. Each center also
exchanges data with the other center on a daily basis so that all PDB files are accessible to
users no matter which center they choose to work with. While the coordinate data files are
always identical, each of the regional data centers is free to develop its own interfaces or to
incorporate its own unique analysis/visualization tools. Some centers (such as PDBe and
RCSB-PDB) offer exceptionally useful tools that are unique to their web sites. To simplify the
discussion here, we will just focus on describing the tools and resources available through the
RCSB-PDB.

Just like GenBank and the European Molecular Biology Laboratory (EMBL), the RCSB-PDB
web site supports a number of services for submitting, searching, retrieving, and viewing data.
The PDB equivalent of GenBank’s BankIt or Sequin (for DNA sequence submission) is known
as OneDep (Young et al. 2017). OneDep is a uniform web deposition and annotation system
that works for the RCSB-PDB, PDBe, PDBj, and BMRB. It allows structural biologists to directly
deposit structural coordinates, electron density maps, or experimental NMR data and to have
both the format checked (to match the PDBx/mmCIF master file format; Box 12.2) and the
structural data automatically validated using specific validation tools for X-ray, cryo-EM, or
NMR data. For X-ray structures, bond lengths, bond angles, bond planes, backbone torsion
angles, side chain conformations, all-atom contacts, packing, hydrogen bond quality, structure
factor data, and Wilson plots (used to determine the absolute scale of the diffracted intensi-
ties and to find the temperature factor) are all assessed through the wwPDB validation suite
(Read et al. 2011). This suite includes structure quality checking software, such as PROCHECK
(Laskowski et al. 1993), WHAT_CHECK (Hooft et al. 1996), MolProbity (Davis et al. 2007),
RosettaHoles2 (Sheffler and Baker 2010), and SFCHECK (for structure factors; Vaguine et al.
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1999). For NMR-derived structures, similar kinds of structure checks are performed, but addi-
tional chemical shift and NOE assessments are also performed using tools such as PANAV
(Wang et al. 2010), SHIFTX2 (Han et al. 2011), and CING (Doreleijers et al. 2012). Through
OneDep, inconsistencies, format problems, or questionable data are reported to the submitters,
who must then make the requested corrections.

Prior to the introduction of structure validation tools, there were a number of examples of
seriously flawed and “fake” structures deposited into the PDB (Lüthy et al. 1992; Hooft et al.
1996; Borrell 2009). Unlike the situation for DNA sequencing, where a sequencing ambigu-
ity can be identified by re-sequencing in a matter of hours or days, problems with structures
can take months or years to resolve. Hence, automatic structural validation is a particularly
important service for structural biologists and one in which bioinformaticians have played a
crucial role.

Of course, most PDB users are not interested in depositing data, but rather in accessing them.
The RCSB-PDB is constantly evolving its user interface, so a screenshot or a detailed explana-
tion of the RCSB-PDB homepage will always be out of date. However, there are a few constants.
The RCSB-PDB has always supported standard text searches that allow users to query the PDB
for matching PDB identifier (ID) codes. The PDB ID code is analogous to the GenBank acces-
sion number. It is a four-character identifier in which the first character is always a number
between 1 and 9. Users may also search the PDB using protein names, sequences, authors, or
any Boolean (AND, OR) combination. An advanced search is also available that allows users
to search the PDB on the basis of more than 100 data fields including keywords, structure
annotations, structure or sequence features, chemical components, authors, deposition dates,
release dates, sequences (via FASTA; see Chapter 3), secondary structure content, resolution,
space group, and so on. It is also possible to customize the resulting display in terms of what is
shown and how it is ordered. The ability to search the PDB on the basis of a FASTA-formatted
sequence query is particularly useful.

Results from any PDB search are displayed in the PDB Structure Summary page(s)
(Figure 12.8). These pages provide users with a high-level overview of the protein structure,
including information about the deposition title, depositor names, deposition and release
dates, source organism, and brief details concerning the method of structure determination.
From the Structure Summary pages, users may also download PDB files, the primary citation,
and the wwPDB validation report (an assessment of the structure quality). The PDB Structure
Summary pages typically have tabs or hyperlinks to interactive web-based 3D structure
viewers, protein domain and functional annotations, sequence, secondary structure, and
binding site data; sequence and structural homologs, experimental structure determination
details, and related references and citations. These tabs or hyperlinks will typically have
shortened titles to facilitate quick navigation.

Through the Structure Summary pages, users can access several different macromolecular
viewing packages. These choices are always changing to reflect the state of the field, with the
most recent ones including the JavaScript viewers NGL Viewer (Rose and Hildebrand 2015),
JSmol (Hanson et al. 2013), and PV (Protein Viewer). They also include several stand-alone
Java-based or Java applet viewers such as Simple Viewer, Protein Workshop, Ligand Explorer,
and Kiosk Viewer. Java applets have been the mainstay for structure visualization on the web
for about two decades. However, with the advent of increased internet security precautions,
Java applet viewers have become quite cumbersome, and many web browsers (such as
Chrome) no longer support Java applets. As a result, the PDB, along with many other data
resources, are actively promoting JavaScript viewers such as NGL Viewer and JSmol. An
example of a protein image generated via JSmol is shown in Figure 12.9. JSmol is fast, easy
to use, and very convenient. NGL Viewer is another lightweight, highly scalable JavaScript
viewer that can render large molecular complexes (millions of atoms) on just about any plat-
form, including smartphones. NGL Viewer is particularly fast because it uses the compact,
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Figure 12.8 A screenshot of the Research Collaboratory for Structural Bioinformatics (RCSB)–Protein Data Bank (PDB) Structure Summary
page for Escherichia coli thioredoxin.

binary, Macromolecular Transmission Format (MMTF) to save time loading files over the
internet. In addition to these interactive 3D viewers, the RCSB-PDB Structure Summary page
also provides a number of good quality still images showing both the asymmetric unit (the
structure as it appears in the crystal) and different biological assemblies (the active version
of the molecule, including its quaternary structure). These still images use a rainbow color
gradient to help identify the N-terminus (blue) from the C-terminus (red).

While interactive structure visualization is a particularly appealing feature of the RCSB-PDB,
there are also a number of important additional services or offerings that are available. In par-
ticular, the RCSB-PDB provides pre-calculated lists and links to structural homologs through
its Structure Similarity link (Prlic et al. 2010). As we will see later in this chapter, the identifica-
tion of structural homologs is a much more computationally complicated and time-consuming
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Figure 12.9 A screenshot of an image of Escherichia coli thioredoxin as generated by JSmol.

process than finding sequence homologs. Furthermore, structural similarities are somewhat
more ambiguous and difficult to describe than sequence similarities. Currently, the PDB pro-
vides neighbor assessments using five different packages: FATCAT (Ye and Godzik 2004), Dali
(Dietmann et al. 2001), TM-align (Zhang and Skolnick 2005), TopMatch (Sippl and Wiederstein
2008), and CE (Shindyalov and Bourne 2001). Each of these tools provides a slightly different
perspective of what is structurally similar to a given protein. While the results provided by all
five are almost identical for trivially obvious similarities between structures, they can differ
substantially for less obvious cases. Nevertheless, important and unexpected relationships can
be found by inspecting these Structure Similarity lists. This is because structure tends to be far
more conserved than sequence. In other words, very remote evolutionary relationships can be
identified by structure comparison that would otherwise be identifiable via sequence compar-
ison alone. Examples of such unexpected and intriguing relationships include the remarkable
similarity between the bacterial toxin colicin A and eukaryotic globins, as well as similarities
between the eukaryotic Pituitary Octamer Unc (POU)-specific DNA binding domain and the
bacterial lambda repressor (Dietmann et al. 2001).
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Other Structure Databases

The PDB is not the only repository of structural data. In fact, there are several secondary or
curated structure databases that take the raw data from the PDB and massage or combine
it with other data to create some very useful resources. Two of the largest and most useful
databases include the Molecular Modeling Database (MMDB) and Proteopedia.

MMDB

The MMDB is the 3D structure database of the National Center for Biotechnology Infor-
mation (NCBI; Madej et al. 2014). The MMDB is fully integrated into the NCBI database
system, with search capabilities across all NCBI databases and direct links to the NCBI
Protein Database, the Conserved Domain Database (CDD), and PubChem. The MMDB has
a number of useful functions including a specialized sequence-to-structure search function
called Cn3D Basic Local Alignment Search Tool (CBLAST), the Inferred Biomolecular
Interactions Server (IBIS), the pre-computed Vector Alignment Search Tool (VAST+),
structural neighbors, and the Cn3D visualization tool (both a downloadable program
version and a JavaScript version; see Chapter 2). Structural information about a given
protein can be accessed through the MMDB’s Structure Summary page, which displays a
still image of the protein structure, a schematic of its protein, nucleotide, and chemical
interactions (via IBIS), its CDD links, a direct link to the iCn3D interactive viewer, and
a hyperlink to similar structures determined via VAST+. The data stored in the MMDB
are uploaded from the PDB daily, checked for exact agreement between coordinate and
sequence data, corrected (if necessary) and then mapped to the NCBI’s ASN.1 (Abstract
Syntax Notation) format. The MMDB is a wonderful example of how freely available
structural data from the PDB can be modified or customized to enrich its content for the
benefit of all.

Proteopedia

Proteopedia (Hodis et al. 2008) is essentially a Wikipedia for proteins. Proteopedia was origi-
nally conceived as a wiki web resource to present protein structure/function information in
a user-friendly manner to the broadest possible audience. Each Proteopedia page contains
embedded, animated 3D structures (viewable by JSmol) surrounded by descriptive text con-
taining hyperlinks that change the appearance (view, zoom animation, representations, colors,
and labels) of the embedded 3D structure image. More than 100 000 Proteopedia pages have
been written so far and some of the better annotated entries contain thousands of words (much
like a high-quality Wikipedia page) covering the protein’s function, its relevance or history,
known disease associations, structure or structure highlights, research applications, links to
related PDB structures, and an extensive list of references. Clicking on the hyperlinked text
embedded in many of these higher quality entries leads to a short, animated “show” that
illustrates the concepts explained in the text. Proteopedia’s encyclopedic design makes protein
structures much more accessible and provides significantly more background or introductory
information about specific proteins than what is typically seen in databases like the PDB or
MMDB or even in the scientific literature. By adopting a wiki-style approach, Proteopedia is
also able to engage the scientific community to write about and share its rich knowledge of
specific or important proteins for the benefit of all.

Visualizing Proteins

As discussed in Box 12.2, protein coordinate files are relatively dull looking. They are sim-
ply lists of x,y,z coordinates and provide no visual cues as to what the molecule or molecules
actually look like. Prior to the advent of computer visualization software, structural biologists
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had to build physical models of protein structures from wood, metal, or plastic components
to get a “picture” of the structure they had just determined. This obviously proved to be very
challenging – and extremely limiting. To get around these problems, early structural biolo-
gists developed ingenious methods to help both themselves and others build, visualize, or
conveniently understand protein structures. One of the more innovative ideas included the
development of something called the Richard’s Box by Frederic M. Richards in 1968. The
Richard’s Box was a large optical comparator that allowed crystallographers to rapidly build
physical models of protein structures by viewing the stacked plastic sheets of electron density
through a half-silvered mirror. Other visualization approaches involved close collaborations
with scientific artists (such as Irving Geis and Jane Richardson), who painstakingly drew or
painted hundreds of protein structures from the mid-1960s to the late 1970s. Indeed, it was
Jane Richardson, an artist and an accomplished X-ray crystallographer, who developed the
well-known ribbon diagram approach for visualizing protein backbones and classifying pro-
tein folds (Richardson 1981). In the ribbon view, helices are depicted as ribbon-like springs,
beta strands are shown as broad, ribbonized arrows, and random coil regions as thin wire or
spaghetti-like connectors. The work of both Geis and Richardson has largely inspired the way
in which protein structures are visualized on computers today.

By the mid- to late 1970s, computer chips and video terminals became sufficiently fast and
sufficiently robust for computers and molecular graphics software to be used for building
molecular models of full-sized proteins. The first computer graphics programs for struc-
tural biology were FIT (developed by Stan Swanson in 1975) and FRODO (developed by
Alwyn Jones in 1977). Other (mostly commercial) packages appeared soon thereafter and
computer-based 3D structure visualization became increasingly common and increasingly
more sophisticated. Indeed, as can be seen in Figure 12.9, molecular graphics tools allowed
structural biologists to create virtual protein models that looked every bit as real as the protein
molecule itself. Thanks to computers, proteins could now be colored, shadowed, tinted,
textured, and illuminated in thousands of different ways to create very compelling and very
impressive molecular art. Molecular graphics software also allowed proteins to be zoomed,
rotated, shrunk, and expanded using simple text commands or convenient joysticks. It was
during these early days of computer modeling that certain rendering conventions emerged,
leading to the establishment of four standard ways to depict proteins: wireframe models,
ball-and-stick representations, CPK (Corey, Pauling, and Koltun) or space-filling models,
and Richardson ribbon diagrams (also called “cartoon” representations). These conventions
are still followed today. Examples of these four rendering styles are shown for the protein
ubiquitin (1UBQ) in Figure 12.10.

While computer-based molecular visualization revolutionized structural biology in the
1970s and 1980s, it was only accessible to those who had access to very expensive computers
equipped with costly, hard-to-operate software. All of that changed in the 1990s. Starting with
the rapid improvements in computer hardware in the late 1980s, the sharp drop in computer
costs in the early 1990s, and the source code release of a software package called RasMol
(Sayle and Milner-White 1995), molecular graphics became accessible to everyone. Originally
introduced in 1993, RasMol (for RASter MOLecule) represented a major breakthrough in
software-driven 3D rendering. Its innovative code design and remarkably fast ray-tracing
algorithms made even the slowest desktop computers appear to have ultra-fast graphics
engines. RasMol was coded in C and, because the source code was (accidently) made public,
dozens of other visualization packages have since been built based on RasMol’s codebase.
Because RasMol did not depend on a system-specific graphics library, it was able to run on just
about any platform and operating system. This near-universality made RasMol very popular.
In fact, it is estimated that, at its peak, RasMol had more than 1 million users.

With the rapid expansion of the World Wide Web in the late 1990s and the growing desire to
view molecules over the web, a number of groups took advantage of RasMol’s freely available
source code to make more sophisticated, more user-friendly rendering packages. For instance,
in 1997 Molecular Design Limited (MDL) Information Systems converted a large portion of
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(a) (b)

(c) (d)

Figure 12.10 An illustration of the four major approaches to rendering protein structures using ubiquitin
(1UBQ) as an example. (a) A ribbon diagram that accentuates secondary structure. (b) A ball-and-stick
diagram. (c) A space-filling CPK (Corey, Pauling, and Koltun) model. (d) A wire-frame model.

RasMol’s C code to C++ and added new functionality including surface rendering and ani-
mation to create a browser plug-in called Chime (CHemical mIME, where MIME stands for
Multi-part Internet Mail Extension). Chime was among the first visualization tools to offer
an intuitive graphical user interface (GUI) with pull-down menus and mouse click and drag-
ging operations to make the coloring, manipulation, and labeling of protein structures fast and
simple.

Other Chime-based packages soon emerged in the early 2000s, including STING Millen-
nium (Higa et al. 2004) and Protein Explorer (Martz 2002). WebMol (Walther 1997) is another
example of a package built from RasMol but, in this case, the source code was converted from C
to Java. WebMol was the first of many open-source molecular graphics Java applets to appear,
along with others such as Jmol (Herráez 2006), Simple Viewer, Protein Workshop, Ligand
Explorer, and Kiosk Viewer. Indeed, for the past 15–20 years, Java applets have dominated
web-based molecular visualization because of their platform independence, easy installation,
and rapid start-up. However, as mentioned above, Java applets have certain security issues
and, with the growing concerns over web security, fewer web browsers are supporting Java
applets. As a result, the preferred route for molecular visualization over the web is now through
JavaScript viewers such as JSmol (Hanson et al. 2013), NGL Viewer (Rose and Hildebrand
2015), PV, and iCn3D (NCBI Resource Coordinators 2017). Nearly all of these viewers support
the standard rendering styles (ball-and-stick, CPK, wireframe, and ribbon/cartoon), interactive
zooming/rotating, custom coloring, atom/residue picking, labeling, and secondary structure
assignment. Furthermore, all of these viewers make use of the Web Graphics Library (WebGL).
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WebGL is a JavaScript Application Programming Interface (API) for rendering 3D graphics
within any HTML5 compatible web browser without the use of plug-ins. WebGL programs
consist of control code written in JavaScript and shader code that is written in OpenGL Shading
Language (GLSL), which is all executed on a computer’s graphics processing unit (GPU).

While JavaScript viewers have taken the internet by storm, they are not ideal for sophisti-
cated molecular graphics applications. If users wish to create very high-quality or very spe-
cialized images or if they need to measure angles, change residues, rotate bonds, calculate
energies, or perform other structural manipulations, they must turn to another kind of down-
loadable 3D visualization software. The two most popular “high-end” protein visualization
tools are PyMOL and Swiss-PdbViewer or DeepView (Kaplan and Littlejohn 2001). PyMOL is
a downloadable molecular visualization program that is compatible with all major operating
systems (MacOS, Windows, and Unix). It is one of just a few open-source model visualization
tools available for use in structural biology. “Py” is included in the name because PyMOL is
built using the Python programming language. PyMOL is well known for its speed and the very
high quality of its molecular visualizations. These visualization features include a wide range
of impressive surface-rendering options and ray-tracing capabilities, as well as movie-like ani-
mations. Given its ability to generate such high-quality images, nearly 25% of all published
images of protein structures in the scientific literature have been generated using PyMOL. In
addition to its impressive rendering capabilities, PyMOL also supports a number of structure
manipulation tools such as homology modeling, energy minimization, molecular docking, and
molecular sculpting. These are available through a variety of freely available plug-ins that
have been developed by the PyMOL community. PyMOL handles both text commands and
interactive point-and-click operations through a relatively primitive GUI. Owing to PyMOL’s
enormous popularity, many excellent YouTube tutorials are now available for users wishing to
learn more about this program.

DeepView is a freely available, closed-source program originally from Glaxo Wellcome (now
GlaxoSmithKline) that is compatible with Windows, MacOS, and Linux operating systems.
DeepView supports a range of rendering and modeling capabilities including surface ren-
dering, homology modeling, structure quality (threading) evaluation, energy minimization,
site-directed mutagenesis, loop rebuilding, electrostatic field calculation, structure superposi-
tion, Ramachandran plot generation, sequence-structure viewing, and the list goes on. With

Figure 12.11 An example of the high-quality images that can be created using advanced ray-tracing
methods found in some of the better molecular visualization programs. This image is derived from the
coordinates of the hepatitis A virus HAV-3C protease.
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DeepView offering so much, it is not exactly the most user-friendly package, especially for
novices. Nevertheless, an excellent tutorial prepared by Dr. Gale Rhodes at the University of
Southern Maine offers a fine starting point that allows even beginners to learn how to use this
superb visualization and modeling package. Several YouTube tutorials are also available. A
particularly appealing feature of DeepView is its capacity to export files that are compatible
with the freeware ray-tracing package called POV-Ray (Persistence Of Vision – Ray Tracing).
POV-Ray allows the more artistically inclined modelers to create stunning images of proteins
and protein complexes that are suitable for an art gallery or even a journal cover (Figure 12.11).

While we have only covered a few visualization programs in this chapter, it is important to
note that there are now dozens of freely available macromolecular visualization programs that
can be found online. Selecting the best one is very much an individual decision, not unlike
choosing a computer or buying a cell phone. Ease of use, stability, platform compatibility,
and function are all important considerations. Regardless of the program chosen, one should
always remember that the central role of visualization software is to create an image that can
convey important scientific information in a visually pleasing manner. Taking the time to cre-
ate a high-quality image and using the right program for the right kind of task can make a
tremendous difference to the message one is trying to deliver. Remember, “a picture is worth
a thousand words.”

Protein Structure Prediction

Ever since the first protein structure was determined, computational biologists and computa-
tional chemists have attempted to develop software that could predict the 3D structure of pro-
teins, using only their sequence as input. Indeed, some of the first bioinformatic programs ever
written were directed at trying to solve the “protein folding problem” (Gibson and Scheraga
1967; Chou and Fasman 1974). Even though the field is more than 50 years old, protein struc-
ture prediction continues to be an active area of bioinformatic research, with many papers
being published on the subject each year. Encouragingly, some progress has been made, and
it is now possible to predict or model the 3D structure of proteins using at least three differ-
ent methods: homology (or comparative) modeling, threading (or fold recognition), and ab
initio methods. All three methods are fundamentally predictive, meaning that the structures
generated are models and are not based on raw experimental data derived from X-ray diffrac-
tion, cryo-EM, or NMR experiments. Rather, each of these predictive approaches attempts to
build on prior knowledge about protein structure and to extrapolate these principles toward
the generation of new structures.

Homology Modeling

Of the three predictive methods that are currently available, the most powerful and accurate
approach is homology modeling (Marti-Renom et al. 2000). Homology (or comparative) mod-
eling is a robust technique for “predicting” or generating detailed 3D structures of proteins
based on the coordinates of known homologs found in the PDB. In homology modeling, the
quality of the model strongly depends on the degree of similarity between the query sequence
and the matching database sequence, with proteins sharing the highest degree of similarity
being modeled best. As a general rule, the average coordinate agreement between the mod-
eled structure and the actual structure drops by about 0.3 Å for each 10% reduction in sequence
identity. Furthermore, homology modeling cannot generally be used for predicting structures
of proteins having less than ∼30% sequence identity to a target protein already in PDB. How-
ever, in certain rare cases, homology modeling can be used to generate a reliable 3D structural
model of a protein with much less than 20% sequence identity.

Homology modeling is a multi-step process that makes use of sequence alignment, struc-
ture modification, database searches, energy minimization, and structure evaluation to gen-
erate a structure. More specifically, homology modeling can be decomposed into five different
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steps: (i) aligning the query or unknown protein sequence to the sequence of a known struc-
ture; (ii) using the alignment to select and replace backbone segments (usually loops which
are contained in a special loop library) that need to be altered due to sequence insertions or
deletions; (iii) replacing side chains that have been changed due to the alignment or loop inser-
tion/deletion process; (iv) refining the model using energy minimization to relieve collisions
or steric strains; and (v) validating the model using visual inspection and software validation
tools. The most critical step to homology modeling is the first step – alignment. An incor-
rect alignment will have a domino-like effect by increasingly disrupting the remaining steps
and eventually leading to a seriously flawed model. To reduce the problems of a single pair-
wise alignment error, many homology-modeling packages generate alignments from multiple
database homologs (if they exist) to improve the reliability of this all-important alignment step.

Originally, homology modeling was a very interactive, manually intensive process that
depended critically on the expertise of the user and the availability of specialized 3D visual-
ization software and hardware. Fortunately, many of these complex, time-consuming steps
have been automated and now homology modeling can be done by just about anyone on just
about any computer. In addition to several high-quality commercial packages, there are a
number of excellent freely available homology-modeling packages, including MODELLER
(Sali 1998), DeepView, and HHpred (Söding et al. 2005) that can be downloaded and installed
on the MacOS, Unix, and Windows platforms. MODELLER is among the oldest (developed
in 1989) and is perhaps the best known homology-modeling package. It uses a method called
“satisfaction of spatial restraints,” in which a set of geometrical restraints are used to create a
probability density function for the location of each atom in the protein. MODELLER needs
a sequence alignment between the target amino acid sequence to be modeled and a template
protein with a known structure. MODELLER has several variants, including EasyModeller
(Kuntal et al. 2010), which provides a user-friendly GUI to MODELLER, and PyMod, a free
PyMOL plug-in. Furthermore, millions of MODELLER-generated protein structures are
housed in MODELLER’s homology-modeling database, called ModBase (Pieper et al. 2014).

More recently, homology modeling has become available on the web. These web-accessible
services include the SWISS-MODEL server (Schwede et al. 2003), the CPHModels server
(Nielsen et al. 2010), the ModWeb server (Pieper et al. 2014), the HHpred server (Söding et al.
2005), 3D-JIGSAW (Bates et al. 2001), and PROTEUS2 (Montgomerie et al. 2008). Typically,
all one has to do is type or paste in the sequence of the protein of interest and press the submit
button. A 3D structure will be returned to the user via e-mail within a few minutes to a few
hours. HHpred and PROTEUS2 are known to be particularly fast, with response times of a
few minutes. An example of a homology model generated for Escherichia coli thioredoxin
generated from a template with just 26% sequence identity is shown in Figure 12.12.

Most published homology-modeling programs and servers are rigorously tested, so the
results from any given package or web server are actually quite trustworthy. Many packages
have been assessed through the Critical Assessment of Protein Structure Prediction (CASP)
evaluation process. CASP is a community-driven initiative that has been conducted every 2
years since 1994. The purpose of CASP is to provide an independent, unbiased or “blind”
assessment of different programs or methods in protein structure prediction, including
homology modeling, threading, and ab initio prediction. The organizers of CASP work with
X-ray crystallographers and NMR spectroscopists who provide coordinates of several dozen
newly determined or about-to-be-determined protein structures. The sequences for these
structures are then sent to registered CASP predictors who typically have several months
to generate structures and deposit their predictions with the CASP organizers. Once the
competition closes, all the submitted structures are evaluated using a variety of rigorous
structure comparison techniques (described in Protein Structure Comparison). Based on
CASP and other independent evaluations, MODELLER, SWISS-MODEL, and 3D-JIGSAW
appear to provide the best performance among homology-modeling servers. Overall, homol-
ogy modeling is the most reliable, most accurate, and most widely used method for protein
structure prediction. With the enormous size of the PDB (now >120 000 structures) and its
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Figure 12.12 An illustration of a homology model (b) of Escherichia coli thioredoxin generated using human thioredoxin (3TRX – 26%
sequence identity) as a template. The actual X-ray structure of E. coli thioredoxin is shown in (a). Note the very good overall similarity by
visual inspection.

comprehensive coverage of most known folds, almost any given protein sequence has a very
good chance of being successfully generated via homology modeling.

Threading

Threading (or fold recognition) is a method for predicting the structure of or recognizing a
common fold in proteins having essentially no sequence homology to any protein in the PDB
(Bowie et al. 1991; Bryant and Lawrence 1993). In other words, threading is a structure predic-
tion technique that picks up where homology modeling leaves off. Unlike homology modeling,
which strives for accurate models, threading is limited to generating more approximate mod-
els or approximate folds. Threading received its name because it superficially resembles the
method used to thread a thin tube down or through a plumbing pipe system. In the course of
threading the tube or probe (called a “snake”) through the pipe, the wire takes on the shape of
the surrounding pipe (Figure 12.13). If we view the backbone structure of a protein as being
very similar to a highly contorted hollow pipe (like an elaborate plumbing system), we could
ask what would happen if we threaded a completely different protein sequence through this
backbone pipe. Intuitively, we would expect that if the probe sequence resembled the sequence
belonging to the original pipe, then the fit would be rather good, with the amino acid side
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Figure 12.13 A schematic illustration of how threading is performed. (a) A query protein with the
sequence THREADINGSEQ… is passed through, one residue at a time, the three-dimensional structure
of each protein in a fold database (shown by the structures in b). The energy or quality of the fit is
evaluated each time, with the highest scoring match being the most likely fold.

chains packing closely against one another. If, on the other hand, the probe sequence was very
different than the pipe sequence, then we might find that when the probe sequence is finally
fed through the pipe it would fit rather poorly, with side chains smashing into each other or
pointing in the wrong direction.

If one were to take this threading procedure one step further and automate the process, then
it would be possible to run hundreds or thousands of different probe sequences through this
protein backbone pipe, one at a time. As each sequence is fed through, the fit is evaluated
to determine which sequence fits best with the given template pipe or backbone fold. This
evaluation may be done quickly using some empirical energy term or some measure of packing
efficiency. In this way, it is possible to assess which protein sequences are compatible with the
given backbone fold. Clearly one would expect that those sequences that are highly homolo-
gous to the original template sequence should fit best. However, it has also been found that this
simple-minded approach can occasionally reveal that some completely unrelated sequences
can also fit into this fold. When these kinds of sequences are discovered, one is, in effect, pre-
dicting the tertiary fold of an unknown protein (i.e. performing a 3D structure prediction).

Three-dimensional structures or folds predicted from threading techniques are not generally
of high quality, with a typical RMSD between the correct structure and the modeled structure
being >2 Å. However, threading methods can and do reveal the approximate shape and overall
fold of proteins that seem to have no known structural homologs. Threading rose to promi-
nence in the early 1990s when it was used to model the approximate structure of leptin, a
protein that plays an important role in obesity. At the time, no sequence or structural homolog
was known and all attempts at homology modeling had failed (Madej et al. 1995). The thread-
ing model generated by Madej et al. suggested a general mechanism for the protein’s activity
that was later found to be quite accurate. Since then, threading has become a real darling of
the protein structure prediction community.

Given the popularity of threading, there are now a large number of web-based threading
services available, including Phyre2 (Kelley et al. 2015), HHpred (Söding et al. 2005), RaptorX
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(Källberg et al. 2014), LOOPP (Vallat et al. 2009), and MUSTER (Wu and Zhang 2008). More
recently, the use of multiple threading servers (so-called meta-servers) that combine the results
of several threading predictions appear to be yielding the best results for structure predic-
tion. Examples of meta-threading servers include eThread (Brylinski and Lingam 2012) and
LOMETS (for Local Meta-Threading Server; Wu and Zhang 2007). LOMETS has been inte-
grated into the structure-function prediction tool known as I-TASSER (for Iterative Threading
ASSEmbly Refinement; Yang and Zhang 2015). I-TASSER, which is commonly referred to as
the “Zhang server,” as it was developed by Yang Zhang at the University of Michigan, has been
consistently ranked as the top server for protein structure prediction in the CASP7, CASP8,
CASP9, CASP10, CASP11, and CASP12 competitions (from 2006 to 2016).

Ab Initio Structure Prediction

Ab initio prediction literally means “predicting from the beginning.” In other words, this
approach attempts to predict protein structures without prior knowledge of any related 3D
structure. Ab initio prediction is generally aimed at identifying new folds, or folds for which
there is no sequence similarity whatsoever to existing structures. Over the past decade, sig-
nificant progress has been made in ab initio protein structure prediction, with smaller (<150
residues) proteins having their structures accurately predicted with surprising regularity.
Much of the progress has been due to the work of Dr. David Baker and his group at the Univer-
sity of Washington. In the early 2000s, the Baker group developed a program known as Rosetta
(Bonneau et al. 2001). Rosetta uses a large library of peptide fragments taken from known
protein structures, along with a specially developed Monte Carlo sampling technique and an
intelligent energy function to “fold” proteins (i.e. predict a protein structure). Rosetta does not
use homology modeling, threading, or template-assisted structure generation and, as such,
represents a true de novo or ab initio approach to predicting protein structures. Rosetta was
remarkably successful in the early CASP competitions for ab initio structure prediction. Using
the same search concepts and intelligent energy functions, Rosetta has evolved into a number
of other variants, including RosettaDock (for docking proteins together), RosettaDesign (for
designing novel proteins), and RosettaLigand (for docking small molecules to proteins).
Many of these variants are now freely downloadable through the RosettaCommons web site.
Additionally, several of the Rosetta programs are now freely available as web servers including
ROSIE (Lyskov et al. 2013), Robetta (Kim et al. 2004), and RosettaDesign (Liu and Kuhlman
2006). Rosetta is even available as a distributed “mini-platform” for home computer-based or
crowd-sourced protein structure prediction and docking (through Rosetta@home and Foldit).

Rosetta’s success has inspired many others in the protein structure prediction community,
and some of the most successful structure prediction programs today (such as I-TASSER) use
algorithmic concepts borrowed from Rosetta. However, other approaches to ab initio protein
structure prediction also exist. One of the most intriguing makes use of massively parallel
molecular dynamics (MD) simulations conducted with custom-built supercomputers contain-
ing specially designed, MD-optimized computer chips (Klepeis et al. 2009). These MD simula-
tions have been shown to be sufficiently detailed and sufficiently accurate to model the correct
folding of small, fast-folding proteins (Lindorff-Larsen et al. 2011). This is a truly impressive
achievement. Another fascinating approach to ab initio or de novo protein structure predic-
tion employs a technique called co-evolutionary coupling (Marks et al. 2011). In this elegant
method, multiple sequence alignment (see Chapter 8) is used to infer pairwise residue cou-
plings or spatial interactions via evolutionary constraints. That is, pairs of residues that are
far apart in sequence will change in a coordinated way if they are close together in space. For
instance, a small residue (say glycine) packed next to a large residue (say tryptophan) can only
be substituted with a medium-size residue (say leucine) if the large residue is simultaneously
substituted with another medium-size residue (say valine). These coordinated residue muta-
tions or “couplings,” as inferred through the sequence alignment and appropriate statistical
analyses, are then used to create pairwise atomic constraints. These pairwise constraints can
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then be used to construct atomic-resolution structures. This co-evolutionary coupling method
only uses sequence data as input (no homology modeling is done) and it has been shown to gen-
erate protein structure models that are within 3–5 Å RMSD of the experimentally determined
structures (Marks et al. 2011).

While the progress being made in ab initio structure prediction is quite impressive and a
solution to the protein folding problem via computing seems to be almost at hand, it looks like
much of this elegant ab initio work may be for naught. Indeed, thanks to the enormous efforts
of structural biologists over the past 50 years, it appears that most of the naturally possible pro-
tein folds are now known. Indeed, the number of known protein folds grew from 405 in 1997,
to 1086 in 2007 (Levitt 2007) to just 1228 in 2017, with a near-complete absence of new folds
being identified over the past several years. This means that almost every protein structure
that is solved by NMR, X-ray crystallography, or cryo-EM today is quite similar to one or more
already existing structures in the PDB. Therefore, it is now possible for almost anyone to use
freely available homology modeling or freely available threading web servers to figure out the
structure of almost any known protein directly from its amino acid sequence. In other words,
the protein folding problem has essentially been solved by “brute force.”

Of course, this does not discount the need for continuing to develop better prediction soft-
ware, nor does it negate the need for structural biologists or structural biology. There will
always be plenty of questions regarding protein–protein interactions, protein dynamics, pro-
tein energetics, and protein–ligand binding that will need to be solved by careful measurement,
exacting simulation, and well-designed experimentation. Likewise, with the growing realiza-
tion that up to 30% of all proteins or protein domains are actually unstructured or intrinsically
disordered, a host of new structural challenges are now facing structural biologists, computa-
tional biologists, and database curators (Varadi et al. 2014).

Protein Structure Evaluation

Whether the coordinates for a protein structure have been obtained experimentally (using
NMR, X-ray, or cryo-EM) or by modeling (through homology or threading), it is always impor-
tant to ask this very simple question: “How good is this structure?” A poor structure, like a
poor model, can lead to misinterpretation of how a protein works, how it is related to other
proteins, or where a potential ligand may or may not bind. On the other hand, a high-quality
structure can reveal a tremendous amount of biologically important information and can serve
as the basis to test new hypotheses on folding or function, to design and construct mutants, or
to design new drugs. A large majority of the experimentally determined structures in the PDB
are really quite excellent and, certainly, most structural biologists strive to generate the best
structures they can. However, there are at least a dozen examples of protein structures in the
PDB that have been found to be so seriously flawed that they had to be withdrawn (Hooft et al.
1996). There are also dozens of protein structures that are poorly resolved (>3 Å resolution),
have mislabeled residues or atoms, are missing lengthy tracts of sequence, or provide only C𝛼
coordinates. With the advent of NMR spectroscopy as an alternative to X-ray crystallography,
we are now seeing that many protein structures or parts of protein structures actually differ
quite substantially between solution and solid (crystal) state conditions. Even among different
crystal forms of the same protein, it is quite normal to see an average difference of ±0.5 Å in
atomic displacement or ±7∘ in backbone dihedral angle variation. These structural variations
are not restricted to experimentally determined structures. For instance, homology models
invariably exhibit differences between themselves and the real structure (once determined),
with the extent of the differences increasing by about 0.3 Å for each 10% drop in sequence
identity. In addition, homology models are frequently found to have at least one or two regions
that are modeled incorrectly, because of sequence alignment errors, loop insertion errors, or
energy refinement errors. While these comments may seem to cast doubt on the reliability and
utility of many protein structures, their intent is primarily to inject an appropriate degree of
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caution or skepticism with which all scientific data should be treated. These comments are
also intended to underline the importance of always trying to answer the question we began
with: “How good is this protein structure?”

Protein structures are remarkably complex and highly variable. This complexity makes it
almost impossible to simply look at a protein structure and assess its quality or correctness.
However, by studying large numbers of protein structures and by focusing on those structures
that exhibit particularly good resolution, structural biologists have realized that there are some
near-universal characteristics to high-quality structures. In particular, when considering the
structures of water-soluble proteins, good protein structures should:

• minimize the number of torsion angles in disallowed regions of the Ramachandran plot
• maximize the number of hydrogen bonds
• minimize the number of exposed hydrophobic residues
• maximize the number of exposed polar or charged residues
• minimize the number of interstitial cavities or packing defects
• minimize the number of number of non-bonded atoms within 2.6 Å
• minimize the standard deviation in hydrogen bond energies
• minimize the standard deviation in dihedral angles for helices
• have a low R factor (<0.20 for X-ray structures) or a low backbone RMSD value (<0.8 Å for

NMR structure ensembles).

Some of these characteristics or features also appear to represent underlying rules of protein
folding. Therefore, it is not surprising that they should be reiterated in the structural features of
most proteins. Interestingly, many of these characteristics can also be quantified or measured
directly from protein coordinate data. These observations have led to the development of a
number of excellent software programs for automatically evaluating protein structures and
protein models, including the Dictionary of Secondary Structure for Proteins (DSSP; Kabsch
and Sander 1983), PROCHECK (Laskowski et al. 1993), the Volume, Area, Dihedral Angle
Reporter (VADAR; Willard et al. 2003), and MolProbity (Davis et al. 2007).

DSSP is an open source program, written in C++, designed to produce a compact,
sequence-centric summary of local protein structure features (Kabsch and Sander 1983). It is
also available as a web server. DSSP uses a very stringent method to identify hydrogen bonds
and hydrogen bonding patterns, which in turn are used to identify and label seven different
kinds of secondary structures: alpha helices (H), 3/10 helices (G), pi helices (I), beta bridges
(B), extended beta strands (E), hydrogen-bonded turns (T), and bends (S). DSSP’s definition
of secondary structure has become the de facto standard for secondary structure annotation
in the PDB and the reference set for most secondary structure prediction schemes. In addition
to performing automated secondary structure identification and assignment, DSSP also deter-
mines the ASA of individual residues using the ANAREA algorithm. The results are presented
in a simple digital scale (0–9), with 0 corresponding to fully buried and 9 being fully exposed.

PROCHECK was, perhaps, the first quantitative protein structure evaluation program, and
is still one of the best available (Laskowski et al. 1993). PROCHECK is a downloadable program
that accepts PDB-formatted X-ray coordinate files as input and uses DSSP to identify secondary
structure and calculate ASA. It also calculates torsion angles (backbone and side chain), bond
angles, interatomic distances, and other relevant structural properties. By comparing these
values with those observed for very high-resolution or high-quality structures, PROCHECK is
able to provide an estimate of the quality or equivalent resolution for any given query struc-
ture. One of PROCHECK’s most appealing features is its colorful graphical reports that are
automatically generated (including Ramachandran plots, secondary structure markups, and
scatter plots) along with tables, explanations, and references (Figure 12.14). Inspection of these
graphs or tables allows users to quickly identify problem areas or zero-in on suspicious and
unusual structural features.

VADAR is a protein structure evaluation web server that assesses both NMR and X-ray
structures using PDB coordinates or PDB ID codes as input (Willard et al. 2003). Like the
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Figure 12.14 An example of the high-quality postscript output data from PROCHECK.

other programs already mentioned, VADAR measures dihedral angles, identifies hydrogen
bonds, and measures interatomic distances to help evaluate protein structures. Unlike the
other programs, however, VADAR uses a more comprehensive approach to identifying sec-
ondary structures in which three methods are used to generate a consensus secondary struc-
ture. It also identifies and classifies beta turns, identifies side chain hydrogen bonds or salt
bridges, calculates packing volume (in Å3), determines exact ASA (in Å2), performs packing
“defect” checks and buried charge evaluation, calculates threading and surface free energies,
determines residue disposition, and compares many of these values with those that would be
expected among high-quality structures. A variety of tables are generated for different parts of
the protein (main chain and side chain), as well as a summary table describing and identify-
ing suspicious features found in the protein. Ramachandran plots (with outliers marked) and
structure quality graphs (JPG or PNG) are also automatically created.

MolProbity represents a newer generation of structure evaluation web server that uses all
atom contact analysis to assess protein structures (Davis et al. 2007). In particular, MolProbity
adds and optimizes the geometry of hydrogen atoms (using a program called REDUCE) to all
input structures and then calculates their H-bond, steric clash, and van der Waals contacts.
This kind of contact analysis is remarkably sensitive because hydrogen atoms are not only the
most abundant atoms in proteins, they also make the most of the atomic contacts. As a result,
contact deviations detected at the hydrogen atom level will amplify and identify problems with
any attached carbon, oxygen, and nitrogen atoms, including their bond lengths, placement,
and angles. Like VADAR, MolProbity is capable of processing both NMR and X-ray structures
and, also like VADAR, it produces Ramachandran, amino acid rotamer, and covalent geometry
measures to help with general structure assessment. MolProbity is a very powerful structure
assessment tool and its output is now a part of the wwPDB Validation Report provided for all
protein structures in the PDB.
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Protein Structure Comparison

Similar to sequence comparison, structure comparison lies at the heart of structural bioinfor-
matics. In the same way that sequence comparisons can provide tremendous insight into the
origins, function, location, interactions, and activity of a protein, so too can structure com-
parison. In fact, because structure is actually much more conserved than sequence, structure
comparisons allow us to look even further back into Earth’s prehistory to track the origins and
evolution of many key enzymes and proteins. Unfortunately, structure comparison is a much
more computationally difficult process than sequence comparison. In sequence comparison,
it is possible to use character string matching or dynamic programming methods to easily and
rapidly generate alignments and to identify regions of sequence similarity. In structure com-
parison, a completely different scheme must be used, as one is comparing or aligning complex
3D shapes rather than simple two-dimensional character strings. While computers are natu-
rally very good at handling strings, they are not particularly good at identifying or comparing
3D objects. Indeed, humans still outperform even the fastest computer in recognizing or com-
paring modestly dissimilar 3D objects.

Nevertheless, there are tools and techniques that make it possible to compare near-identical
or relatively similar 3D structures. The most common method is called structure superposi-
tion. Superposition or superimposition is simply the process of rotating or orienting an object
until it can be superimposed on top of a similar object. It is not unlike the process humans
normally perform when putting the last piece of a jigsaw puzzle into place, rotating, and trans-
lating the puzzle piece around until it finally fits. The simplest route to 3D superposition is to
identify a minimum of two sets of three common reference points, one set for the object to be
superimposed and another set on the reference object that is being overlaid. Once these points
are identified, the object to be superimposed can be rotated and translated until the two sets
of reference points are almost matching (i.e. minimally different). The problem, of course, is
knowing which three reference points are most appropriate. Humans are very good at this,
computers are not. The problem with proteins is further complicated because we typically
want to superimpose not just three points but literally hundreds of points (or atoms) at the
same time.

Fortunately, there are mathematical approaches that allow this superposition process to be
done, as long as the reference points are identified and as long as the two objects have the
same number of identified points. These approaches include Lagrangian multipliers, quater-
nion methods, and matrix diagonalization techniques. It is beyond the scope of this chapter to
explain the details of these methods, but suffice it to say that all these approaches are very fast,
mathematically robust, and a number of them have been coded into readily available computer
programs. It is possible to use the same techniques to superimpose more than two structures,
as is frequently done for NMR structure ensembles. In this case, an iterative approach is taken
where the first two superimposed structures are averaged to create a single structure, which
is then used as a template to superimpose the third structure. The process of averaging and
adding is repeated until all the structures have been superimposed. Typically, the two most
similar structures are superimposed first, with the least similar structure being superimposed
last, much as is done in a progressive multiple sequence alignment.

A number of structure visualization programs such as PyMOL, Jmol (Herráez 2006), and
DeepView (Kaplan and Littlejohn 2001) are particularly good at both performing and visu-
alizing molecular superpositions. There are also a large number of web servers that perform
molecular superpositions of pairs of protein structures. Some of the more popular ones include
SuperPose (Maiti et al. 2004), FATCAT (Ye and Godzik 2004), CE (Shindyalov and Bourne
2001), and TM-align (Zhang and Skolnick 2005). Nearly all of these servers allow users to
upload a pair of PDB IDs or a pair of PDB files and to simply press the submit button to generate
coordinate data. Some of the servers, such as SuperPose, allow users to superimpose more than
two structures. Certain servers (SuperPose, CE, and TM-align) perform rigid superposition
while others (such as FATCAT) perform a more flexible superposition. The output for these
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web servers are simple PDB coordinate lists that can be viewed by any number of visualization
tools, image files of the superpositions, as well as information on the alignment, number of
equivalent residues, RMSDs, or alignment scores.

The establishment of methods and criteria to quantitatively compare protein structures (i.e.
structure superposition) led to the establishment of a number of databases containing common
protein folds. This is the equivalent of grouping sequence families together to identify common
sequence motifs, as is done with the Pfam, PROSITE, and InterPro databases (see Chapter 7).
The equivalent databases, in terms of structure, are CATH (Pearl et al. 2000) and Structural
Classification of Proteins (SCOP) (Murzin et al. 1995). Using these kinds of databases, it is pos-
sible to discover unexpected or undiscovered relationships between distantly relative proteins
or to find fascinating examples of convergent structural evolution. CATH (which stands for
Class, Architecture, Topology, Homology) is a database that groups proteins into a taxonomy
based on their secondary structure content, fold, and sequence similarity. The result is a hier-
archical domain classification schema that allows protein structures to be logically grouped
and compared. CATH entries are derived from higher resolution protein structures (<3.0 Å) in
the PDB, with multidomain proteins being partitioned into their constituent domains prior to
classification. At the top of the hierarchy is the Class level, which is determined automatically
by the secondary structure content. There are three broad classes, mainly alpha, mainly beta,
and alpha/beta (see above). At the Architecture level, protein structures are further divided
according to the overall domain shape and orientation of the secondary structures. This is done
manually using naming conventions found in the literature. Third in the hierarchy is the Topol-
ogy level, where common architectures can be further divided into groups according to their
secondary structure connectivity and general shape. At the lowest level of the hierarchy, pro-
teins are grouped according to their sequence identity (>35%) and length of sequence match
(>60%). The CATH database can be searched by text, identifier, protein sequence, or by PDB
structure (Figure 12.15). CATH is also linked to the Gene3D database that contains the pre-
dicted CATH domains for tens of millions of protein sequences derived from public databases.

The SCOP database is a similar hierarchically structured database providing a slightly differ-
ent taxonomic partitioning. Like CATH, the SCOP database aims to provide a comprehensive
description of the structural and evolutionary relationships between essentially all protein
structures in the PDB. Unlike CATH, the SCOP database is primarily constructed through
visual comparison and manual grouping. This process is aided (but not guided by) a number
of computational tools. SCOP uses a six-part hierarchy (Species, Protein, Family, Superfamily,
Folds, and Class). Species corresponds to a distinct protein sequence from a distinct biological
species, Protein corresponds to similar sequences of essentially the same functions that either
originate from different biological species or represent different isoforms within the same
species, Family corresponds to proteins with similar sequences but distinct functions, Super-
family links together protein families with common functional and structural features inferred
to be from a common evolutionary ancestor, Folds corresponds to proteins that have the same
major secondary structures in the same arrangement and with the same topological connec-
tion, and Class corresponds to proteins with similar secondary structure content and organiza-
tion. SCOP has seven “true” classes (with four additional specialty classes for non-conforming
proteins) that are based on secondary structure content and size. Since 2009, the SCOP
database has been evolving into an extended version (called SCOPe; Chandonia et al. 2017)
and to a newly updated hierarchy called SCOP2. Both the original SCOP database and the new
SCOPe database can be easily browsed, progressing down the hierarchy from Classes to Folds
to Superfamilies and so on through hyperlinks, or searched by keywords. SCOPe is much more
up to date than SCOP and is full of hyperlinked documents and thumbnail structural images
that allow the facile navigation and exploration of structural and evolutionary relationships.

As the time and expense of manually classifying protein structures (as done by CATH
and SCOP) is quite considerable, there has been a steady shift toward more automated, less
hierarchical approaches. In particular, a number of web-based services have appeared that
now allow users to compare newly determined structures against all existing structures in
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Figure 12.15 An example of the CATH database description of Escherichia coli thioredoxin, indicating its class (Alpha Beta), architecture
(3-Layer (𝛼𝛽𝛼) Sandwich), topology (Glutaredoxin), and homology (Glutaredoxin) to other related structures.

the PDB. These structure similarity search servers include FATCAT (Ye and Godzik 2004),
Dali (Dietmann et al. 2001), TopSearch (Wiederstein et al. 2014), and PDBeFOLD, which was
formerly known as SSM (Krissinel and Henrick 2004). Structure similarity search servers
are capable of performing a pairwise structure superposition of an uploaded query structure
against every structure in the PDB. In this regard, FATCAT, Dali, TopSearch, and PDBeFOLD
are the structural biologist’s equivalent to BLAST. However, unlike BLAST, the quality of a
structural match is not measured by an E-value. Rather, these structure comparison algo-
rithms typically report a wide range of “alternative” assessments such as p-values, Z-values,
sequence coverage, rankings, raw scores, and RMSDs. (Note that it is always best to read
the output legends carefully, as there is no consensus on scoring methods.) Most servers
will also report percent sequence identity over the structurally aligned regions. Smaller p- or
Z-values, smaller RMSDs, higher scores, and higher sequence coverage are all good indicators
of structural similarity. The multiplicity of scoring schemes has to do with the fact that these
structure similarity search servers perform very sophisticated “alignments” that are far more
complicated than those generated by BLAST, incorporating gaps of almost any length, chain
reversals, geometrical distortions, and altered topological connectivity of aligned segments.

Many X-ray crystallographers and NMR spectroscopists use FATCAT, Dali, TopSearch, and
PDBeFOLD to ascertain if their newly determined structure (that is not yet deposited in the
PDB) is a representative of a new fold or belongs to an existing fold. Such a determination can
have profound implications for understanding the function and origin of a protein. If a struc-
ture of unknown function exhibits significant structural similarity to a structure of known
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function, it is often possible to make an assertion about the unknown protein’s function. As
always, it is particularly interesting and informative to identify those structures where the
RMSD is <2 Å, yet the sequence identity is <15%. These are examples of either very ancient
homologs or potentially interesting cases of convergent evolution.

Of course, not everyone is a structural biologist and not everyone has access to the coordi-
nates of a completely new protein structure, so novel structure similarity search queries are
relatively rare. More often, users are simply interested in better understanding an existing
structure – either its evolution or its potential function. In these situations, it is much easier
(and substantially faster) to upload an existing PDB identifier (rather than a PDB coordinate
file) and to perform a search against a pre-calculated database of structural neighbors. These
kinds of pre-calculated neighbor searches are supported by VAST+ (Madej et al. 2014), FAT-
CAT, Dali, TopSearch, and PDBeFOLD. They are also available through the PDB Structure
Similarity pages that were introduced earlier in this chapter.

Summary

Many of the concepts and ideas we use in bioinformatics today, such as sequence comparison,
structure/sequence visualization, structure prediction, electronic databases, and evolutionary
analysis can trace their origins to structural biology and the structural biologists who devel-
oped many of the earliest bioinformatic tools. Without these important contributions from
structural biology and structural biologists, bioinformatics would not be what it is today. More
recently, the tables have begun to turn, with structural biologists now looking to bioinformati-
cians to help solve emerging problems in pattern finding, remote structure comparison, and
large-scale distributed data management. This give and take between structural biologists and
bioinformaticians is vital to sustaining both fields, and this exchange of expertise and insight
will undoubtedly continue for some time to come. Hopefully, this chapter has illustrated how
at least some of these interactions have evolved and how structural bioinformatics continues
to be integral to gaining a detailed understanding of the engines of life – proteins and enzymes.

Internet Resources

BioMagResBank www.bmrb.wisc.edu
CASP predictioncenter.org
CATH/Gene3D www.cathdb.info
CE source.rcsb.org/jfatcatserver/ceHome.jsp
CPHModels www.cbs.dtu.dk/services/CPHmodels
Dali ekhidna2.biocenter.helsinki.fi/dali/
DeepView spdbv.vital-it.ch
DSSP www.cmbi.ru.nl/dssp.html
FATCAT fatcat.sanfordburnham.org
HHpred toolkit.tuebingen.mpg.de/#/tools/hhpred
iCn3D www.ncbi.nlm.nih.gov/Structure/icn3d/full.html
I-TASSER zhanglab.ccmb.med.umich.edu/I-TASSER/
Jmol jmol.sourceforge.net
JSmol jmol.sourceforge.net
LOMETS zhanglab.ccmb.med.umich.edu/LOMETS
LOOPP cbsu.tc.cornell.edu/software/loopp
MMDB www.ncbi.nlm.nih.gov/Structure/MMDB/mmdb.shtml
MODELLER salilab.org/modeller
ModWeb modbase.compbio.ucsf.edu/modweb
MolProbity molprobity.biochem.duke.edu
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MUSTER zhanglab.ccmb.med.umich.edu/MUSTER
NGL Viewer proteinformatics.charite.de/ngl/html/ngl.html
PANAV panav.wishartlab.com
PDBe www.ebi.ac.uk/pdbe
PDBeFOLD www.ebi.ac.uk/msd-srv/ssm
PDBj pdbj.org
Phyre2 www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index
Proteopedia proteopedia.org/wiki/index.php/Main_Page
PROTEUS2 www.proteus2.ca/proteus2
PyMOL www.pymol.org
RaptorX raptorx.uchicago.edu
RasMol www.openrasmol.org
RCSB-PDB www.rcsb.org/pdb/home/home.do
Robetta robetta.bakerlab.org
Rosetta@home boinc.bakerlab.org
RosettaCommons www.rosettacommons.org
RosettaDesign rosettadesign.med.unc.edu
ROSIE rosie.rosettacommons.org
SCOP scop.mrc-lmb.cam.ac.uk/scop
SCOPe scop.berkeley.edu
SHIFTX2 www.shiftx2.ca
STING Millennium sms.cbi.cnptia.embrapa.br/SMS/STINGm
SuperPose wishart.biology.ualberta.ca/SuperPose
SWISS-MODEL swissmodel.expasy.org
TargetDB sbkb.org
TM-align cssb.biology.gatech.edu/skolnick/webservice/TM-align/index.shtml
TopMatch topmatch.services.came.sbg.ac.at
TopSearch topsearch.services.came.sbg.ac.at
VADAR vadar.wishartlab.com
VAST+ www.ncbi.nlm.nih.gov/Structure/vastplus/vastplus.cgi
WebMol bioinformatics.mpimp-golm.mpg.de/group-members/mpi-mp-group/

dirk-walther/webmol-1
WHAT_CHECK swift.cmbi.umcn.nl/gv/whatcheck/
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diagrams. This book covers the field very nicely and, even though it was published nearly 20
years ago, just about every practicing structural biologist has a copy of either the first or second
edition.

Kelley, L.A. and Sternberg, M.J.E. (2009). Protein structure prediction on the web: a case study
using the Phyre server. Nat. Protoc. 4: 363–371. A very detailed and helpful description of how
to use the Phyre structure prediction server and how it works. This article also provides some
excellent background material on protein structure prediction and a nice, balanced assessment
of the strengths and weaknesses of structure prediction.

Lesk, A.M. (2000). Introduction to Protein Architecture: The Structural Biology of Proteins. Oxford,
UK: Oxford University Press. Another excellent book by Dr. Lesk. Beautifully illustrated and

http://zhanglab.ccmb.med.umich.edu/MUSTER/
http://proteinformatics.charite.de/ngl/html/ngl.html
http://panav.wishartlab.com
https://www.ebi.ac.uk/pdbe/
http://www.ebi.ac.uk/msd-srv/ssm/
https://pdbj.org
http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index
http://proteopedia.org/wiki/index.php/Main_Page
http://www.proteus2.ca/proteus2/
https://www.pymol.org
http://raptorx.uchicago.edu
http://www.openrasmol.org
http://www.rcsb.org/pdb/home/home.do
http://robetta.bakerlab.org
https://boinc.bakerlab.org
https://www.rosettacommons.org
http://rosettadesign.med.unc.edu
http://rosie.rosettacommons.org
http://scop.mrc-lmb.cam.ac.uk/scop/
http://scop.berkeley.edu
http://www.shiftx2.ca
http://sms.cbi.cnptia.embrapa.br/SMS/STINGm/
http://wishart.biology.ualberta.ca/SuperPose/
https://swissmodel.expasy.org
http://sbkb.org
http://cssb.biology.gatech.edu/skolnick/webservice/TM-align/index.shtml
https://topmatch.services.came.sbg.ac.at
https://topsearch.services.came.sbg.ac.at
http://vadar.wishartlab.com
https://www.ncbi.nlm.nih.gov/Structure/vastplus/vastplus.cgi
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very accessible to readers of all backgrounds. Provides many interesting problems and
web-based exercises.

Rhodes, G. (2006). Crystallography Made Crystal Clear: A Guide for Users of Macromolecular
Models, 3e. Cambridge, MA: Academic Press. A great introduction to protein X-ray
crystallography for non-crystallographers. Explains many complex concepts in a clear,
understandable manner. Also provides a very readable set of chapters on analyzing NMR
structures, working with homology models, and visualizing protein structures.
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Biological Networks and Pathways
Gary D. Bader

Introduction

A major challenge for biologists is to gain an understanding of the workings of the cell
by integrating available information from the various fields of molecular and cellular biology
into an accurate cellular model that can be used to generate hypotheses for testing. In
particular, the exponentially growing amount of data from now routine comprehensive
measurements of DNA, RNA, and proteins in biological samples provides rich opportunities
to discover novel biological functions, genotype–phenotype correlations, and the underlying
mechanisms of disease causation. Excitingly, experimental methods, such as transcript
expression-level measurement using RNA-seq methods (Chapter 10) and protein identifi-
cation by mass spectrometry (Chapter 11), are increasingly sensitive and can detect tens
of thousands of molecules within a biological sample at decreasing cost. This has led to the
collection of vast amounts of data about biological systems. However, the analysis and inter-
pretation of all these data is a major challenge for many researchers. Analyses often highlight
large lists of genes that may require an impractically large amount of manual literature
searching to interpret. Biological pathway and network analysis provides a useful approach
to address this data integration, modeling, and interpretation challenge. Pathway and net-
work analysis methods use information about pathways (representing detailed biological
processes) and also networks (generally representing molecular interaction networks, such
as protein–protein or protein–DNA interaction networks) to aid data interpretation.

To illustrate the useful insights into biological mechanisms that can be achieved using
pathway and network analysis, consider two successful examples. Pathway analysis was used
to identify histone and DNA methylation by the polycomb repressive complex (PRC2) as the
first rational therapeutic target for ependymoma, prevalent among childhood brain cancers
(Mack et al. 2014). This pathway is targetable by available drugs, such as 5-azacytidine, which
was used on a compassionate basis in a terminally ill patient and stopped rapid metastatic
tumor growth. This promising result led to the initiation of two clinical trials. In another
example, pathway analysis of rare copy number variant data in autism identified several
significant pathways affected by gene deletions, whereas only a few significant hits were
identified with case–control association tests of single genes or genomic loci (Pinto et al.
2010). The inclusion of pathway information increased the statistical power of the analysis
approach and uncovered otherwise hidden aspects of biology in both these disease areas.

As brief historical context, the pathway informatics field started in the 1990s with work
on the computational representation of metabolic pathways (Karp and Riley 1993). Biologi-
cal network informatics was introduced in the early 2000s, necessitated by the first large-scale
cellular protein–protein and genetic interaction maps (Ito et al. 2000; Schwikowski et al. 2000;
Walhout et al. 2000; Tong et al. 2001). Pathway enrichment analysis of large gene lists, now
the most popular type of pathway analysis, was introduced in the late 1990s (Tavazoie et al.
1999) and popularized in the mid-2000s.
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While well established, pathway and network data continue to grow, and the field is still
being heavily researched. Given the changing nature of the field, this chapter covers a number
of useful and freely available tools and methods, but also focuses on fundamental theory that
should be applicable to new resources as they become available. General theory is covered first,
then tools. The first topic covered is pathway and molecular interaction data, including where
the data come from and how they are represented, stored, and accessed. The second topic
is pathway and network visualization and analysis, covering fundamental concepts and the
most popular and useful analysis methods and tools. The analysis methods selected are meant
to illustrate the interesting biological questions that can be answered by integrating path-
way and network data with other data types, but do not cover all areas of the field in depth.
Thus, pointers to online descriptions and lists of other pathway- and network-related databases
and software tools are provided where relevant throughout the chapter.

Pathway and Molecular Interaction Mapping: Experiments
and Predictions

Before explaining how pathway and molecular interaction data are stored and used, it is impor-
tant to know what types of data exist and how these data are collected. What would an ideal
biological experiment tell us? The answer is no less than everything: which molecules are in
the cell at what time and at what place, how many molecules there are, which molecules they
interact with, and their interaction dynamics. Ideally, one would want this information not
only over the course of the cell cycle and other time-based cellular processes, but also in all
important environmental conditions and under all known disease states. A wide range of bio-
chemical, molecular biological, and genetic experiments have been invented to help elucidate
cellular systems and determine which cellular parts are involved and how they fit together.
However, current experimental methods, while useful and growing better every year, only
scratch the surface of what is actually happening inside a cell or tissue. They usually only
cover one layer of information (e.g. protein–protein interactions) and are mostly incomplete
(Pouliot and Karp 2007; Braun et al. 2009). This is important to consider while using pathway
and network information.

Metabolic pathways are the oldest of the pathway models and are composed of a series of
enzymatic reactions. Enzymatic reactions have been studied for centuries, initially examining
processes such as fermentation. The basic principle of experimentally mapping metabolism,
composed mainly of protein enzymes, is to identify an enzymatic process (e.g. the conversion
of glucose to ethanol in yeast) and progressively purify cellular extracts to find the enzymes
involved. Validation involves testing whether the purified enzyme can convert the given sub-
strate to a product. This process requires protein separation and purification technology, as well
as molecule identification methods to identify the enzyme, cofactors, substrates, and products
involved in the reaction.

Major advances in this area have been made using various forms of chromatography,
gel-based separation techniques, nuclear magnetic resonance (NMR), and mass spectrometry
(see Chapters 11 and 14). Chromatography and gel separation work on the basic principle that
a molecular mixture can be decomposed based on component physicochemical properties
such as size or charge. NMR and mass spectrometry can be used to directly identify small
molecules and proteins based on atomic distance measurements and mass, respectively.
Enzymologists further characterize the reaction rates of enzymes (kinetics) and the detailed
enzymatic mechanism involved in catalysis (Voet and Voet 2004).

Unlike metabolic pathways, signaling pathways, which involve a higher proportion of direct
protein–protein relationships such as the phosphorylation of one protein by another (a protein
kinase), can be mapped using protein–protein interaction detection methods. Other molecule
types, such as lipids and small molecules, are also involved in signaling, so protein interac-
tions themselves only tell part of the story. Many techniques for determining protein–protein
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interactions have been developed over the past few decades. One popular class of experiments
uses co-purification, based on the methods described above. Proteins that strongly interact
will purify as a complex that can be further degraded using harsher purification conditions
to finally separate and identify the complex components. Importantly, this means that the
definition of a protein complex depends on the purification conditions used, which measure
a continuum of protein–protein interaction strengths. An example of a modern biochemi-
cal co-purification uses affinity chromatography to purify a protein complex from a cellu-
lar extract, then identifies the resulting complex components using mass spectrometry (see
Chapter 11). Yeast two-hybrid methods are often used to determine whether two proteins can
interact. An activation and DNA binding domain of a transcription factor are attached to each
protein, respectively. If the two proteins of interest interact, the activation and DNA binding
domains will also interact, forming a functional transcription factor that will express an engi-
neered reporter gene. Presence of the reporter gene indicates binding. Major projects are in
progress to use this technology to comprehensively map interactions in human cells and tis-
sues (Luck et al. 2017).

Another often-used method is molecular cross-linking, an experimental method in which
a linear molecule of defined length having two reactive ends is added to a mixture contain-
ing a potential complex in order to cross-link proteins that are close together; the distance
over which an interaction can be detected is determined by the length of the cross-linker
being used (Li et al. 2017). Subsequent purification and definition of the complex is easier, as
the protein complex is covalently tied together instead of just being electrostatically bound.
Many other protein–protein interaction-determining experimental methods exist (Phizicky
and Fields 1995). Each experiment has its own strengths and weaknesses, and multiple types
of experiments must be performed to increase confidence that the result is relevant in vivo.

As these kinds of experiments are often expensive and time-consuming, many computa-
tional methods have been developed for predicting pathways and interactions. These are rarely
as accurate as detailed “wet lab” experimental analysis, thus should be treated as hypotheses
that require experimental testing. However, these methods can rapidly predict information,
frequently with high levels of accuracy; this is especially useful in cases where experiments
are infeasible, such as in organisms that cannot easily be studied experimentally.

Metabolic pathways can be accurately predicted by mapping the proteins (enzymes) in
a known pathway from one organism to another organism using orthology relationships,
with additional steps applied to construct pathways from the results. This is feasible because
metabolic pathways are frequently highly conserved between species, thus reasonably
accurate predictions can be made. Many rules can be used for predicting metabolic pathways.
For instance, key reactions must be present. Enzymes that are part of multiple pathways
cannot be considered to unambiguously indicate the presence of a pathway. Pathways are
then validated by checking that they balance in terms of input and output mass. If they do
not balance or are disconnected because of missing enzymes, these enzymes can be more
thoroughly searched in the genome being annotated using a process termed hole filling. As
is usual for orthology-based prediction methods, results for the reconstruction will be better
when the experimentally known pathways being used are from a species that is close to the
one being annotated. The PathoLogic algorithm (Karp et al. 2011) used by the BioCyc family
of databases (see section EcoCyc) uses this method to predict entire pathway databases for
an organism, based on the organism’s genome. The end result of this prediction system is
an excellent draft metabolic model for an organism, though manual curation is required
to fix errors in the resulting pathways to achieve a high-quality model. Signaling and gene
regulation pathways cannot currently be accurately predicted in this manner because they are
much less conserved than metabolic pathways.

Molecular interactions can be predicted using a range of methods. Predicted molecular inter-
actions ideally represent direct physical binding, though most molecular interaction predic-
tion methods do not guarantee the prediction of a direct physical interaction. For instance,
predictions may include “functional interactions,” which are interactions between proteins
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within the same pathway or among genes with similar function. This is still useful because
the likelihood of protein interaction within a pathway or function is higher than that among
randomly selected proteins. A range of patterns have been correlated with protein–protein
interactions and these can be used to predict these interactions. Genes that have similar tran-
scription profiles have been shown to physically interact more often than expected (Ge et al.
2001; Grigoriev 2001; Jansen et al. 2002) and this effect is stronger with protein expression pro-
files (Kim et al. 2014). Protein interactions can also be mapped across species. If an interaction
between two proteins is known in one organism, it may be possible to successfully predict that
their orthologs bind in another organism (Matthews et al. 2001; Tien et al. 2004), though this
pattern is more relevant for conserved proteins and protein complexes (Brown and Jurisica
2007). Genes whose protein products physically interact are sometimes maintained in close
physical chromosomal proximity to each other (Tamames et al. 1997; Dandekar et al. 1998;
Overbeek et al. 1999). The most obvious case of this phenomenon are operons in bacteria and
archaea, where genes whose protein products function in the same biological process are tran-
scribed on the same polycistronic messenger RNA (mRNA). Two of the main driving forces in
genome evolution are gene genesis and loss (Snel et al. 2002). The fact that a gene pair remains
together across many different species often represents a concerted evolutionary effort to keep
them together, as might be the case if they functioned in the same biological process. Phylo-
genetic profiles show the presence or absence of genes across complete genomes from many
species (Ouzounis and Kyrpides 1996; Rivera et al. 1998; Pellegrini et al. 1999), and pairs of
genes that have very similar phylogenetic profiles are candidates for physical interaction. A
gene fusion event represents the physical fusion of two separate parent genes into a single
multi-functional gene. This is the ultimate form of gene co-localization: interacting genes are
not just kept in close proximity in the genome but are physically joined as a single entity. It
has been suggested that the driving force behind these events is to lower the regulation load of
multiple interacting gene products (Enright et al. 1999). Hence, gene fusion events provide a
way to computationally detect functional and physical interactions between proteins (Enright
et al. 1999; Marcotte et al. 1999).

Each of the above computational methods has strengths and weaknesses. Gene neighbor-
hood and phylogenetic profile methods give better predictions as the number of completely
sequences genomes they use increases. The gene fusion method predicts well but is not gener-
alizable, as the actual number of detected fusion events is typically small. These genome-based
methods tend to work better with prokaryotic genomes. Gene co-expression analysis is weakly
predictive. All methods improve reliability when more data (e.g. genomes and gene or protein
expression profiles) are used. One way to address this is to combine data from all available pre-
diction methods using machine learning approaches. Each evidence source is automatically
weighted based on its ability to accurately predict known interactions. The first protein–protein
interaction prediction method of this type used Bayesian network machine learning to pre-
dict protein interactions in the budding yeast (Jansen et al. 2003). A probability value for a
protein interaction can be calculated given the available evidence for it across all sources. Pro-
tein interactions predicted in this way have been shown to be as reliable as high-throughput
experimental techniques and cover a larger proportion of genes (Kotlyar et al. 2015). Recent
methods have extended this approach with more evidence sources, including ones that enable
protein–protein interaction binding sites to be predicted, at least for certain protein classes
(Jain and Bader 2016).

Pathway and Molecular Interaction Databases: An Overview

Given the breadth and depth of pathway and molecular interaction network information avail-
able from small- and large-scale experiments and its utility for understanding how biological
systems work, it is no surprise that a number of databases have been built to represent and
store this information. In fact, there are over 700 pathway and molecular interaction-related
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database resources listed in the Pathguide link directory (Bader et al. 2006). These range
widely in form and content and include full-featured pathway databases, ones that focus on
protein–protein or other molecular interactions, and organism- or disease-specific pathway
databases. This section first covers general theory about how pathways and interaction
networks are defined and represented in databases, then describes a selection of the largest,
most generally useful and freely available database resources.

Representing Biological Pathways and Interaction Networks in a Computer

The cell is a large, complex, and dynamic connected network of molecules. Because of its com-
plexity, it is useful to organize the cell into substructures and subsystems such as organelles,
pathways, and complexes, so as to aid in understanding the overall structure. While organelles
and complexes can be directly observed under a microscope, pathways cannot, so it is impor-
tant to realize that pathways are human models and are parts of a larger, connected molecular
interaction network. Pathways can be considered a series of molecular interactions and reac-
tions, often forming a network, that carry out some defined process. Pathways are often defined
based on recognized biochemical or information-processing phenomena. For instance, a series
of metabolic reactions could start with the intake of a metabolite from the environment that
is converted irreversibly to something else. For example, the glycolysis pathway breaks down
glucose to generate energy (adenosine triphosphate). Also, signal propagation in a series of
signaling pathway steps could be shown to follow a specific pathway, such as when a ligand
binds to a cell surface receptor that results in signal propagation through a protein kinase cas-
cade in the cytoplasm and then to the nucleus, where a transcriptional response is activated.
Often in these cases, the start- and endpoints of a pathway are defined by observation of a read-
ily detectable phenotype after stimulation or perturbation, such as observing gene expression
after stimulating the cell with a peptide growth hormone.

Pathways can be classified into different types, and each of the main types generally has a dif-
ferent computational representation in the various existing pathway databases. The main types
of pathway representations model metabolic, signal transduction (also called cell signaling),
and gene regulation pathways. Metabolic pathways are generally defined by a series of chemi-
cal actions and the chemical results of those actions, for the purpose of changing one molecular
species into another (e.g. glycolysis). Signal transduction pathways are usually defined by bind-
ing events (e.g. protein–protein interactions) that sometimes involve chemical actions (e.g.
phosphorylation events) for the purpose of communicating information from one place in the
cell to another. The epidermal growth factor receptor pathway is a common example of a sig-
nal transduction pathway that conveys information from an externally activated cell surface
receptor to the nucleus in order to effect change in gene expression in response to an external
signal. Finally, gene regulation networks involve transcription factors or other regulators acti-
vating or repressing expression of genes, including other transcription factors. Each of these
pathway types is often described using a characteristic representation style that includes conve-
nient shorthand notation for more complex biological processes. For example, gene regulation
is abstracted as a single relationship in a gene regulation pathway (e.g. “NOTCH regulates
HES1”), whereas it would be a large, multi-step process when represented as a metabolic path-
way. This can lead to difficulties when trying to integrate pathways represented differently from
diverse sources. Thus, it is important to understand how a database represents the information
it stores to be able to query it and to understand its advantages and limitations.

When molecular interactions are part of pathways, they are represented as protein com-
plex formation events. Because high-throughput experimental methods exist to map thou-
sands of molecular interactions, many of which are not part of pathways, a separate conve-
nient shorthand representation has been developed for these interactions. Molecular interac-
tions can occur between any molecule types. The interactions are generally represented as a
binary (pairwise) relationship, though sometimes interactions involve more than two partici-
pants. The type of the interaction is automatically defined based on the participant types. For
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instance, an interaction between two proteins is a protein–protein interaction. Molecular inter-
action representation schemes include the type and definition of the participating molecules,
as well as details of the experiment used to determine the interaction. This is another dif-
ference between pathways and interactions – pathways describe a model developed based on
many experiments and often the experimental details are not described along with the path-
way, whereas molecular interactions are often directly determined by individual experiments
that provide important information about the quality level of the interaction data. Collections
of molecular interactions are represented as networks (see Network Visualization). An inter-
actome is defined as the set of all interactions in a cell or organism, by analogy to a “genome.”

Considerations for Pathway and Interaction Data Representation

Since there are many ways of representing pathways and interactions, it is useful to review
some basic data representation principles to better understand why representing this infor-
mation is so complex compared with, for example, biological sequences (see Chapter 1). A
representation system (also called a data model or abstraction) is an invention that can be used
to describe and organize a set of information. Many different representation schemes are often
possible for the same type of information, and two different people given the task to invent an
abstraction independently can easily create different systems, especially for complex and par-
tially undefined biological information-like pathways. A single representation scheme must be
agreed upon before it can be useful for data communication, although such a decision involves
considering a number of trade-offs. An ideal representation system compactly and efficiently
describes exactly the information useful to the users of the system, facilitating communication
among people with the same extensive common knowledge such as scientists in a specific sub-
field who all understand the jargon and concepts of their field. Compactness can be achieved
because common knowledge can be taken for granted and, thus, does not have to be explic-
itly represented each time information is communicated. This compactness can enormously
reduce communication time and effort, making it very useful. Unfortunately, using a compact
representation to communicate between people who do not share the same common knowl-
edge does not work as well. These people will have trouble understanding each other unless
common knowledge is explicitly represented. This frequently happens when people in differ-
ent subfields in science communicate. Similarly, computer programs that are not programmed
with extensive rules defining common knowledge can generally not properly “understand”
very compact representation, requiring the explicit coding of additional information and logic
to perform actions such as querying or visualizing the compact data.

A related trade-off is between simplicity and complexity of representation. The advantage
of having a simple model that captures the basic properties of the data is that it is easily cre-
ated, understood, and used, but it cannot represent all of the detail that may be known about
a system. The complex model may be able to represent everything that is known but might be
too unwieldy to be useful in some cases. Many aspects of biological systems that may be use-
ful to represent can significantly add to the complexity of a representation scheme. Examples
are level of detail, context, and tracking where the original information comes from (its prove-
nance, discussed further below). Each of these is dealt with individually in the next paragraph.

Adding levels of detail in data modeling is useful for representing data at varying levels of
knowledge or understanding. When relevant details are known, a detailed data model should
be able to represent them. In a model that includes multiple levels of detail, there is a choice
between representing the same information at low, intermediate, or high detail levels. Depend-
ing on the goal, more or less detail may be required. For instance, we may know that a protein
phosphorylation event is catalyzed by a tyrosine kinase at a specific amino acid position. Alter-
natively, someone studying the global properties of protein interaction networks may only be
interested in the fact that one protein interacts with another and would find information on
post-translational modifications distracting. Adding to the complexity of biological knowledge
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representation, levels of detail in the cell map can be considered across large ranges (scales) of
time and space, meaning that each level of the organizational hierarchy may require its own
abstraction system. As an example across spatial scales, the molecular parts of the cell have
widely established representation systems, such as the 20-letter amino acid code for protein
sequence and the atoms, bond lengths (measured in angstroms, 10−10 m), and connectivity of
atoms in a three-dimensional protein structure. Neither of these abstractions works well in
describing larger substructures of the cell, such as the nucleus or whole cells (measured in
micrometers and up to the meter-length scale for human neurons). Similarly, across temporal
scales, ultra-fast electron flow in a biochemical reaction, measured in attoseconds (10−18 s),
can be described when it is known, but any useful abstraction to describe electron flow would
not be useful for describing events on the time scale of the cell cycle, measured in minutes
to hours.

Contextual information is important because molecular interactions and reactions depend
on the presence of the participating molecules at permissive conditions, such as being present
in the same place at the same time in a cell. A reaction may or may not occur with the same
participants in different cells, in different developmental stages, or in different organisms.
Similarly, it may be useful to capture the experimental evidence for the pathway knowledge
being represented, as well as where information used to define the pathway came from. This
knowledge-tracking information is referred to as provenance, which simply means proof of
origin and authenticity. Describing context, evidence, and provenance adds complexity to the
representation model.

Pathway Databases

Reactome

Reactome is a curated database of human pathways (Fabregat et al. 2018). Reactome repre-
sents pathways using a biochemical paradigm that models pathways as collections of events
of different types. Reactome is one of the largest human pathway databases and covers signal-
ing, metabolism, gene regulation, and disease pathways; it also includes pathway information
for over half the human proteome. Manually laid out graphical displays of each pathway are
available (Figure 13.1). Data can be downloaded in a variety of formats and various pathway
analysis and query systems are freely available.

EcoCyc

EcoCyc is a literature-derived and curated encyclopedia of Escherichia coli bacteria
metabolism (strain K12; Keseler et al. 2017). It has the most comprehensive coverage of
any species-specific metabolic pathway database (Figure 13.2). MetaCyc (Caspi et al. 2018)
is another literature-derived, curated database covering a broad range of organisms; it
contains information about pathways in thousands of species, including microorganisms,
plants, and animals, with E. coli having the largest representation. BioCyc is a collection of
pathway databases containing EcoCyc and MetaCyc, as well as additional metabolic pathway
predictions for thousands of organisms with sequenced genomes (including human) made
using the PathoLogic algorithm (Karp et al. 2011), as described in Pathway and Molecular
Interaction Mapping: Experiments and Predictions. EcoCyc and MetaCyc are freely available,
while access to the rest of the BioCyc databases requires a subscription, sometimes available
via a university library. The Pathway Tools software, which can be downloaded freely by
academics, is useful for creating a metabolic pathway database for a newly sequenced genome.
Some databases have used Pathway Tools to curate their own organism-specific pathway
databases (Evsikov et al. 2009).
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Figure 13.1 The Reactome database pathway view. The central view shows pathway participants such as proteins, genes, and complexes,
each depicted as boxes. The reactions they participate in are depicted by various types of connection lines. The bottom panel shows
information about participants in the main view that can be selected by clicking. Selected participants are highlighted in yellow and
reactions are highlighted in brown. The numbers in the red circles on some participant boxes in the main window indicate that physical
interactions involving those participants are available but are not shown. Clicking on the red circle toggles these interactions on and off.
The left panel shows the hierarchical organizational view of all the pathways found within Reactome.

KEGG

The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database contains curated
metabolic, signaling, and disease pathways (Kanehisa et al. 2002). Information on enzymatic
reactions, enzymes, small molecules, and genes is also available. Pathways are available as
searchable and clickable images called maps, which KEGG is most known for (Figure 13.3a).
Pathway maps can depict metabolism, regulatory pathways, and large complexes such as
the ribosome, disease-related gene sets, and other gene collections. Each type of map has its
own graphical representation style. Most metabolic pathway maps are reference maps that
depict generalized pathways. Generalized pathways are not species specific, thus they might
never be found in their entirety in a single species. Species-specific maps are automatically
created by mapping reference pathways to a given species by orthology (Figure 13.3b).
KEGG pathway maps link to a variety of underlying KEGG databases, including the LIG-
AND database for enzymes, reactions, and compounds, as well as to genome information.
Pathways can be searched and browsed via the KEGG web site. The various interlinked
KEGG databases are available freely via the World Wide Web, but download requires
a license.
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Figure 13.2 The EcoCyc database cellular overview of Escherichia coli metabolism. The central view shows a zoomed-in portion of the
overview. Nodes represent metabolite molecules and lines represent reactions. Selecting molecules or reactions highlights them in red
and produces a pop-up box containing further description. The top and right toolbars and menus provide links to a range of functionality
available within EcoCyc and related databases (such as BioCyc).

Molecular Interaction Databases

BioGRID

The Biological General Repository for Interaction Datasets, or BioGRID, contains manually
curated protein–protein and genetic interactions, as well as chemical associations for a range
of species (Chatr-Aryamontri et al. 2017). BioGRID is gene centric, which means the website
organizes interactions around a single gene (Figure 13.4). Users can search for a gene of inter-
est; for each gene, physical (i.e. protein–protein), genetic (e.g. synthetic lethal), and chemical
(e.g. inhibition) interactions are presented in a table, along with experimental evidence for
each interaction. Protein post-translational modification site and basic gene description infor-
mation is also available. Data are freely available in Proteomics Standards Initiative–Molecular
Interactions (PSI-MI) XML and tab-delimited text formats (see Standard Data Formats for
Pathways and Molecular Interactions).

IntAct

IntAct, maintained by the European Bioinformatics Institute, is a protein interaction database
that contains manually curated and user-submitted data. Database records are organized
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(a)

Figure 13.3 An example of metabolic pathway reconstruction from Kyoto Encyclopedia of Genes and
Genomes (KEGG) and BioCyc: the valine degradation pathway reconstructed in human. (a) The refer-
ence valine degradation pathway in KEGG. The KEGG reference pathway is a superset of all known
valine degradation pathway components from all organisms. (b) The enzymes that KEGG has found to
be present in the sequenced human genome are highlighted in green. In KEGG, enzymes are represented
by their Enzyme Commission (EC) number (e.g. 2.6.1.42), defining the enzyme’s function. The EC system
is a hierarchy of enzyme functions similar to the newer Gene Ontology molecular function-controlled
vocabulary. Notice that not all enzymes from the reference pathway are highlighted in green. This is
because KEGG was not able to find these enzymes in the human genome. A good example of this is the
3-hydroxyisobutyryl coenzyme A hydrolase (EC 3.1.2.4) that should exist in the human valine degradation
pathway because there are no other enzymes from the reference pathway that can replace its function.
Thus, this missing enzyme represents a “hole” in the pathway. This does not mean that the enzyme does
not exist in the human genome. It may not be easily recognized because of sequence divergence over
evolutionary time or because of inaccurate gene finding. The HumanCyc pathway reconstruction from
the BioCyc family of databases is able to fill the hole (c). Notice that the EC 3.1.2.4 enzyme is present
and linked to the HIBCH gene. Clicking on this gene in HumanCyc produces links to various sequence
databases that contain this gene, as well as to publications that provide evidence that the HIBCH gene
is an EC 3.1.2.4 enzyme. The extra computational and curatorial effort by HumanCyc resulted in holes
being filled.
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(b)

Figure 13.3 (Continued)

around interactions, experiments, and publications, and a graphical network viewer is
available (Figure 13.5). One difference in the IntAct data model as compared with most
other protein–protein interaction databases is that interactions can have more than two
participants. The advantage of using sets to store interactions is that they can represent
proteomics-derived protein complex data where the set of proteins that co-purifies is known
but the direct physical interactions among these entities may be unknown (Gavin et al. 2002;
Ho et al. 2002). The disadvantage of using sets is that interaction data represented as a set of
more than two participants must be mapped to pairwise interactions for network visualization
and analysis. This is frequently performed using a “spoke” expansion, where the experimental
bait protein is linked to all proteins identified in the purification experiment, even if they may
not directly physically interact (Bader and Hogue 2002). IntAct also maintains a database of
curated protein complexes (Meldal et al. 2015). Data are freely available in PSI-MI XML and
tab-delimited text formats.
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(c)

Figure 13.3 (Continued)

Functional Interaction Databases

Functional interactions link genes if they are expected to have similar functions, where “func-
tion” can be defined in many ways. Functional interaction databases collect or predict large
amounts (millions) of these links from a variety of sources. These resources are useful for
exploring the function of a gene (or set of genes) by examining the function of other genes
it interacts with.
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Figure 13.4 A BioGRID database record. A screenshot of the result page for a BioGRID search of the human MDM2 gene.
The top part of the page summarizes information about MDM2, including statistics about how many interactions BioGRID
contains for this gene (top right). Five different views are available: interactors, showing a table of other genes that interact
with MDM2; interactions, showing each experimental interaction evidence; a network view (shown in this figure); a table of
chemical interactors; and a table of post-translational modifications.



412 Biological Networks and Pathways

Figure 13.5 An IntAct database search for the human MDM2 gene. A summary of all interactions that mention MDM2 is displayed as a
table, along with information about matches found in other interaction databases. A table of interactors and a network view of the results
can also be viewed. Details about each interaction can be accessed by clicking on the small magnifying glasses on the left side of each
row, and information can be downloaded in standard formats using the toolbar at the top of the table.

STRING

The STRING resource (Szklarczyk et al. 2015) makes available a diverse range of func-
tional and experimental interaction information for over 2000 genomes in a graphical
and user-friendly manner. Interaction types provided include gene neighborhood, gene
fusion, phylogenetic profile, co-expression, publication article, gene name co-mentions, and
experimentally determined protein–protein interactions. STRING enables searching by gene
name, accession number, and sequence of interest. Results are graphically displayed and
scored using a STRING-specific scoring scheme that correlates with validated protein–protein
interactions and known pathways. A unique feature of STRING is the ability to examine in
detail each separate evidence source supporting an interaction. Figure 13.6 shows a screenshot
of STRING results. All STRING functional interactions can be freely downloaded for local use.
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Figure 13.6 An example of the main STRING query result page. A network of relationships involving
the query gene (here, budding yeast gene FAA4) and a set of functionally related genes, with different
colored lines indicating which prediction or experimental method supports each link. The legend is
provided graphically in the figure. The table at the bottom summarizes the overall strength of each
interaction and the contribution to this score from the various evidence sources. Clicking the Viewers
button at the far left provides access to dedicated graphical and textual reports for each evidence source.
Pathway (and other gene set) enrichment is accessible by clicking on the Analysis button. The More and
Less buttons under the network illustration increase or decrease the number of related genes shown.
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GeneMANIA

GeneMANIA (Franz et al. 2018) is similar to STRING, but focuses on nine major model
organisms and collects data from different sources than STRING. GeneMANIA also uses a
search algorithm that computes the relevance of each functional interaction network based
on the query and supports user-uploaded networks. Given a single query gene, GeneMANIA
finds genes that likely share similar function based on their interactions. Given a set of genes,
GeneMANIA finds functionally similar genes to the set, using a machine learning algorithm
similar to that used by popular movie websites to recommend films a user would like, based on
films they have previously watched. For example, if a set of kinases is queried, GeneMANIA
will find similar kinases, upweighting the protein domain similarity network. If members of
a pathway are queried, GeneMANIA will predict other members of that pathway, likely based
on physical and co-expression interactions (Figure 13.7). All functional interactions found
within GeneMANIA can be freely downloaded.

Strategies for Navigating Pathway and Interaction Databases

The number and diversity of pathway and interaction databases can be bewildering. From a
general and practical perspective, users should start their searches using the above databases,
since they are the largest and most actively developed resources available. Users should also
be aware of meta-databases that collect information from multiple other databases providing
a convenient single point of access. Examples of these kind of consolidated resources are Path-
way Commons for pathways (Cerami et al. 2011), iRefIndex for protein interactions (Razick
et al. 2008), and OmniPath for activation/inhibition interactions in signaling pathways (Turei
et al. 2016), though many more exist. A good starting point to explore the wider set of pathway
and interaction databases is the Pathguide link directory (Bader et al. 2006).

This section provides criteria that can be used to evaluate the quality and utility of a path-
way and interaction database. The criteria include scope, data quality, “freshness” of data, data
quantity, availability, and technical architecture, each of which we will cover in turn. The scope
of a database (or what types of records it collects) is important to know prior to searching for
information. For example, the BioGRID database contains information about protein–protein
interactions and genetic interactions, two related data types with very different properties. It is
possible for a user to search for protein interactions, only to find genetic interactions and sub-
sequently misinterpret them as protein interactions if they are not aware of the database scope.
Data quality depends heavily on level of curation and validation and can be difficult to inde-
pendently assess. General things to look for are evidence of manual curation, which usually
indicates higher quality data, versus databases that contain computationally predicted infor-
mation that is not manually reviewed. While expert curated databases are the gold standard,
collections of lower quality information are still useful but generally require that the user has
the expertise and time to sort through it. For instance, databases of protein–protein interac-
tions created automatically by literature extraction techniques (text mining) may only be 70%
accurate but might still have some correct information that no other database contains. Data
freshness is also important, and databases that are well maintained and updated regularly often
indicate higher data quality. Users should look for dates on the homepage of the database as
well as in the records, or creation times of datasets available on download sites when available,
to find out how recent the data are. Another measure of the utility of a database is data quan-
tity, where the more data available (assuming they are of good quality) the better. Users should
also be aware of database availability, or licensing terms, as some databases have intellectual
property restrictions. Fortunately, many databases are either freely available to all or free for
use by academic researchers. Finally, if one plans to analyze a given database as a batch, the
technical architecture of the database should be considered (Helmy et al. 2016). Ideally, the
database will be available in standard formats (described in Standard Data Formats for Path-
ways and Molecular Interactions) and provide application programming interfaces (APIs). In
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Figure 13.7 A query result from GeneMANIA. Each node in the network represents a gene, while the connections represent different
types of functional interactions; these are color coded based on the key in the right panel (e.g. co-expression is purple). The example
query for human (MRE11A, RAD51, MLH1, MSH2, DMC1, RAD51AP1, RAD50, MSH6, XRCC3, PCNA, XRCC2, RAD54B) was used to generate this
network. Query nodes are shown with diagonal light gray lines. An additional 20 related genes (default parameter) are shown, with node
size proportional to how strongly connected the related genes are to the query genes, with larger nodes being more strongly connected.
Clicking on the pie chart at the bottom left opens a Gene Ontology annotation panel that enables a user to color nodes by selected
pathways. Three pathways were selected to color nodes in this example, as shown in the legend at the bottom left.

summary, to get the most value out of pathway and network databases, it is important to study
the database and understand how to properly use it.

Standard Data Formats for Pathways and Molecular Interactions

This section provides an overview of standard data exchange formats. Ideally, one would be
able to access all relevant pathway and network information needed to solve a research prob-
lem from one convenient source. In reality, each database group creates its own way to rep-
resent data, making it extremely difficult to combine data and use them for comprehensive



416 Biological Networks and Pathways

analysis. Fortunately, standard data formats have been developed that many databases sup-
port and that make it easy to access data from diverse sources in one (or a small number of)
compatible formats.

BioPAX

The Biological Pathway Exchange (BioPAX) format is a standard language to represent
biological pathways (Demir et al. 2010). BioPAX can represent metabolic and signaling
pathways, molecular and genetic interactions, and gene regulation networks (Figure 13.8).
BioPAX is written in the Web Ontology Language (OWL), which is an XML language that
can capture classes, class properties, and their relationships. The top-level class in BioPAX
is Entity, which encompasses four types: Pathway, Interaction, Gene, and PhysicalEntity.
A Pathway is a collection of Interactions, optionally ordered in steps. Interactions contain
genes or physical entities: protein, DNA, RNA, small molecule, and complex. There are
four major types of representation styles and data types covered. Biochemical and signaling
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Figure 13.8 The AKT pathway as represented by a traditional method (top left, from www.biocarta.com),
a formalized SBGN diagram (at left, from www.sbgn.org), and using the BioPAX language (on the right).
Source: Reproduced with permission of Springer from Demir et al. (2010).
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pathways consist of conversion and control interaction types, with physical entity participants
that maintain state (e.g. post-translational modifications, cell location, and protein complex
bound). Conversion captures biochemical reactions, transport, degradation, and complex
assembly. Control captures catalysis and modulation. Catalysis describes the enzyme that
catalyzes a biochemical reaction, so two interactions are required to capture a step in a
metabolic pathway (catalysis and biochemical reaction). Gene regulatory pathways consist of
TemplateReaction and TemplateReactionRegulation interactions. A template reaction is one
that converts between molecules in the central dogma, such as DNA to RNA, or DNA to pro-
tein. A TemplateReactionRegulation type of interaction controls this, capturing, for instance, a
transcription factor that regulates the expression of a gene (described as a TemplateReaction).
The MolecularInteraction class captures protein–protein or other molecular interactions and
follows the style of the PSI-MI standard (see PSI-MI). The GeneticInteraction class represents
genetic interactions such as synthetic lethal or epistatic interactions between genes. Many
databases make their data available in BioPAX, including Reactome (Fabregat et al. 2018),
the BioCyc database family (Caspi et al. 2018), and Pathway Commons (Cerami et al. 2011).
BioPAX provides a programming library to support software developers loading, saving, and
querying BioPAX files (Demir et al. 2013) and provides a validator service (Rodchenkov et al.
2013) to support content providers creating new BioPAX files.

PSI-MI

PSI has developed an XML-based format for exchanging protein–protein interactions, called
PSI-MI (Hermjakob et al. 2004). The data model of the format contains an “interaction”
record comprising a set of proteins that interact (could be more than two), an “experimental
conditions” controlled vocabulary, and information about publication references and protein
features, such as binding sites and post-translational modification sites. The PSI-MI group
also maintains an extensive ontology of terms describing concepts such as interaction and
experimental method types that is used as a controlled vocabulary throughout PSI-MI (Mayer
et al. 2014). Figure 13.9 shows the top level of a PSI-MI record. Many databases and tools
support PSI-MI, and, similar to BioPAX, software libraries, web services, and a validator
are available to aid software and database groups to support the standard. The PSI-MI and
BioPAX developer groups worked together to ensure compatibility between formats so that
the MolecularInteraction class in BioPAX is interconvertible to and from PSI-MI. PSI-MI also
makes available a tab-delimited version of the format called MITAB (molecular interaction
tab delimited) that makes it easier to process the files in scripts.

SBML

The Systems Biology Markup Language (SBML) is an XML-based format for exchanging
mathematical pathway simulation models (Hucka et al. 2003). An example of a mathematical
pathway model is a system of ordinary differential equations that describe the rates of all
of the reactions in a pathway. With the right parameters (for example, initial concentrations of
molecules and kinetic constants of reactions) the computer can calculate the concentration of
the various molecular species in a pathway over time. A number of simulation tools support
these formats. The BioModels database contains SBML models for many pathways (Le Novere
et al. 2006) and many software tools are available to simulate SBML models.

Pathway Visualization and Analysis

Pathway visualization tools are computer programs that can automatically draw a pathway
diagram. Automated pathway visualization tools, especially for browsing metabolic pathways,
have been around since soon after the first metabolic databases were built. For instance, a
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Figure 13.9 The main components of the Proteomics Standards Initiative–Molecular Interactions
(PSI-MI) data model for describing protein–protein interactions. Boxes represent defined XML data
types. Dashed lines represent optional elements. The hexagonal box represents a collection of elements
that are below it. Minus and plus symbols in small boxes represent expanded and collapsed views of
each element, respectively. Collapsed boxes have more elements inside them that are not shown. The
full schema for PSI-MI is on the PSI-MI Web site.

pathway-drawing tool is present in the ACeDB database (Eeckman and Durbin 1995) and in
EcoCyc (Karp et al. 2002). Many of these tools display static pictures with components, such
as enzymes or small molecules, that can be clicked on to get more information about the com-
ponent from a source database. Examples of static clickable pathway images can be found in
the Reactome database (Figure 13.1). More advanced tools are able to dynamically generate
pathway diagrams from an underlying database that allow the user to change how the path-
way is viewed. For instance, the EcoCyc database contains a pathway visualization tool that
can display varying levels of detail about a pathway, from an overview to a detailed view show-
ing all chemical structures of small molecules in the pathway (Figure 13.10). PathVisio can
display pathway diagrams from multiple sources and can aid interpretation of gene expression
and other genomics data by overlaying them on a pathway diagram (Figure 13.11; Kutmon
et al. 2015). Generically, PathVisio and similar tools must be able to load pathway information
and gene expression data and match genes from one dataset to the other. Usually this requires
gene identifiers to match between the two datasets, though many tools provide features to help
map identifiers from one type to another to help match genes between datasets, but this can
sometimes be error prone (Zeeberg et al. 2004).

The Systems Biology Graphical Notation (SBGN) is a standard format for pathway diagrams
(Le Novere et al. 2009). Three versions exist to capture different pathway representation
paradigms. Process Description (PD) diagrams visualize biochemical-style metabolic and
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(a) (b)

Figure 13.10 The valine biosynthesis pathway dynamically drawn by the Pathway Tools software that supports the BioCyc family of
databases. The advantage of automatic pathway diagram layout is that the diagram can be drawn according to user preference. Here
two views of the same pathway are shown, the one in (b) providing more detail than the one in (a). Notice the presence of small molecule
structures in (b). Nodes in the pathway diagram represent metabolites and connections represent enzymes.

signaling pathways (Figures 13.12 and 13.13). Entity Relationship (ER) diagrams display an
interaction network involving participants. Activity Flow (AF) diagrams show how informa-
tion flows within a pathway, including activation and inhibition relationships. SBGN-ML is
a standard XML format for exchanging SBGN diagrams (van Iersel et al. 2012) and many
editors and visualization tools support automatically drawing SBGN diagrams (Sari et al.
2015; Hartmann and Jozefowicz 2018).

The major type of pathway analysis method is pathway enrichment analysis, which is
used to interpret genomics and other genome-scale data. It identifies pathways that are more
or less enriched than expected in a large gene list, typically derived from high-throughput
transcriptomic or proteomic methods. In this analysis, pathways are statistically tested for
over-representation in the experimental gene list above what is expected by chance. For
instance, an experimentally derived gene list containing 50% cell cycle genes is surprisingly
enriched given that only 8% of human protein-coding genes are involved in this process.

Pathway enrichment analysis involves three major steps. First, one must define a gene list
of interest using available high-throughput data. Raw data from such an experiment gener-
ally require computational processing, such as normalization and scoring to identify genes
of interest. For example, a list of genes differentially expressed between two groups of sam-
ples can be derived from RNA-seq data. Second, pathway enrichment analysis is performed.
A statistical method is used to identify pathways enriched in the gene list from the first step,
relative to what is expected by chance. All pathways in a given database are tested for enrich-
ment in the gene list, and the resulting p values are corrected for multiple hypothesis testing to
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Figure 13.11 Output from the PathVisio software showing a portion of a human cell cycle pathway overlaid with gene expression data
from three breast cancer cell line samples. Rectangles represent genes or pathways, as labeled, and are colored based on gene expression
levels according to the legend on the right, where yellow represents low mRNA gene expression and blue represents high mRNA gene
expression.

identify significantly enriched pathways. Third, pathway enrichment analysis results are visu-
alized and interpreted. Many enriched pathways may be identified in the second step, often
including related versions of the same pathway. Visualization can help identify the main bio-
logical themes and their relationships in this list for focused study.

Many statistical methods have been proposed to perform pathway enrichment analysis
(Khatri et al. 2012), though there are two major types that are tailored for specific types of
gene lists. The first is designed to analyze a gene list containing tens to several thousands of
genes, as may be defined in the course of a cancer genomics experiment (i.e. the set of all
genes mutated in a cancerous sample as compared with a normal sample). This type of gene
list can be analyzed using a Fisher’s exact test to calculate the probability of a non-random
association between genes in the input list and those in a pathway. This test is repeated for
all pathway gene sets in a database, correcting for repeated tests (multiple hypotheses) using
the Benjamini–Hochberg false discovery rate (FDR) method (Hochberg and Benjamini 1990).
The result is a set of pathway gene sets significantly enriched in a gene list and their associated
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Figure 13.12 The set of symbol types available in the Systems Biology Graphical Notation (SBGN) Process Description (PD) format.

corrected p values (also called q values). A useful tool to perform this analysis is the web-based
g:Profiler system (Figure 13.14; Reimand et al. 2016).

A second important type of gene list is ranked by an experimental score. A typical example is
the list of all differentially expressed genes in the genome measured in an RNA-seq experiment
comparing one condition with another. This gene list is ranked by a differential expression
score, with most positively differentially expressed (upregulated) genes in condition A vs. B
at the top of the list, genes not differentially expressed in the middle of the list, and genes
negatively differentially expressed (downregulated) at the bottom of the list. There is usually
no natural way to threshold this list to define a smaller list of genes suitable for input into
Fisher’s exact test-based analysis methods. Further, thresholding may remove biologically rel-
evant signal, as genes that are weakly differentially expressed may contribute signal to a given
enriched pathway. To address this, rank-based pathway enrichment analysis methods have
been developed; these methods do not require a threshold to be defined and, instead, consider
all genes in the list. The most commonly used method of this type is Gene Set Enrichment
Analysis (GSEA), primarily implemented as free software available for local installation on a
desktop (Subramanian et al. 2005). The GSEA method searches for pathways whose genes are
enriched at the top or bottom of the ranked gene list, more so than expected by chance. For
instance, if the top most differentially expressed genes are involved in the cell cycle, this sug-
gests that the cell cycle pathway is regulated in the experiment. In contrast, if cell cycle genes
appear randomly scattered through the whole ranked list, the cell cycle pathway is likely not
significantly regulated. To calculate an enrichment score (ES) for a pathway, GSEA progres-
sively examines genes from the top to the bottom of the ranked list, increasing the enrichment
score if a gene is part of the pathway and decreasing the score otherwise. These running sum
values are weighted, so that enrichment of the top- (and bottom-) ranking genes is amplified,
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Figure 13.13 The Drosophila melanogaster cell cycle drawn using Systems Biology Graphical Notation
(SBGN) Process Description (PD) and colored to increase visual appeal. Source: Reproduced from Toure
et al. (2018).

whereas enrichment in genes with more moderate ranks is not amplified. The ES is calculated
as the maximum value of the running sum and normalized relative to pathway size, result-
ing in a normalized enrichment score (NES) that reflects the enrichment of the pathway in
the gene list. Positive and negative NES values represent enrichment at the top and bottom of
the list, respectively (Figure 13.15). This process is repeated for each pathway in a database.
Finally, a permutation-based p value is computed and corrected for multiple testing to produce
a permutation-based FDR q value that ranges from 0 (highly significant) to 1 (not significant).
Permutation p values are computed either by repeating the analysis many times with random
gene sets or with random assignment of experimental class labels, like “case” and “control,”
with the latter recommended if more than five samples are available. The same analysis is
performed starting from the bottom of the ranked gene list to identify pathways enriched in
the bottom of the list. Resulting pathways are selected using the FDR q value threshold (e.g.
q< 0.05) and ranked using NES. It is also useful to inspect the “leading edge” genes that con-
tribute to the increase in the enrichment score before it peaks.

In both of the above-described analysis types, significantly enriched pathways are typically
displayed as a table. Pathway information is inherently redundant, as genes often participate
in multiple pathways and pathways collected from different databases may be repeated.
Pathway enrichment analysis often highlights several versions of the same pathway as a
result. Collapsing redundant pathways into a single biological theme simplifies interpretation.
The Enrichment Map visualization software is an app within the Cytoscape network
visualization and analysis software (described in Network Visualization) that addresses
this problem (Bindea et al. 2009; Merico et al. 2010). An enrichment map is a network
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Figure 13.14 The results of pathway enrichment analysis using the g:Profiler tool. The top part of the screen shows the input form, including
a text box to enter a gene list (top left), various analysis options to select (top center), and gene set databases that can be selected (top right).
The enrichment results are shown in a table at the bottom of the figure. Each row includes the pathway name (left column), enrichment
statistics (center columns), and a graphical view of the query genes and which pathways they belong to (right graphic).
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Figure 13.15 A Gene Set Enrichment Analysis (GSEA) enrichment figure. The bottom half of the figure represents the full ranked list of
genes, ranked from high (left) to low (right). Genes in the ranked list that match a pathway (gene set) are shown as black vertical lines.
The running enrichment score is plotted in green at the top. This is an example of a highly enriched pathway, as the green line quickly
rises to a high level before decreasing. Three figures are shown, with good enrichment in the top part of the ranked gene list (a), poor
enrichment (b, with a random spread of pathway genes across the ranked list), and good enrichment at the bottom of the list (c).

representing overlaps among enriched pathways (Figure 13.16). Pathways are represented
as circles (nodes) that are colored by enrichment score and are connected with lines (edges)
sized based on the number of genes shared by the connected pathways. Network layout and
clustering algorithms are used to automatically display and group similar pathways as major
biological themes. Interactive exploration of pathway enrichment score (filtering nodes) and
connections between pathways (filtering edges) is possible. If the gene expression data are
optionally loaded, clicking on a pathway node will display a gene expression heat map of all
genes in the pathway. Multiple enrichment analysis results can be simultaneously visualized
in a single enrichment map to enable comparison, in which case different colors are used on
the nodes for each enrichment result (Reimand et al. 2019).
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Figure 13.16 An enrichment map showing two enriched themes. Each node represents a pathway gene
set, named as labeled. The size of the node is proportional to the number of genes in the pathway. The
color of the node represents the enrichment score, with a better score indicated by a deeper shade of
red. Edges represent genes shared between two pathways, with thicker edges indicating more shared
genes. Related pathways have been automatically grouped into themes shown by large labeled and
shaded circles using Cytoscape’s AutoAnnotate app.

Network Visualization and Analysis

While viewing individual pathways is useful for detailed mechanistic studies, it is not
amenable to visualization and analysis of large sets of molecular interactions and knowledge
mapped outside of well-studied pathways. For this reason, network visualization and analysis
tools have been developed. Network visualization and analysis relies on concepts from the
computer science field of graph theory, so we begin this section with a brief discussion of
basic graph theory concepts. Graph theory is based on the notion of a graph, a representation
of connected data as a set of nodes (or vertices) and a set of connecting edges (Figure 13.17).
Edges may be directed, in which case they may be called arcs. Nodes and edges may have
associated weights or other data values. Different classes of graphs exist; for instance, a graph
that does not contain any cycles is called acyclic (also called a tree). Tree graphs have a root
node and leaf nodes, and a collection of trees is termed a forest. An example of a directed
acyclic graph in bioinformatics is the Gene Ontology (see Chapter 7; Ashburner et al. 2000),
where the most general annotation term is the root and the most specific terms are leaf nodes.
The number of edges connected to a node in an undirected graph is called the degree. For a
directed graph, the in-degree and out-degree are the number of arcs input and output from
a node, respectively. A graph is an abstract mathematical concept and can be mapped to any
problem where a mapping can be imagined; thus, direction, weight, and connectivity do not
have any specific biological (or other domain) meaning until a mapping is made.

5

–7

Figure 13.17 An introduction to terminology and visual notation used in the computer science field of
graph theory. Blue circles are nodes or vertices (singular is vertex), undirected lines (red and green) are
called edges, and directed lines (cyan) are called arcs. Nodes or edges can have associated attributes,
such as weights. Here, two edge weights are shown: 5 and −7. A series of edges that form a closed loop
is called a cycle (red lines). The colors are present in this figure solely to annotate the graph and are not
part of normal visual notation. A graph is an abstract mathematical concept. Edge direction, weights,
and other attributes do not mean anything until mapped to a specific problem.
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Intuitively, biomolecular interaction networks can be mapped to a graph, where
biomolecules are represented as nodes and interactions as edges. Other information
could also be mapped; for instance, edge direction may represent activation relationships
and edge weight may be mapped from confidence information about an interaction. Some
types of biological interaction information cannot be faithfully mapped to a graph, or there
may be multiple ambiguous mappings or mappings that cause loss of information. For
example, protein complexes larger than two molecules detected in a co-immunoprecipitation
experiment cannot easily be described using the binary relationships in a graph; rather, they
can only be accurately represented as a set, since the direct physical connections between
the proteins in the complex are not known from the experiment. The set can be mapped to
a graph in different ways, such as by connecting all proteins in the set in a clique (a fully
connected graph) or by creating a node that represents the set and linking each protein to the
new node (Bader and Hogue 2002).

The reason graph theory is used to represent biological networks is that it is useful for
answering many interesting biological questions. For instance, if one wants to find out if one
protein connects to another protein in a protein interaction network, an algorithm (called a
breadth-first search) can be run that is mathematically guaranteed to find the shortest path
between the two nodes, if it exists. Many other useful graph algorithms exist to manipulate,
query, analyze, and visualize graphs. More information about graph theory can be found in
Box 13.1 and in books devoted to graph theory algorithms (Bollobâas 1998; Mehlhorn and
Nèaher 1999; Cormen 2001).

Box 13.1 Advanced Graph Theory Applications

There is a natural relationship between graph theory and linear algebra. Any graph can be
represented as an N ×N matrix, called an adjacency matrix, where the rows and columns
represent the nodes in a graph and a “1” is placed in the matrix at position (i,j) if node i
connects with node j. If the edges in the graph are weighted, the weight can be recorded
at position (i,j) instead of using a “1.” Since many types of matrices in bioinformatics are
N ×N, or square, they can be represented as a graph, and it is sometimes useful to make
this conversion to visualize the matrix. One interesting example is a protein sequence
similarity matrix, which records the sequence similarity (e.g. as calculated by BLAST (see
Chapter 3)) of a set of sequences in an all-against-all fashion. The rows and columns
of a similarity matrix represent the set of things being compared; in this case, protein
sequences and matrix position (i,j) record the similarity score of protein i compared with
protein j. By visualizing these data as a network instead of a matrix, the connections
between clusters of similar proteins are more visually apparent (Akiva et al. 2014).

Mathematicians may also convert a graph to an adjacency matrix to apply algebraic
matrix operations to the matrix to solve specific graph problems. Sometimes, the matrix
operations are faster than the same operations performed directly on a graph using a
standard algorithm. For instance, the entries (i,j) in the square of an adjacency matrix
correspond to the number of paths of length 2 that exist in the graph between nodes i
and j. This can be extended to higher powers of the adjacency matrix. Squaring the matrix
quickly gives this answer if the matrix is sparse (filled with many zeros), but not as quickly
if the graph is dense. Fortunately, many problems in biology translate to sparse graphs.
One algorithm in bioinformatics that uses this mathematical problem-solving tactic to
cluster a similarity matrix is the Markov cluster (MCL) algorithm (Enright et al. 2002).
Through a series of adjacency matrix multiplications of the similarity graph and other
mathematical operations, clusters of similar proteins are detected. Proteins in a similarity
cluster have more paths between them than to proteins in other clusters. The matrix
squaring operations are involved in counting the number of paths from one protein to
another.
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Network Visualization

Network visualization tools rely on algorithms from the computer science field of network
layout. Typically, network layout algorithms try to make a graph look esthetically pleasing;
that is, they try to minimize the overlap of nodes and crossing of edges so that as much of
the graph as possible is clearly visible. Network layout is practical and generally works well
on small- to medium-sized networks, such as those up to a few thousand nodes for a typically
sized viewing area, such as a computer monitor. Larger networks than this require a larger than
normal viewing area or the network to be reduced in complexity to view, such as by filtering
edges or by zooming in to nodes of interest.

There are many types of network layout algorithms, such as arranging nodes hierarchically,
in a circular fashion or in less structured formats. Importantly, the type of layout algorithm that
will work best depends on the type of network that is input. For instance, a highly connected
network will not display well when laid out hierarchically; only a truly hierarchical network,
like a tree, will lay out well in this case. Thus, network visualization tools contain multiple
layout methods that should all be tried to see which one generates an esthetically pleasing
layout for a particular network.

One of the most commonly used layout types is called a spring-embedded algorithm, derived
from the general class of force-directed layout algorithms and containing many variations.
In a typical case, the network is modeled as a physical system where edges are springs and
nodes are like-charged particles that repel. The layout starts by placing all nodes randomly
and then calculates the position of each node given that long edges are like stretched springs
and will pull the connected nodes close together, while nodes will repel each other the closer
they get. By iterating over time, the network can stabilize on the final layout, which will have
relatively short edges and relatively non-overlapping nodes. Think of this as taking a bunch
of like-charged beads (nodes) connected by springs (edges), throwing them up in the air, and
seeing what pattern they arrange themselves in when they land.

Once a network is laid out, it must be interpreted. There are three major patterns to look
for in biological interaction networks (Merico et al. 2009). The first pattern takes the form of
“guilt by association,” describing the phenomenon that genes of similar function are usually
connected to each other in a protein or gene interaction network. This is useful for predicting
the function of unknown genes based on the function of neighboring genes. The second pattern
presents densely connected regions, or clusters, that frequently indicate pathways, systems, or
molecular complexes. The third analysis pattern to examine are global features, such as how
the densely connected regions are organized relative to each other, which may be helpful in
understanding which ones are closely related.

Cytoscape is a freely available, open-source Java-based network visualization and analysis
tool and is the most widely used tool of its type (Shannon et al. 2003). Cytoscape is able to visu-
alize and analyze network data in the context of other types of data (e.g. genomic data) and lay
out the network. Cytoscape networks are interactive and can be edited; nodes can be selected,
dragged, and rotated using the mouse. Sophisticated node and edge selections can also be made
by filtering based on user-defined combinations of loaded attributes and network topology. A
major strength of Cytoscape is the ability to add new features by downloading “apps” from
the Cytoscape app store (Lotia et al. 2013). Apps can be developed by anyone using the Java
programming language. Hundreds of apps implementing a wide range of visualization and
analysis methods have been developed and contributed to the project. Automating Cytoscape
functions using R, Python, or other scripting languages is also possible (Demchak et al. 2018).

Cytoscape uses the concepts of network attributes and visual attributes when integrating and
visualizing information on the network. There are two types of network attributes: node and
edge. A node attribute is a data value that is associated with a node (usually by loading it from a
file). If the node represents a protein, a node attribute could be the name of the protein, a term
that describes the functional classification of that protein (perhaps from the Gene Ontology), or
a protein abundance measurement. Similarly, an edge attribute is a data value that is associated
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with an edge. If the edge represents an interaction among two proteins, an edge attribute could
be the strength of the interaction or the type of experimental method that was used to detect the
interaction. Multiple types of node and edge attributes can be loaded simultaneously, as long
as each type has a different name. Either attribute can be discrete or continuous. An example
of a discrete edge attribute is a list of interaction detection experimental methods. An example
of a continuous node attribute is a set of gene expression values that range from 0.0 to 1.0.

Visual attributes in Cytoscape are aspects of a network diagram that can be displayed in dif-
ferent ways (Figure 13.18). These include shape, size, label, font, color, border color, and border
type for nodes and label, font, color, line type (e.g. solid or dashed line), target arrow, and source
arrow for edges. Once a network is loaded into Cytoscape, any node or edge attributes can be
mapped to visual attributes using the Cytoscape visualization mapper, or “Style” system. A
specific example of a visual style for a protein interaction network would be one that maps
node attributes containing normalized gene expression values (ranging from 0.0 to 1.0, with
1.0 being the highest gene expression values in the set) to node color with an expression value
of 0.0 mapping to green and 1.0 to red. Cytoscape will then automatically color all nodes con-
tinuously according to the style, and an expression value of 0.5 will be colored midway between
green and red.

Cytoscape has hundreds of features that are documented in the Cytoscape manual, in online
tutorials, and in various protocols, as well as through mailing lists involving a large community
of users.

Figure 13.18 Zooming in on a network in Cytoscape shows part of a large connected network of protein and genetic interactions from
budding yeast. This view is meant to emphasize the visual customization available in Cytoscape. Nodes represent genes, colored by
gene expression values (similar to PathVisio) and sized by node degree. Importantly, this view in Cytoscape is highly customizable using
Cytoscape’s visual mapper (left side panel).
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Network Analysis

Many types of biological data can be integrated with biological networks for the purpose of
gaining insight into mechanisms active in a particular biological context, such as disease.
This section briefly describes a range of network analysis methods that have been developed,
all of which are freely available as tools via Cytoscape or other systems.

Topological analysis concerns only studying the patterns of node and edge connections in a
network. The most basic type of topological analysis is analyzing the distribution of the degree
(the number of connections) across all nodes in the network. Biological network degree distri-
butions tend to follow a power law, where a few nodes have a very high degree (called “hubs”)
and many nodes have a low degree. It has been proposed that this organization underlies
the robustness of biological systems (Barabasi and Oltvai 2004) and that hubs are the most
important nodes in these systems. Many measures of node importance exist, often called cen-
trality measures. For example, the “clustering coefficient” measures the density of edges in
a node’s neighborhood. These measures can be computed using the Network Analyzer app
that is available through Cytoscape (Assenov et al. 2008), as well as by other tools. Next, small
patterns in networks, called network motifs, can be identified (Alon 2007). For instance, a
feed-forward loop is composed of at least three nodes, where nodes are connected in series by
directed edges (e.g. A→B→C) and where A is also connected to C by a directed edge, where
direction indicates “regulation.” Many biological networks are enriched for particular motif
types and simulations show that these motifs have specific biological properties, such as “de-
lay” or “amplification.” Network motifs can be found using the NetMatchStar Cytoscape app
(Rinnone et al. 2015). Next, larger patterns in networks are called modules (also known as sys-
tems or clusters), corresponding to nodes that are more connected to each other than they are
to nodes outside the module. Modules in protein–protein interaction networks tend to be pro-
tein complexes (Bader and Hogue 2003) and modularity is a key principle of biological systems
(Hartwell et al. 1999). Network modules can be deduced using the ClusterMaker2 Cytoscape
app (Morris et al. 2011).

A second class of network analysis is differential analysis, where two or more networks are
compared or aligned (Ideker and Krogan 2012). This analysis approach is useful in identifying
regions that are conserved over evolutionary time and, thus, may be generally important. It
can also identify regions that are different between conditions, such as regions that are disease
specific, possibly aiding in the understanding of underlying disease mechanisms. The DyNet
Cytoscape app is an example of this kind of network comparison tool (Goenawan et al. 2016).

A third class of network analysis is predictive, where networks are used to classify samples
or predict disease outcome. For instance, classifying cancer samples by their mutation pat-
terns relies on grouping samples having mutations in common. However, many cancer sample
matches do not have any mutations in common, preventing any possible grouping. Cancer
is thought of as a pathway disease, where cancer hallmark pathways need to be activated
(tumor promoting) or deactivated (tumor suppressing); these effects can happen via many
mutational mechanisms, not just repeatedly affecting the same genes (Hanahan and Wein-
berg 2011). Thus, even if two samples have different sets of mutations, the genes affected by
the mutations may interact within the same modules and these relationships can be detected
using gene functional interaction networks. A method called “network smoothing” has been
proposed to “diffuse” information about mutations in each sample over a gene interaction
network, increasing the similarity at the network level between samples. The sample-derived
interaction networks can then be grouped more effectively than by mutations alone (Hofree
et al. 2013).

A fourth class is network inference, where network edges are predicted from existing
data. Two main types of network inference have been proposed: protein sequence and
correlation based. Protein sequence-based methods use machine learning to identify patterns
in protein sequences that are predictive of physical interactions (Schoenrock et al. 2014).
Correlation-based methods identify correlations in a given set of data to define a network.
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Examples include weighted correlation network analysis (WGCNA), which computes
expression profile correlation scores between all gene pairs in a gene expression dataset
(Langfelder and Horvath 2008). Correlation scores are mapped to weighted edges in a
correlation network. The network is filtered to keep the strongest correlations and clustered
to identify modules. Another example is ARACNE (Algorithm for the Reconstruction of
Accurate Cellular Networks), which uses the mutual information measure and specialized
filtering methods (the data processing inequality) to build a correlation network enriched for
direct correlations among known regulators (e.g. transcription factors) and potential targets.
The resulting network is predicted to correspond to gene regulatory relationships (Margolin
et al. 2006). The Cytoscape CyNI toolkit app implements this and related methods (Guitart-Pla
et al. 2015).

A final class is integrative analysis, where multiple layers of data are used to perform one
of the above analysis types. The benefits of data integration are that errors from independent
data sources are often reduced (increasing confidence), because each source is expected to
generate error in different ways, and that coverage of a system can be increased, because each
data source may have information about a different system aspect. Challenges include han-
dling data matching to avoid errors, including matching gene identifiers or data types (e.g.
continuous vs. discrete), and considering dataset bias (e.g. one of the data sources may inter-
fere with the integration because it is biased or error prone). Data integration has been applied
to predict protein interactions from multiple data types (Jain and Bader 2016), network module
identification (Wang et al. 2014), and network modules affected by cancer mutations (Wu and
Stein 2012). The last functionality is available in the ReactomeFIViz Cytoscape app. This app
accepts a list of genes that is then queried against a functional interaction network created by
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Figure 13.19 An overview of a pathway analysis workflow, summarizing multiple tools in this chapter.
The top layer in blue depicts different genomics data types. The next layer in light orange shows data
processing steps required to derive a gene list from the data. The gene list is represented by a red box.
The green boxes describe data analysis and interpretation steps, with pathway enrichment analysis on
the left and network analysis on the right. Both parallel approaches lead to focused analysis of path-
ways, network regions, and genes of interest (bottom green section). Yellow rectangles highlight tools
discussed in this chapter. Arrows connect boxes to show paths through the overall workflow. ChIP, chro-
matin immunoprecipitation; CLIP, cross-linking immunoprecipitation; CNV, copy number variant; exp.,
experiment; GSEA, Gene Set Enrichment Analysis; mass spec., mass spectrometry; miRNA, mitochondrial
RNA; SNP, single nucleotide polymorphism; TF, transcription factor.
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integrating a range of data (including protein interactions); modules are then detected using
a network clustering algorithm. Finally, each module is annotated using pathway enrichment
analysis methods.

Summary

Given the wide range of pathway and network analysis methods available, it is difficult to select
appropriate analysis methods that will work across any or all given data types. In terms of gene
list interpretation, a good workflow involves identifying interesting pathways using pathway
enrichment analysis methods. As pathway analysis focuses on known pathways, it does not
include many genes from a typical genome, and network analysis should also be completed in
parallel, using GeneMANIA and ReactomeFIViz within Cytoscape, to identify interesting net-
work regions. Select interesting pathways and networks and participating genes can then be
zoomed in on while manually considering all available data and literature to generate hypothe-
ses to be experimentally tested (Figure 13.19).

Network and pathway information continues to rapidly grow, though it is typically repre-
sented as static information and is missing information about dynamics (e.g. a calcium wave
or a feedback loop), detail (e.g. atomic protein structures), and context (e.g. cell type and devel-
opmental stage). Much work remains to develop representation and analysis methods that
consider all available data about biological mechanisms in the cell to improve our ability to
identify biological patterns and make testable predictions about biological systems. Many other
topics about molecular interactions and pathways exist beyond what has been covered in this
chapter. A sample of these are mathematical pathway modeling (Bower and Bolouri 2001),
molecular docking of proteins with proteins and proteins with small molecules (Ofran and
Rost 2003), and genetic interactions (Boone et al. 2007).
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Further Reading

Barabasi, A.L. and Oltvai, Z.N. (2004). Network biology: understanding the cell’s functional
organization. Nat. Rev. Genet. 5 (2): 101–113. This review explains the concept of network
analysis to understand the cell’s functional organization.

Ideker, T., Galitski, T., and Hood, L. (2001). A new approach to decoding life: systems biology.
Annu. Rev. Genomics Hum. Genet. 2: 343–372. This review helps define the field of systems
biology. Pathway and network information is required for input to systems biology analysis
methods and is an output of systems biology experimental methods.

Merico, D., Gfeller, D., and Bader, G.D. (2009). How to visually interpret biological data using
networks. Nat. Biotechnol. 27 (10): 921–924. This short primer explains how to visually interpret
networks.

Reimand, J., Isserlin, R., Voisin, V. et al. (2019). Pathway enrichment analysis and visualization of
omics data using g:Profiler, GSEA, Cytoscape and EnrichmentMap. Nat. Protoc. 14 (2): 482–517.
This protocol describes how to perform major types of pathway enrichment analysis.
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Metabolomics
David S. Wishart

Introduction

Most of this textbook describes the computational tools and databases needed to facilitate
research into genomics, transcriptomics, and proteomics. In other words, the molecular
entities of interest are primarily large molecules or mega-polymers such as proteins, RNA,
and DNA. What about the study of small molecules such as amino acids, nucleotides, and
lipids? Over the past decade, an increasing number of bioinformaticians have been turning
their attention toward these small molecules through an emerging field of science called
metabolomics. Metabolomics is a branch of “omics” science that is focused on the com-
prehensive characterization of the small molecule metabolites in the metabolome. The
metabolome is defined as the complete collection of all small molecules (with a molecular
weight <1500 Da) found in a cell, a biofluid, an organ, or an organism (Wishart 2005).
These small molecules include endogenous metabolites such as short peptides, amino acids,
nucleic acids, carbohydrates, lipids, organic acids, vitamins, and minerals. They also include
exogenous chemicals or xenobiotics such as food additives, plant phytochemicals, drugs,
cosmetic chemicals, dyes, detergents, pollutants, or just about any other small molecule
chemical that an organism can consume or to which it can be exposed.

Small molecules are essential to life. They are the bricks and mortar of cells, serving as the
building blocks for all the macromolecules (the proteins, RNA, and DNA) needed for basic
cellular functions. They also provide the fuel for cellular processes, the fences to maintain
cellular integrity, the buffers to help cells tolerate environmental stressors, and the messengers
for many intracellular and intercellular signaling events. As many small molecule metabolites
are “encoded” by specific genes and because they play such a vital role in nearly all cellular
processes, metabolites are sometimes called the “canaries of the genome.” Just as canaries
served as sensitive indicators of toxic gases or other problems in coal mines, small molecule
metabolites can serve as exquisitely sensitive indicators of problems in the genome. Indeed,
a single base change in a gene can lead to a 10 000-fold change in the concentrations of
certain metabolites (Wishart et al. 2007). This remarkable sensitivity is the basis for newborn
screening, in which metabolite tests have been used to detect genetic defects (such as phenylke-
tonuria) for many decades (Levy 2010). Metabolite levels are not only very sensitive to what
goes on in the genome, they are also very sensitive to what goes on in the environment. Indeed,
metabolite levels are heavily influenced by nutrition, activity, exposure to noxious chemicals,
the time of day, or even the outside temperature (Bassini and Cameron 2014; Brown 2016).

As metabolites are the end products of complex interactions happening inside the cell (the
genome) and events happening outside the cell (the environment), metabolomic approaches
permit the comprehensive assessment of interactions between genes and the environment.
Since the end product of an organism’s genotype and its environmental interactions (i.e.
genotype× environment) is defined as its phenotype, metabolomics offers an ideal route
for scientists to measure, in real time, the phenotype or physiological state of an organism
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(Fiehn 2002). This represents an important advantage of metabolomics over genomics. While
the genome can tell you what might happen, the metabolome actually tells you what is
happening.

Continuing advances in both analytical chemistry and computational data analysis tech-
niques are now making metabolomics far more accessible to a much wider range of scientific
disciplines. Indeed, metabolomics is now routinely used in disease screening, in biomedical
research, in drug discovery, in food and nutritional analysis, in veterinary studies, in crop
assessment, in biomaterial production, and in environmental monitoring (Holmes et al. 2008;
Viant 2008; Kim et al. 2016; Wishart 2016). These metabolomic studies have led to some
remarkable discoveries, such as the identification of microbially derived trimethylamine
oxide (TMAO) as being one of the key drivers behind atherosclerosis (Wang et al. 2011a) and
the determination that high serum levels of branched chain amino acids can predict who will
develop type 2 diabetes 10–15 years before the disease actually develops (Wang et al. 2011b).
As a result, metabolomics has experienced tremendous growth, with just two metabolomic
papers published in 1999 to more than 3100 in 2016.

A diagram illustrating the typical workflow for a metabolomic experiment is shown in
Figure 14.1. Initially, a biological sample (such as a tissue, an organ, a plant, cells from
a cell culture, or even an environmental sample) is collected. Then, it is metabolically
quenched using liquid nitrogen or other rapid freezing techniques, after which it is extracted
or homogenized to produce a liquid mixture containing hundreds of metabolites. In most
cases, it is far easier to collect a biofluid, such as blood, urine, tree sap, or a cell growth
medium, as this avoids the tissue powdering/extraction process. Once an appropriate

Biological sample
(tissue, organ, cells,
biofluid, water, soil)

Metabolic quenching
(liquid N2, cold MeOH

or other freezing)

Cold grinding frozen
tissues to powder

(tissues, organs only)

Metabolite detection
(NMR, GC-MS, LC-MS,

FTIR, CoulArray)

Metabolite separation
or filtration

(U/HPLC, solid phase
micro-extraction)

Metabolite extraction
(different solvents,
all sample types)

Metabolite annotation
(metabolite ID, feature

ID, compound
quantification)

Data analysis
(clustering, T-tests,

PCA, PLS-DA, pathway
analysis, biomarkers)

Biological interpretation
(integration with other
omics data, literature

review)

Figure 14.1 A diagram illustrating the typical workflow for a metabolomic experiment. Boxes with
solid lines represent steps required in all metabolomic experiments. Boxes with dashed lines repre-
sent steps that are sample dependent. Samples (e.g. tissues, organs, cells, or biofluids) are initially
collected and then rapidly “quenched” to stop any metabolic reactions. If tissues are used, the sam-
ples must be ground to a fine powder (while frozen). Samples are extracted to obtain the metabolites
and then separated or filtered (not all samples need to be separated/filtered). After this step, sam-
ples can be analyzed via nuclear magnetic resonance (NMR), gas chromatography–mass spectrometry
(GC-MS), liquid chromatography–mass spectrometry (LC-MS) or other analytical chemistry techniques.
The resulting spectra are then processed and the metabolites annotated. The annotated data are fur-
ther analyzed using various statistical and visualization techniques. Finally, the metabolomic data are
integrated with other kinds of information for further biological interpretation. FTIR, Fourier transform
infrared; MeOH, methanol; PCA, principal component analysis; PLS-DA, partial least squares discriminant
analysis; U/HPLC, ultra-high-performance liquid chromatography.
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metabolite extract or biofluid has been obtained, it then needs to be run through one or
more analytical chemistry platforms. These analytical platforms may be mass spectrometry
(MS) instruments equipped with liquid chromatography (LC) or gas chromatography (GC)
systems, or they may be nuclear magnetic resonance (NMR) instruments. Other kinds of
analytical tools may occasionally be used, such as Fourier transform infrared spectrometers
(FTIR) or coulometric (electrochemical) array systems. These kinds of analytical tools
are capable of separating, detecting, and characterizing hundreds (or even thousands) of
chemicals in complex chemical mixtures. In almost all cases, NMR, GC-MS, or LC-MS
instruments produce spectra or chromatograms consisting of many hundreds to thousands
of peaks. The primary bioinformatic challenge in metabolomics, therefore, is having the
appropriate software tools to determine which peaks in these spectra match which chem-
ical compounds (i.e. metabolite annotation in Figure 14.1). The secondary bioinformatic
challenge is having the appropriate software to determine which compounds or spectral
peaks have changed significantly and why (i.e. data analysis and biological interpretation in
Figure 14.1).

This chapter is intended to provide an overview of the bioinformatic tools and databases
needed to perform metabolomic analyses. It is organized into six sections: a short introduction
to metabolomics, a description of the different data formats for metabolomics, a brief review
of the major metabolomic databases, a description of common bioinformatic tools for metabo-
lite identification or annotation, a summary of selected bioinformatic tools for multivariate
data analysis and visualization, and a description of several bioinformatic tools for metabolite
and/or biological interpretation. Readers wishing to learn more about the technologies and
analytical tools used in metabolomics are encouraged to read comprehensive reviews covering
these subjects (Dunn et al. 2005; Wishart 2008; Naz et al. 2014).

Data Formats

Metabolomic data are fundamentally different than genomic or proteomic data. As seen
in Chapter 1, genomic or proteomic data typically consist of gene or protein sequences in
FASTA format (for sequence files) or FASTQ format (for sequence reads). On the other
hand, metabolomic data generally consist of chemical names, chemical identifiers, chemical
structures, and their corresponding MS or NMR spectra. Therefore, most of the data formats
and formatting rules for metabolomic data tend to fall under the jurisdiction of chemistry
(rather than molecular biology) and cheminformatics (rather than bioinformatics). These
chemical data standards are governed by rules and recommendations established by the
International Union of Pure and Applied Chemistry (IUPAC).

In genomics or proteomics, if a new gene or protein is identified, it is often named accord-
ing to its function (e.g. “alcohol dehydrogenase”). Alternately, if no function is immediately
apparent, it is possible to give the gene/protein a completely whimsical name such as “Sonic
Hedgehog” or “Reaper.” On the other hand, if a new chemical is identified, its official name
is formally defined by its structure, using strict IUPAC nomenclature rules. These nomen-
clature rules are sufficiently well designed that almost any chemical can be automatically
named (via computer programs) using only its structure as input. More recently, software has
been developed that supports the reverse process (i.e. name to structure). Several commercial
software packages, as well as a number of open access software tools and web servers such
as Openmolecules.org and the OPSIN web server, can perform these name-to-structure and
structure-to-name operations. While IUPAC naming conventions have been adopted univer-
sally, there is still widespread use of common names, brand names, and synonymous or trivial
names for many compounds, especially in metabolomics. Given the ambiguity of common or
trivial chemical names, many metabolomic researchers have turned to using chemical struc-
tures or standardized chemical identifiers to help eliminate this ambiguity. Some of these are
outlined below.

http://openmolecules.org
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Chemical Representation and Exchange Formats

Metabolomic researchers can use up to four different data format options to represent
chemicals or chemical structures: text string representations, fingerprint representations,
two-dimensional (2D) structure (or connectivity graph) representations, and three-
dimensional (3D) structure representations. Text string representations of chemicals are
the simplest and most widely used in metabolomics, primarily because of their com-
pactness and compatibility with common programming languages. The most frequently
used text string formats are the SMILES format (Simplified Molecular Input Line Entry
System; Weininger 1988), InChI strings (International Chemical Identifier), and InChI
keys (Heller et al. 2015). All three formats are widely used in many metabolomic software
packages and databases, although InChI representations have the advantage of being fully
canonicalized (standardized) and can be fully queried over the web. In essence, all three
formats use programmable rules to convert chemical structures into simple text strings
that describe atom types and bond connectivities. For instance, the amino acid L-alanine
can be represented by the SMILES string “C[C@H](N)C(O)=O,” by the InChI string
“InChI=1S/C3H7NO2/c1-2(4)3(5)6/h2H,4H2,1H3,(H,5,6)/t2-/m0/s1,” and by the InChI key
“InChIKey=QNAYBMKLOCPYGJ-REOHCLBHSA-N.” These text string representations are
the chemistry equivalent to the FASTA sequence format for genes and proteins. However, it is
not generally possible to perform chemical similarity searches via SMILES or InChI identifiers.

Instead, and unlike sequence similarity searches, chemical similarity searches have to be
performed using substructure matching and fingerprint representations. In contrast to text
string representations of chemical structures, fingerprint representations can encode enough
chemical substructure information to permit chemical similarity searching and matching.
These fingerprints serve as binary chemical fragment descriptors and enable more rapid and
precise structure matching (similar to sequence or structure matching in bioinformatics)
than text string matching. An example of a Molecular Design Limited (MDL) or Molecular
ACCess System (MACCS 166) chemical fingerprint for L-alanine is shown in Figure 14.2. In
this particular representation, there are 166 bits (0s and 1s), with each bit indicating whether
a specific structural pattern is present (1) or absent (0) in the molecule. As a result, most
modern chemical databases use fingerprints as the basis for their chemical similarity search
routines. The most common fingerprint formats are MDL keys (Durant et al. 2002), Daylight
fragment-based representations (Daylight Solutions), and fingerprints available through the
Chemistry Development Kit, or CDK (Steinbeck et al. 2006).

While American Standard Code for Information Interchange (ASCII) text strings and
binary fingerprints are ideal for computers, images of structures are more ideal for use by
humans. Indeed, most metabolomic researchers think of chemicals in terms of their 2D
structures. Because of this need to generate and share 2D visual representations of chemical
structures, several data exchange formats for chemical structure representation have been
developed. All of these formats include information about a compound’s constituent atoms,
the bonds or bond types, atomic connectivity, and their molecular coordinates. The most

000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000001000000000000
000100010000000000000000000000000
010000000001000001000000000001101
0

OH

H3C

MDL MACCS 166 fingerprint

O

NH2

Figure 14.2 An example of a Molecular Design Limited (MDL) chemical fingerprint for L-alanine with
the structure of L-alanine drawn beside it. Fingerprints are binary bit strings that are designed to pro-
duce a “bit pattern” characteristic of a given molecule. Fingerprints encode different sets of molecular
descriptors, structural fragments, atomic connectivity pathways within a molecule, or different pharma-
cophores.



Data Formats 441
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Mrv1722704261716482D
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M  END
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0.6740

–0.0405
1.3885
1.3885
2.1030

–0.6740
0.1510
0.5635
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0  0  0  0  0  0  0  0  0  0  0  0

2  1  1  1  0  0  0
2  3  1  0  0  0  0
2  4  1  0  0  0  0
4  5  1  0  0  0  0
4  6  2  0  0  0  0

999 V2000

Figure 14.3 An example of a MOL file for a two-dimensional representation of L-alanine. The first few
rows are identifiers. The x,y,z coordinates are given in the first three columns with the alanine nitrogen
atom having the coordinates 0.6740, −0.6740, 0.0000. The connection table (which of the six atoms are
connected to each other) is given below the coordinate list. For instance, atom 2 (the alpha carbon) is
connected to atom 1 (the nitrogen) by a single bond, which gives a connection list of 2 1 1 (in the first
line of the connection table). Likewise, atom 4 (the carbonyl carbon) is connected to atom 6 (an oxygen
atom) by a double bond, giving a connection list of 4 6 2 in the last line of the connection table.

commonly used 2D structure formats are the Structure Data Format (SDF) and Molfile (MOL)
file formats (Dalby et al. 1992). An example of a 2D MOL file format for L-alanine is shown
in Figure 14.3. The 3D structures of small molecules can also be represented using SDF and
MOL file formats. In many respects, the SDF and MOL formats are the equivalent to the
Protein Data Bank (PDB) format (Westbrook and Fitzgerald 2003) for representing protein,
DNA, and RNA structures. Interestingly, the PDB format is also widely used to represent the
3D structures of small molecules. Furthermore, it is often possible to convert PDB formatted
files into SDF or MOL formatted files using freely available data exchange tools such as Open
Babel (O’Boyle et al. 2011).

Spectral Representation and Exchange Formats

In addition to having well-defined names, text representations and 2D (or 3D) structures, most
small molecules need to be associated with specific “referential” NMR or MS spectra. These
reference spectra provide not only experimental evidence for a compound’s existence but also a
unique and often easily interpreted signature that clearly identifies that compound within the
more complex spectrum of a biosample containing many compounds. The importance of spec-
tral data in the field of metabolomics cannot be underestimated. Indeed, for most metabolomic
experiments, the metabolites of interest must ultimately be identified via spectral matching
using reference spectral libraries. These libraries contain thousands of carefully collected spec-
tra of single, highly purified compounds. However, for spectral matching algorithms to work,
the spectral library data format needs to be compatible with the query spectral format. Fortu-
nately, there are now a number of common data exchange formats for storing, querying, and
sharing NMR and MS spectral data.

Historically, the “official” format for exchanging small molecule NMR and MS spectral data
was called JCAMP-DX, which stands for Joint Committee on Atomic and Molecular Physical
Data eXtension. This data format was developed through the Joint Committee on Atomic and
Molecular Physical Data in the 1980s (McDonald and Wilks 1988). However, JCAMP-DX is
now quite outdated and is being superseded by a variety of more modern eXtensible Markup
Language (XML) formats. These include the Chemical Markup Language or CML, which is
somewhat generic (Kuhn et al. 2007); mzML (Deutsch 2017), which is used for handling mass
spectral data; and nmrML (Schober et al. 2018), which is used for handling NMR spectral
data. An example of a portion of an nmrML data file for L-alanine is shown in Figure 14.4.
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Figure 14.4 An example of an nmrML data file for L-alanine. The actual file is many hundreds of lines long and includes a digital (byte
format) representation of the actual nuclear magnetic resonance (NMR) spectrum of L-alanine. The value of the nmrML format lies in the
header information, which provides rich data about how the NMR spectrum was acquired and processed.

These new(er) spectral data formats allow the capture of much more metadata (meaning data
about the data) and do a much better job of reflecting recent technical developments as well
as the existing needs for MS and NMR spectroscopy. These markup language formats were
also designed to help address the specific needs of metabolomic researchers in that they can
be used to capture more information and annotate pure compound reference spectra, as well
as the spectra obtained from complex biofluid mixtures.

Molecular Editors

As seen in Chapter 12, having the right tools to visualize and edit large molecules such as
protein, DNA, and RNA structures is critical to gaining insights into their function, binding
sites, mechanisms of action, evolution, and overall architecture. The same is true for small
molecules. Because metabolite structures are tiny compared with protein or RNA structures, it
is often possible to draw metabolites by hand using a type of software program called a “molec-
ular editor.” Molecular editors not only allow users to draw structures, they also allow users
to interactively edit, manipulate, and visualize chemical structures. They typically support the
reading and writing of one or more standard file formats (such as MOL or SDF) and/or line
notations (such as SMILES or InChI). All molecular editors display 2D chemical structures,
while some will also support the conversion and display of 3D chemical structures and 3D
data formats (such as PDB or PDBx/mmCIF). Most molecular editors are designed with a
large central drawing canvas and specialized palettes or structure icons that allow users to
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Table 14.1 A list of freely available molecular editors and visualization tools.

Program name Supplier or reference Platform(s) Functions

ACD/ChemSketch ACD/Labs Windows, MacOS
(VM)

2D drawing, editing,
property calculation, logP
prediction, structure naming

Avogadro Hanwell et al. (2012) Windows, MacOS,
Linux, Open Source

3D drawing, editing, 3D
visualization

HTML5
Molecular Editor

MolSoft All, JavaScript 2D drawing, editing

JChemPaint Krause et al. (2000) Windows, MacOS,
Linux, Open Source

2D drawing, editing, reaction
drawing

JME and JSME
Molecule Editor

Ertl (2010), Bienfait
and Ertl (2013)

All, Java applet,
JavaScript

2D drawing, editing

Jmol and JSmol Hanson et al. (2013) All, Java applet,
JavaScript

3D drawing, visualization

KnowItAll
Academic

Bio-Rad Windows 2D drawing, editing, reaction
drawing, spectral analysis,
property calculation

MarvinSketch ChemAxon All, Java applet 2D drawing, editing, reaction
drawing

XDrawChem www.woodsidelabs
.com/chemistry/
xdrawchem.php

Windows, MacOS,
Linux, Open Source

2D drawing, editing,
property prediction, NMR
and IR spectra prediction,
3D structure generation

2D, two dimensional; 3D, three dimensional; IR, infrared; NMR, nuclear magnetic resonance.

select, drag, and drop substructures, atoms, or bonds into the canvas at will. Many also allow
structure files or SMILES text strings to be dragged into the drawing canvas, instantly render-
ing them as structures that can be further viewed, manipulated, or saved. Table 14.1 provides
a partial list of freely available molecular editors and visualization tools. Some are stand-alone
programs while others are available as web-enabled applets. Regardless of what program is
chosen, knowing how to use at least one good quality molecular editor is essential for anyone
working in a metabolomic laboratory.

Spectral Viewers

In the field of metabolomics, chemical spectra are often just as important as chemical
structures. Therefore, having the right tools to display, annotate, and manipulate spectra has
been particularly important for the development of metabolomics. Many top-quality spectral
viewing tools are sold with modern MS or NMR instruments. There are also numerous
independent, third-party commercial suppliers of spectral viewing/manipulation software.
As a result, there are relatively few free, stand-alone programs designed for viewing infrared
(IR), MS, and NMR spectra. Many of the commercial tools use their own vendor-specific
format, but nearly all spectral viewing tools also support a common spectral exchange format
called JCAMP-DX (or *.jdx) format. Two freely available spectral viewing tools that use
JCAMP-DX are the JCAMP-DX Data Viewer and JDXview (see Internet Resources); these are
compatible with the Windows operating systems only. An open source Java version called
JSpecView has also been developed (Lancashire 2007) and is now part of JSmol. JSpecView
(and JSmol) are easy-to-use, platform-independent tools for spectral viewing, annotation,
and manipulation. While JCAMP-DX-compatible viewers still dominate the field, there
has also been a push to develop chemical spectral visualization and editing tools that can
work with more modern data formats such as mzML and nmrML. Two of the more notable
freeware tools include mMass (Niedermeyer 2016), which is a mass spectral processing tool,

http://www.woodsidelabs.com/chemistry/xdrawchem.php
http://www.woodsidelabs.com/chemistry/xdrawchem.php
http://www.woodsidelabs.com/chemistry/xdrawchem.php
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and JSpectraViewer (see Internet Resources), which is an NMR spectral analysis tool. The
mMass suite is a downloadable, platform-independent package that supports the reading
and writing of mzML, mzXML, and mzData formats. It not only allows mass spectral
visualization and annotation, but it also supports spectral smoothing, baseline correction,
peak picking, and spectral deconvolution. JSpectraViewer is a web-enabled JavaScript tool
that allows one-dimensional (1D) NMR spectral visualization and annotation as well as
Fourier transformation, phasing, smoothing, baseline correction, and peak assignment. A
screenshot from JSpectraViewer for L-alanine is shown in Figure 14.5. JSpectraViewer has
been integrated with the Bayesil web server (Ravanbakhsh et al. 2015) to support automated
NMR spectral deconvolution analysis of various biofluids. The availability of web-enabled
structure and spectral viewing tools or applets such as Jmol, MarvinView, and JSpectraViewer
is also having a positive effect on the usability and visualization features offered by a number
of metabolomic databases.

Databases

Databases are the cornerstones of bioinformatics. Without databases such as GenBank,
UniProt, or the PDB, the fields of genomics or proteomics would not exist. Likewise, the
field of metabolomics would not exist without specialized metabolomic databases. Over the
past decade, many high-quality metabolomic or chemical compound databases have been
developed to address the growing data needs of the metabolomic community. These include
the Human Metabolome Database (HMDB; Wishart et al. 2007); PubChem (Wheeler et al.
2006), the Chemical Entities of Biological Interest database (ChEBI; Hastings et al. 2013),
LIPID MAPS (Fahy et al. 2007), METLIN (Tautenhahn et al. 2012), the Kyoto Encyclopedia of
Genes and Genomes (KEGG; Kanehisa et al. 2014), MetaboLights (Haug et al. 2013), and the
Toxic Exposome database (Wishart et al. 2015). These databases can be divided into four broad
categories: chemical compound databases, spectral databases, metabolic pathway databases,
and organism-specific metabolomic databases. Table 14.2 provides a detailed listing of the
main databases in each of these categories and a brief summary of their content. A more
detailed explanation of what these databases are and what they contain is given below.

Chemical Compound Databases

Chemical compound databases are searchable databases of chemical names and structures
that are intended to provide the broadest possible coverage of the known chemical “space.”
As a general rule, chemical compound databases focus more on breadth than on depth. Given
their sheer size, essentially all modern chemical compound databases provide support for
name/text searching, as well as chemical substructure or fingerprint matching for structure
similarity searches. The world’s largest publicly accessible chemical database is PubChem
(Wheeler et al. 2006), which is maintained at the U.S. National Center for Biotechnology
Information (NCBI). PubChem is an archival database, as it contains data deposited by many
different organizations, laboratories, and companies – more than 350 at last count. Currently,
PubChem contains more than 80 million unique compounds. Each entry contains chemical
structure information, names, synonyms and identifiers, physical properties, and vendor or
source information. If available, PubChem entries also include drug and medication infor-
mation, use and manufacturing data, safety data, toxicity information, literature references,
pathway data and biomolecular interactions, and chemical classifications. A set of screen-
shots from the PubChem database is shown in Figure 14.6. PubChem is extensively linked to
PubMed and many compounds in PubChem have descriptions of their biological activity pro-
vided through PubMed abstracts. Given its size, accessibility, and high standards, PubChem
has become particularly popular among metabolomic researchers. However, it is very impor-
tant to remember that less than 0.1% of the chemicals found in PubChem are actually biological



Figure 14.5 The JSpectraViewer image for L-alanine. JSpectraViewer is a Java applet that is also embedded into the Human Metabolome Database. It is displaying the nmrML file
shown in Figure 14.4.
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Table 14.2 A list of open access chemical, spectral, pathway, and metabolomic databases.

Database name Database type Reference Content

PubChem Chemical
compound DB

Wheeler et al. (2006) 91 million compounds, names,
chemical properties, assays, IDs

ChemSpider Chemical
compound DB

Williams (2008) 50+ million compounds,
spectra, names, IDs

LIPID MAPS Chemical
compound DB

Fahy et al. (2007) 40 000+ lipid structures,
nomenclature, classification

ChEBI Chemical
compound DB

Hastings et al. (2013) 52 000 compounds,
nomenclature, ontology

KNApSAcK Chemical
compound DB

Nakamura et al. (2013) 50 000+ compounds, 111 000
species assignments

NMRShiftDB Spectral DB Steinbeck and
Kuhn (2004)

43 000+ compounds with NMR
spectra

BioMagResBank Spectral DB Markley et al. (2008) 900+ compounds with NMR
spectra, 4000 NMR spectra

Human
Metabolome
Database (HMDB)

Spectral DB and
metabolomic DB

Wishart et al. (2007) 42 000 human compounds,
105 000 MS spectra, 3800 NMR
spectra

MassBank of North
America (MoNA)

Spectral DB Kind et al. (2017) 61 000+ compounds,
211 000 MS spectra

METLIN Spectral DB Tautenhahn
et al. (2012)

200 000+ compounds, MS/MS
data on 10 000+ compounds

Golm Metabolome
DB

Spectral DB Kopka et al. (2005) 26 000+ spectra for 2200+
metabolites

CFM-ID Spectral DB Allen et al. (2014) 300 000+ predicted MS spectra
for 100 000+ compounds

Kyoto Encyclopedia
of Genes and
Genomes (KEGG)

Pathway DB Kanehisa et al. (2014) 18 000+ compounds, 512
metabolic pathways, 4600
organisms

Reactome Pathway DB Croft et al. (2011) 2100+ human protein and
metabolite pathways

WikiPathways Pathway DB Kelder et al. (2012) 2400+ protein and metabolite
pathways

Small Molecule
Pathway Database
(SMPDB)

Pathway DB Jewison et al. (2014) 724 human metabolite
pathways

MetaCyc, BioCyc
databases

Pathway DB Karp et al. (2000) 2500+ metabolite pathways for
2800+ organisms

MetaboLights Metabolomic DB Haug et al. (2013) 24 000+ metabolites from
2000+ organisms, 400+ studies

Metabolomics
Workbench

Metabolomic DB Sud et al. (2016) 60 000+ metabolites from 25
organisms, 300+ studies

Yeast Metabolome
Database (YMDB)

Metabolomic DB Jewison et al. (2012) 16 000+ metabolites, 30 000+
MS and NMR spectra

Toxic Exposome
Database (T3DB)

Metabolomic DB Wishart et al. (2015) 3600+ compounds, 11 000+ MS
and NMR spectra

DB, database; MS, mass spectrometry; NMR, nuclear magnetic resonance.

compounds. Even fewer are used in industrial manufacturing or have ever been released into
the environment. This means that searching through PubChem for compound matches in
metabolomic or exposure assessment experiments will lead to a 99.9% false-positive rate.

Of course, PubChem is not the only publicly available chemical compound database.
Other, more specialized, chemical databases exist. These often contain different kinds of
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(a)

(b)

Figure 14.6 A selection of two screenshots from the PubChem web pages for the molecule L-alanine.
(a) The header data seen in most PubChem entries. (b) The biomolecular interaction data collected
for L-alanine. The actual L-alanine entry for PubChem contains many other images, hyperlinks, chemi-
cal/biological descriptors, and references.

data not routinely captured by PubChem. ChemSpider (Williams 2008), for example, is a
well-regarded, open access chemical database containing more than 30 million compounds. It
is particularly known for its carefully curated chemical synonym collection and its extensive
collection of spectral data. However, like PubChem, the vast majority of compounds in
ChemSpider are not biological or are not found in the environment. Other databases of
note include LIPID MAPS (Fahy et al. 2007), a comprehensive database of more than 30 000
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biological lipids; ChEBI (Hastings et al. 2013), a database of 40 000+ biologically interesting
compounds; and KNApSAcK (Nakamura et al. 2013), a database of nearly 30 000 plant phy-
tochemicals. LIPID MAPS, ChEBI, and KNApSAck are examples of smaller, natural product
databases that are generally far more useful to metabolomic researchers than PubChem or
ChemSpider.

Spectral Databases

Spectral databases primarily contain experimental 1D NMR, electron ionization (EI)-MS, or
electrospray ionization (ESI) tandem mass (MS/MS) spectra of pure chemical compounds.
These collections of reference spectra are critical for identifying compounds or confirming
a compound’s identity. This identification process is particularly important in metabolomics.
While there are a number of excellent and very extensive commercial spectral libraries sold
by companies such as Wiley, Aldrich, ACD/Labs, and Bio-Rad, there are also a growing num-
ber of free, open access spectral databases. Many of these resources support sub-spectral peak
searching or global spectral matching as well as standard text querying.

Open access, referential 1H and 13C NMR spectra at various NMR field strengths can be
found in NMRShiftDB and NMRShiftDB2 (Steinbeck and Kuhn 2004), BioMagResBank
(Markley et al. 2008), and HMDB (Wishart et al. 2007). NMRShiftDB2 contains nearly
52 000 1H and 13C spectra for more than 40 000 compounds. Unfortunately, most of these
spectra (>90%) were not collected on biological compounds (i.e. metabolites) and most were
not collected in water (which is the standard solvent for most metabolomic experiments).
These solvent differences can lead to chemical shift and spectral peak differences, making
compound identification via spectral matching somewhat difficult. The BioMagResBank
and HMDB contain several thousand high-field (400–700 MHz) NMR spectra for about 1000
common metabolites. Almost all of these spectra are from well-known metabolites and almost
all have been collected in water. While the number of reference NMR spectra now available
for metabolomics is impressive, this number pales in comparison with the number of EI-MS
or ESI-MS/MS spectra that are now publicly available. Literally, hundreds of thousands of
ESI-MS/MS and EI-MS spectra can be accessed, viewed, and searched via NIST (the MS
database maintained by the U.S. National Institute of Standards and Technology), MassBank
of North America (MoNA; Kind et al. 2017), MzCloud, METLIN (Tautenhahn et al. 2012),
and the Golm Metabolome Database (Kopka et al. 2005). MoNA is a particularly important
resource for metabolomics, as it contains more than 190 000 measured and predicted spectra
from more than 80 000 different metabolites. MoNA also supports user deposition of measured
MS and MS/MS spectra. A set of screenshots corresponding to the MoNA entry for L-alanine
is shown in Figure 14.7.

The challenge with using the spectra from these MS databases is that each compound is often
represented by dozens of different MS spectra collected on different MS instruments under
different ionization conditions or at different collision energies or with different chemical
modifications. So, while the number of experimentally collected MS spectra is large, the actual
number of unique (parent) compounds represented by this diverse collection is probably less
than 30 000. This represents a tiny fraction (perhaps <15%) of known or expected metabolites
that has been estimated to be in excess of 200 000 (Psychogios et al. 2011). Given the striking
shortage of experimentally collected MS/MS or EI-MS spectra and the diminishing likelihood
that existing MS databases will expand by any significant amount in the near term, a number
of investigators have started to use computational tools to predict MS/MS and EI-MS spec-
tra with impressive accuracy (Allen et al. 2015, 2016). Many of these in silico MS spectra are
now available through the Competitive Fragmentation Modeling and Identification (CFM-ID)
database (Allen et al. 2014). Regardless of whether the MS spectra are experimentally collected
or computationally predicted, MS databases are playing an increasingly important role in com-
pound identification and compound confirmation through their integration with MS spectral
processing tools.
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(a)

(b)

Figure 14.7 Two screenshots of the gas chromatography–mass spectrometry (GC-MS) data page for
L-alanine as it appears in the MassBank of North America (MoNA). (a) The typical results page from
a compound query. (b) The expanded GC-MS spectrum for L-alanine.

Metabolic Pathway Databases

Metabolic pathway databases provide a centralized collection of schematic pathways that
depict the current state of the knowledge regarding metabolic (meaning catabolic, anabolic,
or signaling) processes that occur within a cell, tissue, or organism. In this regard, metabolic
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pathway databases play a key role in the biological interpretation and visualization of
metabolomic data. Some of the most popular small molecule pathway databases include
web-based resources such as KEGG (Kanehisa et al. 2014), the Reactome database (Croft
et al. 2011), the “Cyc” databases (Karp et al. 2000), WikiPathways (Kelder et al. 2012), and the
Small Molecule Pathway Database (SMPDB; Jewison et al. 2014). A number of commercial
pathway databases also exist, such as BioCarta, TransPath (from BioBase, Inc.), and Ingenuity
Pathway Analysis (from Ingenuity Systems, Inc.).

Most metabolic pathway databases have been designed to facilitate the exploration of
metabolism and metabolites across many different species. This has played a key role
in improving our understanding of the evolution and conservation of many aspects of
metabolism. Metabolic pathway databases with broad species coverage, such as KEGG and
Reactome, tend to use pathway diagrams that are very generic and highly simplified, while
those that are more organism specific, such as SMPDB, tend to use pathway diagrams that
are much richer in detail, color, and content. Most pathway databases support interactive
image mapping with hyperlinked information content that allows users to view chemical
information (if a compound is clicked) or brief summaries of genes and/or proteins (if a protein
or enzyme is clicked). Almost all pathway databases support some kind of limited text search
and a few, such as Reactome, SMPDB, and the Cyc databases, support the mapping of gene,
protein, and/or metabolite expression data onto pathway diagrams. Most pathway databases
also provide their pathway data in common, machine-readable data exchange formats such
as BioPAX (Demir et al. 2010), Systems Biology Markup Language (Hucka et al. 2003), or
Systems Biology Graphical Notation Markup Language (van Iersel et al. 2012). Others, such
as KEGG, have their own unique dialect or data exchange format (called KGML or KEGG
Markup Language). More information about pathway databases can be found in Chapter 13.

Organism-Specific Metabolomic Databases

Modern metabolomic databases typically combine all the features found in compound,
spectral, and pathway databases into a single resource. In other words, comprehensive
metabolomic databases must be a one-stop shop that supports nearly all aspects of a
metabolomic investigation for a specific organism. Historically, most metabolomic researchers
were so desperate for spectral or compound databases that they did not really care which
organism the data were derived from. However, without proper consideration of which organ-
ism is being studied, many metabolomic findings and tentative compound identifications are
likely incorrect.

There are currently six widely used comprehensive metabolomic databases. Two are archival
resources for metabolomic data deposition and four are curated, referential databases designed
to cover the metabolomes of specific organisms or specific environments. The two archival
databases are the Metabolomics Workbench (Sud et al. 2016), which is maintained at the Uni-
versity of California in San Diego, and MetaboLights (Haug et al. 2013), which is operated by
the European Bioinformatics Institute (EBI). MetaboLights and the Metabolomics Workbench
are the metabolomic equivalent to the GenBank or PDB databases. They both accept raw and
processed metabolomic data and both support metabolomic data analysis. Both resources also
mine the deposited data (and other external resources) to provide referential data, such as
compound structures, compound names, compound concentrations (if available), and spec-
tral information about individual metabolites. This “reference layer” is of considerable inter-
est to metabolomic researchers, as it provides the necessary data to compare and confirm
tentative compound identifications. It also allows researchers to develop predictive tools for
metabolomic research and to conduct large-scale metabolic comparisons.

The other set of curated, referential metabolomic databases includes the Human
Metabolome Database (HMDB; Wishart et al. 2007), the E. coli Metabolome Database
(ECMDB; Guo et al. 2013), the Yeast Metabolome Database (YMDB; Jewison et al. 2012), and
the Toxic Exposome Database (T3DB; Wishart et al. 2015). The HMDB is a comprehensive
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online resource containing referential information about all the known or expected small
molecule metabolites found in humans. Four types of data are contained in the database:
chemical data, spectral data, clinical data, and molecular biology/biochemistry data. A set of
screenshots from the HMDB is shown in Figure 14.8. The latest version of the database con-
tains more than 114 000 compounds, 5700 protein targets, enzymes, or transporters, >18 000
concentration entries, >45 000 pathway diagrams, and >330 000 MS/NMR spectra (both
experimental and predicted). The HMDB also has extensive spectral and mass-matching
tools to facilitate compound identification, as well as tools for text, sequence, and chemical
structure searches. Many of the compounds in the HMDB are endogenous metabolites, but
approximately one-quarter of the entries are actually derived from food products (both raw
and prepared) that humans consume. Another 3% of the compounds in the HMDB are derived
from drugs and drug metabolites.

The ECMDB and YMDB are similar in structure, design, and content to the HMDB. How-
ever, both Escherichia coli and Saccharomyces cerevisiae are somewhat simpler organisms than
humans, with smaller genomes and less complex metabolic processes. As a result, the quan-
tity of information in these databases is significantly smaller. In particular, the ECMDB only
has data on 3700 compounds, while the YMDB has data on less than 12 000 compounds. How-
ever, substantially more is known about microbial metabolism than human metabolism. As a
result, the ECMDB has nearly 1600 illustrated metabolic pathways covering nearly 90% of its
metabolome, as compared with the HMDB, which has 25 000 pathways covering just 20% of
the human metabolome.

In contrast to the other metabolomic databases, the T3DB is an exposome database. The
exposome refers to the collection of chemicals (primarily toxic or xenobiotic) to which an
organism may be exposed over its lifetime (Wild 2005). In this regard, the T3DB contains
comprehensive information on toxic environmental chemicals, such as herbicides, pesticides,
pollutants, and certain endogenous toxins such as uremic toxins (which interfere with
kidney function) or oncometabolites (associated with cancer). Therefore, the T3DB is not
an organism-specific database but, rather, an environment-specific database. Most of the
chemicals of concern in the T3DB can be found in (or affect) humans, other mammals,
reptiles, amphibians, fish, insects, and plants. The T3DB also contains extensive data on the
biological targets, binding constants, mechanisms of toxicity, and toxic concentrations. All of
these organism-specific metabolomic databases have spectral- and mass-matching software to
facilitate compound identification, as well as tools for text, sequence, and chemical structure
searches.

Bioinformatics for Metabolite Identification

The vast majority of metabolomic experiments are conducted as case–control studies, designed
to identify causative or predictive biomarkers of disease. In a metabolomic case–control study,
NMR and/or MS-based data are collected for a number (10–1000) of normal or healthy control
samples and a nearly equal number of “case” (diseased, treated, perturbed) samples. In some
situations, there may be two or more case cohorts. Comparing the two (or more) groups and
looking for important differences that distinguish between the groups is often the main objec-
tive of these kinds of case–control studies. Regardless of how the study is designed, a typical
metabolomic experiment will almost always generate an enormous quantity of MS or NMR
spectral data (often gigabytes in size). The process of analyzing and interpreting metabolomic
data is actually very similar to the process used to analyze or interpret transcriptomic (microar-
ray or RNA-seq) data or proteomic data. All three methods require converting the raw data to
lists of “features,” using multivariate statistics to convert the feature lists into shorter lists of
significant features, and determining how these significant features are involved in various
biological pathways or processes. The later sections of this chapter will describe how these
three analysis steps are conducted. This section will focus on metabolite identification as it
pertains to both targeted and untargeted metabolomics (Box 14.1).
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(a)

(b)

Figure 14.8 Two screenshots from the Human Metabolome Database (HMDB) entry for L-alanine. (a)
The typical metabocard entry for a compound in the HMDB. The actual L-alanine entry contains more
than 120 data fields with chemical, biochemical, and biomedical information about this compound. (b)
The list of experimental gas chromatography (GC) and/or liquid chromatography–mass spectrometry
(LC-MS) spectra associated with L-alanine.
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Box 14.1 Targeted Versus Untargeted Metabolomics

There are two distinct approaches to metabolomics. In one approach (called untargeted
metabolomics), the compounds are not initially identified. Instead, the (un-named or
unidentified) spectral features or spectral peaks are first extracted and statistically
analyzed to identify the most significant features or peaks. It is only after the significant
features/peaks have been identified that an attempt is made to identify the compounds
corresponding to these peaks. In the other approach (called targeted metabolomics),
specific compounds are first identified and quantified by carefully analyzing the peaks
and their positions or patterns. The resulting list of compounds and concentrations is
then analyzed using multivariate statistics to identify the most significant metabolites.
In other words, with targeted metabolomics one identifies metabolites in the first step,
while in untargeted metabolomics one identifies metabolites in the last step – if at all
(Wishart 2011). Typically, untargeted metabolomic approaches are used for metabolite
discovery and hypothesis generation, while targeted metabolomic approaches are used
for biomarker discovery and hypothesis confirmation.

Both approaches have their advantages and disadvantages. Untargeted metabolomics
is highly amenable to automation and generates a non-biased assessment of metabo-
lite data. However, untargeted metabolomics is not very good at providing absolute
metabolite quantification, which limits its reproducibility. Furthermore, many “important”
features found via untargeted metabolomics cannot be easily identified. In fact, <2% of
detected liquid chromatography–mass spectrometry features in untargeted metabolomic
studies are typically identified (da Silva et al. 2015). This limits the conclusions that
can be drawn and the ability to interpret the data in a biologically meaningful way. In
contrast to untargeted metabolomics, targeted metabolomics is focused on compound
identification and absolute compound quantification. This makes targeted metabolomics
far more reproducible across different laboratories. On the other hand, targeted
metabolomics provides a much more limited or more biased view of the metabolome, as
only certain pre-selected metabolites are being measured or identified. A typical targeted
metabolomic study will generate quantitative data on between 50 and 200 compounds.
However, with recent advances in the field, the number of metabolites typically measured
in many targeted studies is increasing. As a result, there is a growing preference for using
targeted metabolomics over untargeted metabolomics (Wishart 2011).

Levels of Metabolite Identification

Not all metabolites can be identified equally – at least not using metabolomic approaches.
According to the Metabolomics Standards Initiative (MSI) (Sumner et al. 2007) there are four
levels of metabolite identification: positively identified compounds (level 1), putatively iden-
tified compounds (level 2), compounds putatively identified to be part of a compound class
(level 3), and unknown compounds (level 4). Positively identified compounds correspond to
those chemicals that have a name, a known structure, a Chemical Abstract Services num-
ber, or an InChI identifier. To fall into this category, a compound must be identified by two
independent and orthogonal parameters (at least for MS) using a purified, authentic standard
collected under identical or near identical data collection conditions. These orthogonal param-
eters include retention time/index+mass spectrum, accurate parent ion mass+MS/MS spec-
trum, or accurate parent ion mass+ isotope abundance pattern. With NMR, an exact match
to the 1H NMR spectrum of the authentic standard (via spectral deconvolution) or a spectral
match to an authentic, spiked-in standard is sufficient to reach the level 1 standard. Putatively
identified compounds (level 2) correspond to those where only one analytical measurement
matches the authentic compound (retention time only or accurate parent ion mass only) or
where the compound has a particularly simple NMR spectrum (one or two peaks) that leaves
some ambiguity about its true identity. Certainly, if the compound is known to exist in the
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biofluid or extract as indicated by numerous literature reports, these putative compound iden-
tifications are much stronger and may be considered “near positive.”

The third level of compound identification is typical of many lipids, where the exact
structure of the compound cannot be completely determined but it is known to be a specific
class of lipid (a phospholipid or triglyceride) or perhaps an ambiguous chemical structure is
known (i.e. PC(38:3) – meaning that it is a phosphatidylcholine with two acyl chains having
a total of 38 carbons and three unsaturated bonds). The fourth level of compound identifi-
cation is the “unknown” category. In metabolomics, there are both “known unknowns” and
“unknown unknowns.” A “known unknown” corresponds to a metabolite that has been
previously described (in the literature or in a database) but that has not yet been positively or
putatively identified in the sample of interest. On the other hand, an “unknown unknown” is a
truly novel metabolite that has never been described or formally identified in the literature or
by anyone else (to the best of one’s knowledge). Often a compound is labeled as an “unknown”
simply because the investigator has not been very thorough in their analyses or because their
software/database being used for compound identification is inadequate, incomplete, or too
small. These unknowns are technically “known unknowns.” When reporting compounds in
metabolomic papers, posters, or presentations it is always a good idea to indicate (in a table)
the exact level (1, 2, 3, or 4) at which each compound has been identified.

NMR-Based Compound Identification

The standard method for performing metabolite identification in NMR is to use spectral
deconvolution. The idea behind spectral deconvolution is to take a complex spectrum and
to simplify it into individual spectra of “pure” chemical components. This is illustrated for
NMR in Figure 14.9. In metabolomics, spectral deconvolution means taking a spectrum
corresponding to a complex chemical mixture (a biofluid such as blood or urine) and reducing
it to the spectra of its individual (pure) chemical components. This process typically requires a
specially constructed spectral database, as well as specially developed spectral fitting software.
The spectral database used in spectral deconvolution should consist of reference spectra of
the pure compound(s) that are known or expected to be in the biological sample of interest.
These reference spectra must be collected under the exact same conditions (i.e. the same pH,
same solvent, same salt, and same temperature) under which the biofluid was analyzed.

As seen in Figure 14.10b (lower image), a typical 1H NMR spectrum of a biological mixture
will consist of hundreds to thousands of sharp peaks. Individual compounds in this mixture

Mixture

Compound A

Compound B

Compound C

Figure 14.9 A simplified illustration of how spectral deconvolution works for nuclear magnetic reso-
nance (NMR)-based metabolomics. The NMR spectra for compounds A, B, and C are components of the
mixture spectrum shown at the top.
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(a)

(b)

Figure 14.10 Two screenshots of the Bayesil web server. (a) A nuclear magnetic resonance spectrum of
human serum. (b) The spectral fit (and corresponding deconvolution) for glucose, which has been found
to have a concentration of 4579.9 μM in this serum sample.
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will consist of an average of 10–15 different peaks or peak clusters (characterized by different
intensities, spin couplings, and line shapes) located at different positions throughout the
NMR spectrum. By properly matching and fitting a library of individual reference spectra
to the observed mixture spectrum, it is possible to simultaneously identify and quantify
most compounds in the mixture (Wishart 2008). One reason why spectral deconvolution
works particularly well for NMR lies in the fact that most metabolites have unique, almost
invariant chemical shift fingerprints made up of multiple compound-specific peaks. The
multiplicity of NMR peaks associated with a single compound helps reduce the problem
of spectral redundancy. In other words, with NMR it is unlikely that any two randomly
selected compounds will have identical numbers of peaks with identical chemical shifts, peak
intensities, spin couplings, or line shapes.

There are several commercial programs that support NMR spectral deconvolution for
metabolite identification, including AMIX (Bruker) and NMR Suite (Chenomx). Both soft-
ware packages have large NMR spectral libraries consisting of hundreds of metabolites. Users
must manually click, drag, and resize the reference spectra to obtain good spectral fits. Newer
versions of these packages now support semi-automatic deconvolution for higher throughput
analysis. More recently, Bruker has introduced the WineScreener and JuiceScreener software
packages, allowing for fully automated deconvolution of NMR spectra of wines, juices, and
even honey. However, this software must be purchased with a specially designed NMR
spectrometer, making this a very expensive investment.

In addition to the commercial packages for NMR spectral deconvolution, there are also
several freeware packages or web servers that have recently become available. These include
Bayesil (Ravanbakhsh et al. 2015) and BATMAN (Hao et al. 2014). BATMAN is a download-
able software package that automatically deconvolutes 1D 1H NMR spectra using Bayesian
statistics. It can both identify and quantify compounds; however, it requires that users must
manually phase, reference, and baseline correct their NMR spectra prior to the fitting process.
This can lead to significant variation in metabolite quantification from one user to the next.
The fitting algorithm used by BATMAN is also quite slow (taking on the order of hours to
complete) and is limited to handling mixtures of just 20–25 compounds (which excludes most
biofluids). On the other hand, Bayesil is very fast (<2 minutes) and can handle mixtures of up
to 60 compounds. Bayesil also automatically performs spectral phasing (adjusting the shape of
the NMR peaks so they appear fully above the baseline), chemical shift referencing (defining
the 0.00 ppm origin) and baseline correction (making the baseline or peak-free regions per-
fectly flat), which ensures greater reproducibility and interlaboratory consistency. The Bayesil
web server supports automated deconvolution of serum, plasma, saliva, cerebrospinal fluid,
and fecal water at multiple NMR spectrometer frequencies (500, 600, 700 MHz). A set of screen-
shots for the Bayesil web front end is shown in Figure 14.10.

GC-MS-Based Compound Identification

The process of spectral deconvolution for GC-MS and LC-MS is illustrated in Figure 14.11. As
can be seen from this image, a typical GC-MS spectrum or total ion chromatogram (TIC) from
a metabolite mixture will consist of dozens of sharp peaks (corresponding to ion counts) cover-
ing an elution time of about 30–45 minutes. Each peak may consist of one or more EI (electron
ionization) mass spectra arising from one or more compounds (Figure 14.11). A variety of
commercial GC-MS deconvolution tools such as the Automated Mass Spectral Deconvolution
and Identification System (AMDIS), Deconvolution and Reporting Software - DRS (Agilent),
ChromaTOF (Leco), and AnalyzerPro (SpectralWorks) can be used to deconvolute GC-MS and
EI-MS spectra. Once the EI-MS spectra are extracted, metabolite identification is performed in
a similar manner to what is done for NMR. Namely, the extracted EI-MS spectra from the mix-
ture are compared, one at a time, with spectral reference libraries containing the EI-MS spectra
of thousands of pure, derivatized, and authenticated compounds. EI-MS spectra usually con-
sist of multiple m/z peaks of varying intensity or abundance. Unlike NMR spectra, which have



Bioinformatics for Metabolite Identification 457

LC/GC-MS total
ion chromatogram

Spectral deconvolution Component MS spectra MS database
Corresponding

compounds

match

match

match

H3C
N

N

O

Cl

CH3

N

N
OH

O

Cl

H
N

N
OH

O

Cl

H
N

N
OH

O

Cl

CH3

NH

NH

O

O

O

Cl

CH3
CH3

H3C

O–

N+

H2N
OH

O

Figure 14.11 An illustration of how spectral deconvolution works for gas chromatography (GC) and/or liquid chromatography–mass spec-
trometry (LC-MS)-based metabolomics. Peaks are extracted from the chromatogram and the MS, electrospray ionization (ESI)–tandem mass
(MS/MS), or electron ionization (EI)-MS spectra are then compared against a library of known compound spectra (in an MS or MS/MS
database) to identify the compounds.

characteristic peak shapes and multiplet (multi-peak) patterns, MS spectra can be regarded as
single lines or thin bars corresponding to a mass and an intensity. Therefore, the similarity of
a query MS spectrum to a reference MS spectrum can be assessed more simply using a term
called a match factor (MF), which is defined as the normalized, mass-weighted product of the
intensities of the query spectrum and the reference spectrum, per the following equation:

MF =
1000 ∗

(∑
wM[IqryIref ]1∕2)2

∑
IqryM ∗

∑
Iref M

Here, Iref corresponds to the intensities of the reference spectra, Iqry corresponds to the inten-
sities of the query spectra, M corresponds to the masses (m/z), and w is a weighting term used
to penalize uncertain peaks (Stein 1999). As a general rule, a tentative match between EI-MS
spectra requires a score of >600 on a scale of 0–1000, with 1000 being a perfect match.

There are three key factors for compound identification by GC-MS: the quality of the
extracted query spectrum, the quality or sophistication of the spectral matching algorithm,
and the quality and comprehensiveness of the reference spectral database. The quality of the
query spectrum is a function of both the instrument (its column, sensitivity, and separation
parameters) and the spectral deconvolution software. Assuming the instrumental conditions
are optimized, a key issue is often how well the deconvolution software performs. Unlike
NMR, where false-positive peaks are extremely rare, GC-MS is frequently plagued with an
abundance of false-positive peaks. In some cases, up to 50% of features seen in GC-MS spectra
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are fragments, adducts, or derivatives of the column matrix, the derivatization reagents, or of
the metabolites themselves. An interesting study (Lu et al. 2008) compared three of the most
common GC-MS deconvolution packages (AMDIS, ChromaTOF, and AnalyzerPro) using a
defined mixture of 35 compounds with widely varying concentrations. These authors found
that both the AMDIS and ChromaTOF packages produced unusually high numbers of false
positives or false/impure spectra, while the AnalyzerPro package generally performed best.

Ultimately, the main factors driving the success (or lack of success) in compound identifica-
tion by GC-MS are the size and quality of the spectral reference database. The most common
and widely used resource is NIST’s mass spectral database. The latest release contains EI-MS
spectra for nearly 200 000 compounds or derivatized compounds, along with retention index
values for another 21 800 compounds. However, most of the NIST compounds are not metabo-
lites or are not from biological materials. This can lead to a number of false-positive identifi-
cations, especially if authentic standards are not used to verify the identity of the compound.
Other databases, albeit somewhat smaller in size, are potentially more suitable for metabolite
identification. These include the Golm Database (Kopka et al. 2005), the Fiehn Metabolome
Database (BinBase), and the HMDB (Wishart et al. 2007). All of these databases provide reten-
tion index data and EI-MS data in a format that is AMDIS compatible. The Golm database
is primarily oriented toward plants, while BinBase and the HMDB are oriented more toward
mammals.

LC-MS-Based Compound Identification

As seen in Figure 14.11, a typical LC-MS spectrum from a metabolite mixture will consist
of many sharp peaks (corresponding to ion counts) covering an elution time of about
10–35 minutes. Each peak may consist of one or more ESI m/z values arising from one or
more compounds. As a result, LC-MS metabolomic studies can easily generate a huge number
of spectral features or putative compounds (>10 000). This is many times more than what is
seen by NMR or GC-MS. Many of these LC-MS features turn out to be noise peaks, column
contaminants, in-source fragments, adducts, and isotopic variants. As a result, LC-MS data
typically require a considerable amount of post-processing and peak consolidation to reduce
the number of peaks to a reliable, countable number (preferably <2000 putative compounds).

LC-MS data are often further complicated by the fact that liquid chromatographic data
are substantially more variable from run to run than NMR or GC-MS data. As a result,
metabolomic data acquired via LC-MS techniques typically require additional de-noising,
alignment, and averaging to ensure that the correct peaks are being picked and compared.
Further data reduction is often done using more sophisticated statistical methods (described
in Multivariate Statistics) to select for only the most significantly altered peak features. This
kind of spectral processing requires sophisticated software that either comes bundled with
the LC-MS instrument or that is designed, written, and distributed by highly specialized
MS laboratories. Examples of some of the instrument-specific tools include Mass Fron-
tier (ThermoFisher), MassHunter (Agilent), XCMS-Plus (Sciex), ProfileAnalysis (Bruker),
Progenesis (Nonlinear Dynamics), and MassLynx (Waters). There are also a number of
platform-independent freeware systems, including XCMS (Smith et al. 2006), MS-DIAL
(Tsugawa et al. 2015), and MZmine (Katajamaa et al. 2006). All of these software packages
support chromatographic and MS spectral alignment, peak finding, calculation of multivariate
statistics (for data reduction), parent ion mass matching, molecular formula calculation, and
MS/MS spectral matching.

As an LC-MS experiment is being conducted, it is possible to take each parent ion (such
as those shown in Figure 14.11) and conduct a further MS fragmentation step to produce
an MS/MS (tandem mass) spectrum for that parent ion. This is usually done using a tandem
mass spectrometer such as a triple quadrupole (QqQ), quadrupole time-of-flight (QTOF), or
an Orbitrap instrument. So, depending on how an LC-MS instrument is configured and how
the LC-MS (or LC-MS/MS) data are collected, one can either attempt to identify metabolites
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using accurate mass measurements of the parent ions (alone) or one can attempt to identify
metabolites by matching MS/MS fragment patterns to appropriate MS/MS spectral libraries.

Metabolite identification via accurate parent ion mass (or, more correctly, the mass-to-charge
ratio m/z) measurement requires the use of very-high-resolution MS instruments such as
QTOFs, Orbitraps, or Fourier transform ion cyclotron resonance (FT-ICR) spectrometers. If a
parent ion mass is measured to four or five decimal places, corresponding to a mass accuracy
of <5 ppm, it is usually possible to determine the ion’s molecular formula and its putative
identity (level 3 identification) through a chemical formula calculator. Several commercial
MS chemical formula calculators exist; these include SigmaFit (Bruker), Formula Predictor
(Shimadzu), and MassHunter (Agilent), as well as a number of freeware packages such
as 7-Golden-Rules (Kind and Fiehn 2007) and SIRIUS (Böcker et al. 2009). By including
restrictions on the types of elements typically found in metabolites (i.e. C, N, O, S, H, and P),
as well as requirements on hydrogen/carbon ratios, isotopic abundances, and several other
expert-driven rules, it is often possible to reduce the number of feasible chemical formulae
even further, often by a factor of 15 or more (Kind and Fiehn 2010). Unfortunately, even with
these improvements, parent ion-based metabolite identification is still very risky, as there
are often many masses or molecular formulae that can still match dozens of metabolites in
existing compound databases.

The preferred route of metabolite identification for most LC-MS metabolomic researchers
is to use both parent ion (or formula) matching and MS/MS spectral matching. The MS/MS
spectrum, with its characteristic fragmentation patterns, provides very useful information
about the molecule and its chemical structure. Successful LC-MS/MS spectral matching is
critically dependent on having instrument-specific or condition-specific MS/MS product ion
fragment libraries. Many of these libraries are bundled with the instrument-specific software
packages mentioned earlier. On the other hand, public MS/MS databases, such as METLIN
(Tautenhahn et al. 2012), MoNA, and the HMDB (Wishart et al. 2007) are normally used by
the freeware packages (XCMS, MS-DIAL, and MZmine) to perform their MS/MS spectral
matching. Even with the best spectral databases and the best spectral processing tools, it is still
quite difficult to confidently identify (MSI level 2) and partially quantify more than 200–300
metabolites via untargeted LC-MS-based metabolomics. Targeted LC-MS-based metabolomics
(which uses multiple reaction monitoring and isotopic dilution analysis) typically allows one
to identify and accurately quantify about 150–250 metabolites.

Multivariate Statistics

Targeted metabolomics can easily generate dozens to hundreds of metabolites for each sample
run, while untargeted metabolomics can easily generate thousands of features or peaks
for each sample run. Regardless of the approach used, metabolomic experiments generate
enormous lists consisting of thousands of variables – not unlike proteomic or transcriptomic
experiments. As a result, metabolomic researchers often turn to the types of computer tools
and computer-based statistics commonly used in proteomics or transcriptomics. As each
biofluid sample typically has hundreds to thousands of variables (i.e. metabolites, metabolite
concentrations, or peak values) associated with it, the statistical techniques that must be used
are called multivariate statistics. In multiple variable or multivariate statistics, the variables
are called “dimensions.” One of the primary objectives of multivariate statistics is to reduce the
number of variables or dimensions so that the problem can be tackled more simply using tradi-
tional univariate statistics such as Student’s t-tests or analysis of variance (ANOVA) techniques
(see Chapter 18). In particular, multivariate statistics uses a class of mathematical techniques
called dimensionality reduction to make multivariate data look more like univariate data.
Dimensionality reduction allows one to identify the key components in a large multivariate
dataset that contain the maximum amount of information or maximize the differences among
groups. As a result, dimensionality reduction reduces a long list of metabolites (or genes or
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proteins) to a shorter list of the most significant metabolites (or genes or proteins). The most
common form of dimensionality reduction is called principal component analysis (PCA).

Principal Component Analysis

PCA is an unsupervised clustering technique. Clustering is the process of grouping a set of
objects in such a way that objects in the same group are more similar to each other than to
those in other groups. Clustering helps distinguish groups, such as cases and controls, from
one another based on their metabolic, genomic, or proteomic parameters. PCA, which is also
known as singular value decomposition or eigenvector analysis, performs clustering based on
correlated features in the data. PCA can be easily conducted using a variety of free or nearly
free software programs such as MATLAB or the R programming language using R’s prcomp
or princomp commands. PCA can also be performed using freely available, downloadable soft-
ware packages such as XCMS (Smith et al. 2006), MS-DIAL (Tsugawa et al. 2015), MAVEN
(Melamud et al. 2010), and Galaxy-M (Davidson et al. 2016), all of which are frequently used for
processing LC-MS data. PCA can be performed using MVAPACK (Worley and Powers 2014) to
process NMR data. Freely available web servers are also available that support PCA and other
common multivariate statistical techniques. These include the Meta-P server (Kastenmüller
et al. 2011), MeltDB (Kessler et al. 2013), and MetaboAnalyst (Xia et al. 2015). These web
servers provide easy-to-use graphical interfaces that allow users to simply point and click to
perform complex multivariate statistical operations or to generate colorful, interactive graphs
or tables. MetaboAnalyst is particularly popular in the metabolomic community, with nearly
one-third of all published metabolomic papers using this freely available web server.

PCA is a statistical method that determines an optimal linear transformation for a collec-
tion of data points such that the properties of that sample are most clearly displayed along a
small number of coordinate (or principal) axes. PCA allows metabolomic researchers to eas-
ily plot, visualize, and cluster multiple lists of metabolites and their concentrations based on
linear combinations of their shared features. A simplified visual explanation of PCA is given
in Figure 14.12. Here we use the analogy of projecting shadows on a wall using a flashlight to
find a “maximally informative projection” for a particular object. In this example, we are trying
to reduce a 3D object into a series of maximally informative 2D projections that would allow
us to reconstruct a proper model of the original object. If the object of interest is a thick ring
or torus, then by shining the flashlight directly on the face of the ring, a characteristic “ring”
shadow would be generated. On the other hand, if the flashlight were directed at the edge of
the ring, the resulting shadow would be a less informative sausage-like shape. This sausage
shadow, if used alone, would likely lead the observer to the wrong conclusion about what the
object was. However, by combining the ring shadow with the sausage shadow (i.e. the two
principal components) it is possible to reconstruct the shape and thickness of the original 3D

Figure 14.12 An illustration of how
principal component analysis can be
thought about using a simplified flash-
light projection analogy.
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ring or torus. While this example shows how a 3D object can have its key components reduced
to two dimensions, the strength of PCA is that it can also do the same with a hyperdimensional
(multidimensional) object.

PCA is most commonly used in metabolomics to determine whether one or more samples
are different from another. It also allows one to identify which variables contribute most to
this difference, and whether those variables contribute in the same way (i.e. are correlated)
or independently (i.e. uncorrelated) from each other. PCA is particularly appealing because it
allows one to visually detect sample clusters or groupings. In particular, the results of a PCA
are usually discussed in terms of scores and loadings. The scores represent the original data in
the new coordinate system and the loadings are the weights applied to the original data during
the projection process. Plotting out the data using two sets of scores (one for the X-axis and
one for the Y -axis) will produce a “scores” plot.

An example of a 3D PCA scores plot generated using MetaboAnalyst is shown in Figure 14.13
(Xia et al. 2015). To understand how this image was generated, we will briefly outline the pro-
cess. To start, go to the MetaboAnalyst home page (see Internet Resources). At the top of the
home page, select Click here to start, then click on the Statistical Analysis button in the upper
left corner of the Module Overview page (Figure 14.14). Then, scroll down the Data Upload
page to locate the Try our test data section on the bottom half of the page. Use the radio button
to select the second concentration dataset (labeled Metabolite concentrations of 39 rumen…),
then click the Submit button at the bottom of the page (Figure 14.15). This action loads the
dataset into MetaboAnalyst. After skipping the data integrity check, navigate to the Data Nor-
malization page. This page allows users to scale and normalize the data so that they are more
amenable to standard statistical analyses. For this particular dataset, select the Normalization
by a pooled sample from the group option for normalization and select group 0 chosen from
the pull-down menu. Leave the Data transformation set to None and the data scaling as Auto
scaling (Figure 14.16). Click the Normalize button at the bottom of the page, then click on the
View Result button. The result of these normalization and scaling procedures is shown as a
pop-up window (Figure 14.17). Notice how the concentration data that were previously very
“skewed” (on the left) are now looking more bell shaped (i.e. Gaussian) in the distribution on
the right. Transforming the data to look like this is important so that standard statistical analy-
ses can be performed. After viewing the result, clear the pop-up window and click the Proceed
button (Figure 14.16). Once these early stage data processing steps are complete, it is possible
to start doing the PCA analysis.

MetaboAnalyst contains 16 statistical methods that support metabolomic data analysis.
These statistical methods are organized into five categories: univariate analysis, multivariate
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Figure 14.14 The MetaboAnalyst Module Overview page. This page allows users to select the analysis modules to process or visualize
their data.

analysis, significant feature identification, cluster analysis, and classification and feature
selection. Multivariate methods include PCA and partial least squares discriminant analysis
(PLS-DA), among others. To perform PCA on the dataset under consideration, click the PCA
hyperlink on the screen that appeared after clicking the Proceed button (located under the
Chemometrics Analysis banner). After a few seconds, the PCA results should be presented
in a multi-panel page. The default panel shows a pairwise scores plot between the first five
PCs. The variance explained by each PC is shown on the corresponding diagonal cell. Click
the 2D Scores Plot tab located at the top of the page to get a more detailed score plot. The
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Figure 14.15 The MetaboAnalyst Data Upload page. This page allows users to upload their own data or select which test dataset they will
use. In this particular example, the second set of data listed in the Try our test data has been selected.

default is PC1-PC2 (Figure 14.18). These two components account for >70% of the variation
in the samples. We can see the main direction of separation among groups 0, 15, 30, and 45.
Groups 0 and 45 are well separated, while group 30 overlaps significantly with both group 15
and group 45. Clicking the 3D Scores Plot tab will generate the image shown in Figure 14.13.
In certain cases, PCA will not succeed in identifying any obvious groupings no matter how
many PCs are used. If this is the case, it is wise to accept the result and assume that the
presumptive classes or groups cannot be distinguished. Generally speaking, if a PCA analysis
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Figure 14.16 The MetaboAnalyst Data Normalization page. The optimal normalization and scaling operations have been selected.

fails to achieve even a modest group separation, then it is probably not worthwhile using
other statistical techniques to try to separate them.

PCA is also a very helpful technique for quantifying the amount of useful information con-
tained in the data. This is typically done by plotting the weightings of the individual compo-
nents in a PCA “loadings” plot. To generate a loadings plot via MetaboAnalyst, one can use
exactly the same process outlined above but instead of clicking on the 2D Scores Plot (which
generated Figure 14.18), one should click on the Loadings Plot tab, which shows the loadings
for PC1 and PC2 (Figure 14.19). Note that the direction of separation in the original scores plot
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Figure 14.17 The MetaboAnalyst Data Normalization and Scaling results, generated after pressing the View Result button at the bottom
of the Data Normalization page shown in Figure 14.16. The pop-up window can be cleared (by clicking on the X in the top corner) and
alternative normalization or scaling functions can be applied. Try to see if you can find a combination of scaling/normalization functions
that performs better than the one suggested in the text.
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Figure 14.18 A two-dimensional principal component analysis (PCA) “scores” plot showing the separation achieved from analyzing the
ruminal fluid from four different groups of cows fed four different diets. The percent contribution (to an explanation of the variance) of
each principal component (PC) is labeled on each of the two axes. See text for details.

was from the lower left to the upper right (diagonally). By looking at the compounds in the
loadings plot located in the upper right and lower left, the most influential compounds that
drive the separation can be identified. This can be done by clicking on individual points in
this graph, which produces a box plot in the upper right of the plot. In this example, aspartate,
isobutyrate, and 3-phenylpyruvate located on the top right, and endotoxin, glucose, and methy-
lamine located on the bottom left are the key metabolites driving this separation. Note that this
kind of loadings plot, where specific metabolite identities are displayed, is only possible if the
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Figure 14.19 The principal component analysis (PCA) “loadings” plot, showing the most informative or statistically significant metabolites
that drive the separation seen in the “scores” plot in Figure 14.18. See text for details.

compounds have been identified and quantified using targeted metabolomic methods. If the
compounds are not identified prior to analysis (as in untargeted metabolomics), then the load-
ings plot can be used to narrow down the list of features or peaks to just a few important ones
that need to be identified.

Partial Least Squares Discriminant Analysis

PCA is one of many multivariate statistical approaches that can be used to identify important
metabolites or spectral features. Another type of multivariate statistical method that can be
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used for this purpose is known as supervised classification. Supervised classifiers require that
information about the class identities must be provided in advance of running the analysis. In
other words, prior knowledge about which samples belong to the “cases” and which samples
belong to the “controls” is used to label each of the samples. Examples of supervised classi-
fiers include Soft Independent Modeling of Class Analogy (SIMCA), PLS-DA, and Orthogonal
Projection of Latent Structures – Discriminant Analysis (OPLS-DA). All of these techniques
can be used to help convert extensive NMR, LC-MS/MS, and GC-MS metabolite lists (for tar-
geted metabolomics) or their corresponding spectral features (for untargeted metabolomics)
into much shorter lists of highly significant metabolites and/or features.

PLS-DA is often used when PCA techniques do not generate the clusters that were expected.
In particular, PLS-DA can be used to enhance the separation between data points in a PCA
scores plot by essentially rotating the PCA components such that a maximum separation
among classes is obtained. This separation enhancement allows one to better understand
which variables are most responsible for separating the observed (or apparent) classes. The
basic principles behind PLS-DA are similar to those of PCA. However, in PLS-DA a second
piece of information is used – the labeled set of class identities. This extra information is used
to optimize the PCs and train the clustering process.

Formally, PLS-DA is a categorical extension of PCA that takes advantage of a priori class
information to attempt to maximize the covariance between the test variables and the training
variable(s). Continuing with the MetaboAnalyst example described earlier, it is possible to
easily generate a PLS-DA plot after generating and analyzing the PCA plots. To do so, go
back to the MetaboAnalyst analysis page and click the PLSDA hyperlink on the page. Note
that there are several PLS-DA options (regular PLS-DA, sparse PLS-DA, and orthogonal
PLS-DA), so make sure to choose the regular version. Wait for 5–10 seconds in order for
MetaboAnalyst to finish its default analysis. The results are then presented in a multi-panel
page, with the pairwise score plots of the first five components shown as a default. Click the
2D Scores Plot tab at the top of the page to view the scores plot between the first two PLS
components (Figure 14.20). A much better separation is obtained with PLS-DA than with PCA
(Figure 14.18). From here, it is possible to perform addition assessments of the quality of the
PLS-DA separation using permutation testing or by plotting the R2/Q2 data that are discussed
below. Care must be taken in using PLS-DA methods because these classification techniques
can be over-trained. That is, PLS-DA can create convincing clusters or classes that are not
generalizable outside of the data they are trained on (i.e. they over-fit the data). The best way
of avoiding these problems is to test the resulting model on an independent dataset. However,
such independent data are not always available, so a practical way to address the over-fitting
problem is to use N-fold cross-validation methods or permutation (random relabeling)
approaches to estimate how generalizable the data clusters derived by PLS-DA are. A number
of freely available metabolomic software packages and web servers such as MetaboAnalyst and
Galaxy-M are able to perform these tests. Another way of quantitatively assessing a PLS-DA
model is to report R2 and/or Q2 values. Metabolomic web servers and software packages such
as MetaboAnalyst or SIMCA typically report both R2 and Q2. An example of an R2/Q2 plot
generated by MetaboAnalyst is shown in Figure 14.21. R2 is the correlation index and refers
to the goodness of fit or the explained variation. On the other hand, Q2 refers to the predicted
variation or quality of prediction. R2 is a quantitative measure (with a maximum value of 1 and
a minimum value of 0) that indicates how well the PLS-DA model is able to mathematically
reproduce the data in the dataset. A poorly fit model will have an R2 of 0.2 or 0.3, while a nicely
fit model will have an R2 of 0.7 or 0.8. To guard against over-fitting, Q2 is commonly deter-
mined (which also has a maximum value of 1 and a minimum of 0). Q2 is usually estimated
by cross-validation or permutation testing to assess the predictive ability of the model relative
to the number of components used in the PLS-DA model. In practice, Q2 typically tracks
very closely to R2. However, if the PLS-DA model becomes over-fit, Q2 reaches a maximum
value and then begins to fall. Generally, a Q2

> 0.5 is considered good while a Q2 of 0.9 is
outstanding.
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Figure 14.20 The partial least squares discriminant analysis (PLS-DA) plot showing the separation achieved from analyzing the ruminal
fluid from four different groups of cows fed four different diets. See text for details.

From a PLS-DA analysis, it is possible to use the resulting data to generate another kind
of plot called the variable importance in projection (VIP) graph. An example of a VIP graph
is shown in Figure 14.22. The data used to create this VIP graph are the same as those used
in the PCA and PLS-DA examples given at the beginning of this section. The significance of
each metabolite is plotted numerically along the X-axis (the VIP score or regression coeffi-
cient), while the metabolite name and its ranking (in importance) is shown on the Y -axis.
Generally, a VIP score greater than 1.0 is significant, while a VIP score greater than 2.0 is
very significant. From this graph, we can see that the same significant metabolites identified
via the PCA loadings plot are again identified via the VIP plot, with aspartate, isobutyrate,
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Figure 14.21 An example of an R2/Q2 plot generated by MetaboAnalyst using the same data for the bovine feeding experiments described
in the MetaboAnalyst example in the text.

3-phenylpyruvate, endotoxin, glucose, and methylamine being at the top of the VIP plot and,
therefore, being the most important.

There are a wide variety of other classification methods and metabolite/feature selection pro-
cedures that use statistical procedures (such as OPLS-DA) or machine learning protocols (such
as support vector machines, random forest techniques, and artificial neural networks) to help
identify significant metabolites/features from starting lists of metabolites or spectral features.
These same techniques can be used in conjunction with logistic or linear regression techniques
to identify important metabolite biomarkers. Many of these kinds of advanced analyses are eas-
ily accessible through tools such as MetaboAnalyst. A more detailed review of MetaboAnalyst
and how it can be used to assist with metabolomic data analysis, biomarker detection, and data
reduction is available in Xia and Wishart (2016).

Bioinformatics for Metabolite Interpretation

Identifying significant metabolites allows one to eliminate the noise of inconsequential or irrel-
evant metabolites in a metabolomic study. Once a relatively small set of significant metabolites
has been identified, it becomes easier to interpret the metabolomic data. Metabolite interpreta-
tion often involves determining whether the identified metabolites belong to a single pathway



Bioinformatics for Metabolite Interpretation 471

3-PP

High

0 15 30 45

Low

Endotoxin

Glucose

Alanine

Methylamine

Isobutyrate

Uracil

Aspartate

Acetate

Valine

Isovalerate

Glycerol

NDMA

Histidine

Xanthine

Figure 14.22 A variable importance in projection plot showing which metabolites are most important
in driving the separation for the data for the bovine feeding experiments described in the MetaboAnalyst
example in the text. This plot was generated using MetaboAnalyst.

or a smaller set of related pathways. In many cases, this requires searching or reading carefully
through various online metabolomic databases such as the HMDB, YMDB, or others. It may
also involve conducting literature reviews to see what is known about each of these metabolites
and how they may act to cause the observed phenotypes.

Nearly all of the major pathway databases – including the KEGG, Reactome, Cyc databases,
WikiPathways, and SMPDB – permit users to load metabolite data and to generate plots
highlighting the location of key metabolites in a given pathway. The type of organism being
studied and the type of pathway that needs to be illustrated often dictate the appropri-
ate choice of database. Most metabolite/metabolism databases (such as KEGG, the Cyc
databases, WikiPathways, and Reactome) only contain anabolic or catabolic pathways
associated with endogenous metabolite synthesis or breakdown. Almost no information
is provided on metabolite signaling pathways (such as the signaling effects of arachidonic
acid), disease metabolic pathways (such as the Warburg effect), metabolic diseases (such as
phenylketonuria), or drug action pathways (showing how aspirin works). As a result, many
metabolomic pathway analyses are limited to interpreting complex metabolite data in only
the simplest of terms (i.e. catabolic or anabolic reactions). An important exception to this is
the SMPDB. This resource contains more than 700 metabolite pathways including hundreds
of anabolic/catabolic pathways, dozens of signaling pathways, as well as hundreds of disease
and drug pathways. Currently, the SMPDB is the only open access database that covers
such a broad diversity of pathways – especially for small molecules. However, the SMPDB
only contains pathways associated with humans (and other higher mammals), so it is not
particularly useful for researchers doing metabolomic studies in plants, microbes, parasites,
fish, or insects.

While the grouping of metabolites into known metabolic pathways can provide some
important insight into their biological roles, it is also important to consider their context
within specific pathways. In this regard, a new kind of software tool called MetPA (Xia
and Wishart 2010a) has been developed to further facilitate pathway analysis. MetPA is a
freely accessible web server that combines several pathway enrichment analysis procedures
with the analysis of pathway topological characteristics to help identify the most relevant
metabolic pathways involved in a given metabolomic study. Like a number of metabolomic
web server applications, MetPA uses simple point-and-click operations to allow users to
perform complex statistical analyses. MetPA supports three types of analyses: pathway enrich-
ment analysis, pathway topological analysis, and pathway impact analysis. (See Chapter 13
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for more information about pathway enrichment analysis.) Pathway enrichment analysis
can be done using either over-representation analysis or via metabolite set enrichment
analysis (MSEA) using Fisher’s exact test, the hypergeometric test, and GlobalAncova (Xia
and Wishart 2010a). Pathway topological analysis is based on the centrality measures of a
metabolite in a given metabolic network. Centrality is a quantitative measure of the position
of a metabolite relative to the other metabolites in a pathway and can be used to estimate a
metabolite’s relative importance or role in a pathway or network diagram. Since metabolic
networks or pathways are directed graphs, MetPA uses relative “betweenness” centrality and
“out-degree” centrality measures to calculate the relative importance of a metabolite. This
means that metabolites located on the periphery of a pathway or those that are involved in
side reactions have little consequence and are not particularly “central.” On the other hand,
metabolites that are in pathway bottlenecks or those that serve as hubs or precursors for
many reactions are often more central. By calculating the topological importance of different
metabolites in a given pathway, as well as the enrichment of certain metabolites in a pathway,
it is possible to calculate a pathway impact score. Formally, the pathway impact score is the
sum of the importance measures of the matched metabolites normalized by the sum of the
importance measures of all metabolites in each pathway. By plotting the pathway impact
score versus the number of significant metabolites appearing in that pathway (as a –log(P)
value using metabolite set enrichment criteria), it is possible to generate the plot shown in
Figure 14.23.

This plot illustrates the most important pathways detected from a set of approximately 30
significantly altered metabolites in a given metabolomic experiment. The pathway impact
score is plotted on the X-axis and the significance of the pathway (as measured by its level
of enrichment by the highly significant metabolites) is plotted on the Y -axis. The size of the
circles represents the number of metabolites in the particular pathway and the color of the

Overview of Pathway Analysis

Pathway Impact

0.0 0.1 0.2 0.3 0.4 0.5

8
6

–l
og

 (
p)

4
2

Figure 14.23 A pathway impact plot showing the importance of different pathways where significant metabolites were found from the
bovine feeding experiments described in the MetaboAnalyst example in the text. This plot was generated using the pathway analysis
module in MetaboAnalyst.
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circle indicates its overall significance, with red being most significant and pale yellow or
white being least significant. By clicking on the circles, it is possible to see a zoomable view
of the pathway that shows the pathway name, the pathway components, and their topological
relationships. Each detected metabolite is also clickable, allowing for a box-and-whisker plot
that illustrates the metabolite concentrations and range between the case and control samples
to be generated. MetPA has recently been integrated into MetaboAnalyst and it now has a
database of nearly 900 different pathways collected from 21 different model organisms. Several
other pathway mapping or metabolite networking approaches have emerged recently. These
include MetaMapp (Barupal et al. 2012) and MetaMapR (Grapov et al. 2015). MetaMapp
combines biochemical reactions from KEGG with chemical similarity and mass spectral
similarity scores. This approach allows one to construct extended metabolite networks that
map both identified and unidentified metabolites to potential pathways and network clusters.
MetaMapR takes this concept one step further, as it allows users to calculate both structural
and mass spectral similarity directly within the program, while at the same time supporting
interactive network visualization.

In addition to pathway and/or network analysis, there are a number of other approaches
that can be used to interpret, visualize, or explore metabolomic data. One particularly useful
approach involves using MSEA (Xia and Wishart 2010b). MSEA is a form of functional enrich-
ment analysis similar to gene set enrichment analysis (GSEA). For metabolite set enrichment
to be effective it is necessary for the software to have either a comprehensive database of
metabolic pathways, a database of healthy/diseased metabolite levels, or a database of associ-
ations between metabolites and single nucleotide polymorphisms (SNPs) or metabolites and
gene expression levels. Ideally, a good MSEA system should have all of these databases and
support all of these functional analyses. Another approach to interpreting metabolomic data
is to combine them with gene expression or protein expression data (Xia et al. 2013). There are
a number of emerging approaches that support this kind of integration including MetScape
(Karnovsky et al. 2012). MetScape is a plug-in for a widely used open source network analysis
and visualization tool called Cytoscape (see Chapter 13). MetScape supports the interactive,
network-based exploration and visualization of both metabolite and gene expression data by
integrating both the KEGG and Edinburgh Human Metabolic Network databases. MetScape
allows users to identify enriched pathways from gene or metabolite expression profiling data,
build and analyze gene or metabolite networks, and interactively visualize changes in gene or
metabolite data. Another integrated “omics” approach that offers similar capabilities is called
Integrated Metabolomic and Expression Analysis (INMEX; Xia et al. 2013). This web-based
tool is now available through MetaboAnalyst. Like MetScape, INMEX makes use of the KEGG
pathway database, as well as a number of pathways from the SMPDB.

Another bioinformatic technique that can also be used to interpret metabolomic data
involves metabolic simulations and metabolic flux balance analysis (Lewis et al. 2012). These
techniques typically require a detailed reconstruction of the entire organism’s metabolic
pathways that consider mass and charge balance, metabolite compartmentalization, and
known or estimated metabolite concentrations. They also require detailed knowledge of
the genes, proteins, and cofactors required for all of the enzymatic and metabolic transport
reactions. Metabolic reconstructions and metabolic simulations have been described for
a number of organisms including E. coli, yeast, Caenorhabditis elegans, Arabidopsis, and
even humans (Ruppin et al. 2010; Lewis et al. 2012; Swainston et al. 2016). These metabolic
reconstructions have been used to predict the consequences of mutations in metabolic
pathways, to rationalize the appearance of certain metabolites in certain physiological or
disease-associated conditions, and to help predict the presence of previously undetected or
unexpected compounds. These remarkable simulations represent the pinnacle of what can be
achieved through combining high-level bioinformatics with high-level metabolomics. They
also serve as superb examples of how metabolomics can serve as a foundational tool to allow
bioinformaticians to conduct advanced research into systems biology.
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Summary

The field of metabolomics involves a unique blend of basic biology and analytical chemistry,
along with a generous helping of bioinformatics, cheminformatics, and statistics. The fact
that metabolomic approaches have led to a number of important biomedical discoveries
(Wang et al. 2011a, b) and are opening the door to many more (Wishart 2016) has made
these approaches increasingly popular among life science researchers. Indeed, the field of
metabolomics has grown considerably in size, scope, and sophistication over the past decade.
As a result, a detailed description of the many bioinformatic/cheminformatic tools, resources,
and techniques that have been developed for metabolomics could easily fill several books.
This chapter is only intended to serve as an easily accessible gateway so that individuals who
are interested in pursuing metabolomics and using bioinformatic or cheminformatic tools for
metabolomics can better appreciate what is available, what is possible, and what still needs to
be done.

Internet Resources

ACD/ChemSketch www.acdlabs.com/resources/freeware/chemsketch
Avogadro avogadro.cc
BATMAN batman.r-forge.r-project.org
Bayesil bayesil.ca
BioMagResBank www.bmrb.wisc.edu/metabolomics/
CFM-ID cfmid.wishartlab.com
Chemical Entities of Biological Interest
(ChEBI)

www.ebi.ac.uk/chebi

ChemSpider www.chemspider.com
E. coli Metabolome Database (ECMDB) ecmdb.ca
Galaxy-M github.com/Viant-Metabolomics/Galaxy-M
GolmDB gmd.mpimp-golm.mpg.de
Human Metabolome Database (HMDB) www.hmdb.ca
HTML5 Molecular Editor www.molsoft.com/moledit.html
JChemPaint jchempaint.github.io
JDXview merian.pch.univie.ac.at/~nhaider/cheminf/jdxview.html
JSME peter-ertl.com/jsme
JSmol sourceforge.net/projects/jsmol
JSpectraViewer github.com/sciguy/jspectra_viewer
JSpecView sourceforge.net/projects/jspecview
Kyoto Encyclopedia of Genes and
Genomes (KEGG)

www.genome.jp/kegg

KNApSAcK kanaya.naist.jp/KNApSAcK/KNApSAcK.php
KnowItAll Academic www.bio-rad.com
LIPID MAPS www.lipidmaps.org
MarvinSketch www.chemaxon.com/products/marvin/marvinsketch
MeltDB 2 meltdb.cebitec.uni-bielefeld.de/cgi-bin/login.cgi
Metabolomics Workbench www.metabolomicsworkbench.org
MetaboAnalyst www.metaboanalyst.ca
MetaboLights www.ebi.ac.uk/metabolights
MetaCyc metacyc.org
Meta-P metap.helmholtz-muenchen.de/metap2
METLIN metlin.scripps.edu/landing_page.php?pgcontent=mainPage

http://www.acdlabs.com/resources/freeware/chemsketch
https://avogadro.cc
http://batman.r-forge.r-project.org
http://bayesil.ca
http://www.bmrb.wisc.edu/metabolomics/
http://cfmid.wishartlab.com
https://www.ebi.ac.uk/chebi/
http://www.chemspider.com
http://ecmdb.ca
https://github.com/Viant-Metabolomics/Galaxy-M
http://gmd.mpimp-golm.mpg.de
http://www.hmdb.ca
https://www.molsoft.com/moledit.html
https://jchempaint.github.io
http://merian.pch.univie.ac.at/~nhaider/cheminf/jdxview.html
http://peter-ertl.com/jsme/
https://sourceforge.net/projects/jsmol/
http://github.com/sciguy/jspectra_viewer
https://sourceforge.net/projects/jspecview/
http://www.genome.jp/kegg/
http://kanaya.naist.jp/KNApSAcK/KNApSAcK.php
http://www.bio-rad.com
http://www.lipidmaps.org
https://www.chemaxon.com/products/marvin/marvinsketch/
https://meltdb.cebitec.uni-bielefeld.de/cgi-bin/login.cgi
http://www.metabolomicsworkbench.org
http://www.metaboanalyst.ca
http://www.ebi.ac.uk/metabolights
https://metacyc.org
http://metap.helmholtz-muenchen.de/metap2/
http://metlin.scripps.edu/landing_page.php?pgcontent=mainPage
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MassBank of North America (MoNA) mona.fiehnlab.ucdavis.edu
MS-DIAL prime.psc.riken.jp/Metabolomics_Software/MS-DIAL
MZmine 2 mzmine.github.io
NMRShiftDB nmrshiftdb.nmr.uni-koeln.de
OPSIN opsin.ch.cam.ac.uk
PubChem pubchem.ncbi.nlm.nih.gov
R Programming Language www.r-project.org
Reactome www.reactome.org
Small Molecule Pathway Database
(SMPDB)

smpdb.ca

Toxic Exposome Database (T3DB) www.t3db.ca
WikiPathways www.wikipathways.org/index.php/WikiPathways
XCMS xcmsonline.scripps.edu
XDrawChem www.woodsidelabs.com/chemistry/xdrawchem.php
Yeast Metabolome Database (YMDB) www.ymdb.ca

Further Reading

Dunn, W.B., Bailey, N.J., and Johnson, H.E. (2005). Measuring the metabolome: current analytical
technologies. Analyst 130: 606–625. A nice review of the different technologies used in
metabolomics. While the paper is a little old, the explanations are insightful and easy to
understand. Papers like this never go stale.

Kind, T. and Fiehn, O. (2010). Advances in structure elucidation of small molecules using mass
spectrometry. Bioanal. Rev. 2: 23–60. A very comprehensive review of how mass spectrometry
can and should be used to characterize metabolites. Many topics are covered in exquisite detail.
The authors are highly respected mass spectroscopists and pioneered many of the techniques
and ideas used in modern metabolomics.

Wishart, D.S. (2016). Emerging applications of metabolomics in drug discovery and precision
medicine. Nat. Rev. Drug Discov. 15: 473–484. An introduction to how metabolomics can be (and
is being) used in medical applications. This highlights some of the more important and
interesting biomedical discoveries to emerge from metabolomics over the past 10 years. It also
looks ahead to where metabolomics will likely be going.

Xia, J. and Wishart, D.S. (2016). Using MetaboAnalyst 3.0 for comprehensive metabolomics data
analysis. Curr. Protoc. Bioinf. 55: 14.10.1–14.10.93. A very detailed, step-by-step description
(with plenty of screenshots) describing all the tools, tips and tricks in MetaboAnalyst. This is a
must-read for anyone wishing to work in the field of metabolomics and with MetaboAnalyst.
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Population Genetics
Lynn B. Jorde and W. Scott Watkins

Introduction

Population genetics can be defined as the study of genetic variation within and between
populations. Population genetics has been applied to help understand the evolution of plants,
insects, fish, wildlife, livestock, and humans. The methods described in this chapter can
be applied to any of these organisms, but the data and examples discussed here will focus
on human populations. In the past several years, whole genome sequencing has allowed inves-
tigators an unparalleled view of all variation in the human genome and has greatly enhanced
our ability to study and understand human genetic variation (Auton et al. 2015; Mallick et al.
2016). It is now possible to reconstruct detailed accounts of human demographic history and to
understand many of the ways in which humans have adapted to ever-changing environments.

Evolutionary Processes and Genetic Variation

To measure and analyze genetic variation, it is important to understand the evolutionary pro-
cesses that give rise to it. Four fundamental processes will be discussed: mutation, natural
selection, gene flow, and genetic drift.

Mutation is the ultimate source of all genetic variation and, within species, occurs with
almost clocklike regularity through time. Thus, an accurate estimate of the rate of mutation in
a species can be used to estimate the dates of major events in the species history. In humans,
mutation rates have been approximated by comparing differences in human DNA sequences
with those of chimpanzees, our closest non-human relatives. This mutation rate, which is
really a substitution rate, measures the rate at which new variants survive and accumulate in
a lineage. Then, assuming a human–chimp divergence date of roughly 6 million years ago,
a mutation (substitution) rate of roughly 2.5× 10−8 per nucleotide per generation has been
estimated and widely used (Nachman and Crowell 2000). More recently, human mutation
rates have been estimated directly by comparing whole genome sequences in parents and
offspring in families (Roach et al. 2010; Conrad et al. 2011; Moorjani et al. 2016). Somewhat
surprisingly, these estimates, which average about 1.2× 10−8 per nucleotide per generation,
are roughly half of the substitution rate estimate obtained by human–chimp comparisons.
This difference may reflect uncertainties about the human–chimp divergence time and the
size of the ancestral human–chimp population (Campbell and Eichler 2013). In addition,
direct estimates of mutation rates are influenced by factors such as parental age and the
effects of somatic mutations in sampled tissue (typically blood) (Shendure and Akey 2015;
Moorjani et al. 2016). Thus, some uncertainty remains regarding the most appropriate rate
for evolutionary applications (Segurel et al. 2014).

Natural selection is the process through which the population frequencies of deleterious
genetic variants are reduced and the frequencies of favorable variants are increased. Impor-
tantly, some variants may be advantageous in certain environments (e.g. sickle cell disease in
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malarial environments) but harmful in others. For most human disease-causing genes, muta-
tion introduces deleterious variants, while natural selection tends to eliminate them – a process
known as mutation–selection balance. With the availability of genome-scale data such as sin-
gle nucleotide variants (SNVs) ascertained through microarrays or whole genome sequencing,
the process of natural selection can be analyzed systematically in human populations (Fu and
Akey 2013). As discussed below, there is an increasing number of examples of recent natural
selection in human populations.

Gene flow is the process in which genetic variation is exchanged among populations.
Humans are a highly mobile species, so genetic variation often tends to change gradually
across geographic space (Rosenberg et al. 2005). In general, gene flow acts as a homogenizing
influence on genetic variation between populations. As with natural selection, large-scale
genomic data now enable sensitive and fine-grained analysis of gene flow patterns in
populations (Hellenthal et al. 2014).

Genetic drift refers to changes in genetic variation that occur through time because of finite
population size. In small populations, the frequencies of genetic variants can change rapidly
because only a small number of variants are being transmitted to the next generation. (To imag-
ine this, consider a coin-tossing experiment in which only 10 coins are tossed: the frequencies
of “heads” and “tails” can vary dramatically from the expected 50%; if thousands of coins are
tossed, these frequencies will remain very close to the expected 50%). Genetic drift can produce
high frequencies of specific diseases in populations that are (or recently were) very small. For
instance, the incidence of certain rare diseases such as Ellis–van Creveld disease are highly
elevated in the Old Order Amish (Strauss and Puffenberger 2009), while Tay–Sachs disease,
Gaucher disease, and Niemann–Pick disease are elevated in the Ashkenazi Jewish population
(Ostrer and Skorecki 2013). In general, whereas gene flow tends to homogenize populations,
genetic drift tends to differentiate them.

Allele Frequencies and Population Variation

The four evolutionary factors just discussed cause changes in allele frequencies (or gene fre-
quencies) in populations. Allele frequencies are measured as the proportion of chromosome
copies that contain a given allele (i.e. in a population of 100 people, there are 200 chromosome
copies, so if 50 copies of allele A are seen then the frequency of A is 50/200 or 0.25). Allele fre-
quencies can be estimated for all types of genetic variation, including SNVs and copy number
variants (CNVs).

Allele frequencies are often displayed as a histogram of the proportion of alleles in frequency
bins ranging from 0 to 0.5; this represents the allele frequency spectrum or site frequency
spectrum. The allele frequency spectrum can be used to make inferences about the effects of
evolutionary factors like genetic drift and natural selection. For example, newly arisen alleles
are not lost to genetic drift in rapidly expanding populations, producing an excess of rare alleles
(Novembre and Ramachandran 2011). High frequencies of rare alleles are typically observed
in human populations, providing strong evidence that many human populations underwent
major expansions in size during the past 50 000 years (Tennessen et al. 2012). Furthermore,
rapid expansion of population size can limit the capacity of natural selection to remove delete-
rious alleles, and it is estimated that 85% of all deleterious variants in the human genome have
arisen in just the past 5000–10 000 years (Fu et al. 2013).

Population allele frequencies can also be used to estimate genetic distances between pairs
of populations. The simplest form of genetic distance consists of the absolute value of the
difference in allele frequencies, averaged across all loci. When n populations are studied, an
n×n genetic distance matrix can be formulated and analyzed with various data reduction and
display methods (described below). Genetic distances can also be estimated between pairs of
individuals.
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One of the most commonly used measures of population genetic differentiation is known
as the fixation index, or FST. It is estimated by (HT − HS)/HT, where HS is the heterozygosity
(Box 15.1) within each population, averaged across all populations, and HT is the total het-
erozygosity in all individuals, combining them as a single population. If FST = 0, then there
is just as much variation, on average, within populations as there is across the entire sam-
ple. If FST = 1, then there is no variation within populations (HS = 0), with all variation due
to differences between populations. FST, then, is a measure of between-population variation
(Holsinger and Weir 2009). FST has been studied extensively in human populations (Holsinger
and Weir 2009); among major continents, it is approximately 0.10–0.15 (Witherspoon et al.
2007). Thus, most variation in humans can be found within one of the world’s major continents
(e.g. Asia or Africa), and only a relatively small additional amount of variation is contributed by
between-continent differences. Among populations within the same continent, FST is typically
smaller, varying from 0.01 to 0.05 (Auton et al. 2015; Novembre and Peter 2016). In contrast, for
loci that have undergone strong natural selection in different environments, such as genes that
influence skin pigmentation, FST between continents can exceed 0.90 (Lamason et al. 2005).

Box 15.1 Basic Definitions and Concepts

Heterozygosity is a measure of genetic variation. For a single nucleotide variant (SNV) with
alleles A and T, an individual can be either homozygous (genotypes AA or TT) or heterozy-
gous (AT). In a population, an SNV’s heterozygosity is measured simply as the proportion
of individuals who have the heterozygous (AT) genotype. Average heterozygosity is simply
the mean heterozygosity across all measured SNVs.

The Hardy–Weinberg principle specifies the expected relationship between allele
frequencies and genotype frequencies in a population. It is assumed that individuals
mate randomly with respect to the SNV under consideration, which allows us to apply
the multiplication and addition rules of probability. For the SNV just discussed, imagine
that the allele frequency of A in a population is 0.60 and the frequency of T is 0.40.
This means that 60% of sperm cells in the population would have allele A and 40%
would have allele T. The same frequencies would apply to egg cells. Then, under random
mating, the probability that a sperm cell carrying A unites with an egg cell carrying A is
given by the product of the allele frequencies: 0.60× 0.60, or 0.36. This is the expected
frequency of the AA genotype in the population. Similarly, the probability that a random
mating event produces a TT genotype is 0.40× 0.40, or 0.16. A heterozygote can be
produced either by the union of an A-bearing sperm cell and a T-bearing egg cell or by a
T-bearing sperm cell and an A-bearing egg cell. Each of these events has a probability of
0.60× 0.40, or 0.24. To get the overall frequency of the heterozygous genotype, we simply
add the two probabilities together to yield a frequency of 0.48. (Notice that the three
genotype frequencies add to 1.00.) This heterozygosity estimate, which is predicted by
the Hardy–Weinberg principle, is termed the expected heterozygosity. It can be compared
with the observed heterozygosity, which is obtained simply by counting the heterozygotes,
as in the previous paragraph. If the observed and expected heterozygosity values are
not significantly different from one another, the SNV is said to be in Hardy–Weinberg
equilibrium (HWE). Deviations from HWE can be caused by the mating of close relatives or
by population stratification, in which subgroups of the population are more likely to mate
among themselves. Each of these phenomena decreases the observed heterozygosity
levels, relative to the expectation under HWE.

Similar logic can be used to predict haplotype frequencies from allele frequencies in
populations (a haplotype, or haploid genotype, refers to the alleles on one copy of a
chromosome in an individual). As an example, consider two linked loci, with alleles A,a
at one locus and B,b at the other locus. If the frequencies of A and a are 0.60 and 0.40,

(Continued)
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Box 15.1 (Continued)

respectively, and the frequencies of B and b are 0.70 and 0.30, respectively, the predicted
frequency of the AB haplotype would be 0.60× 0.70 = 0.42 (i.e. we multiply the two
allele frequencies together to estimate the frequency of their co-occurrence on the same
chromosome copy). Similarly, the predicted frequencies of haplotypes Ab, aB, and ab,
are 0.18, 0.28, and 0.12, respectively. If the observed frequencies of these haplotypes
equal the frequencies predicted by multiplying the allele frequencies together, then
the two loci are said to be in linkage equilibrium, indicating that the alleles at the two
loci are statistically independent of one another. However, for very closely linked loci,
recombination is so rare that certain haplotypes are observed more or less frequently
than predicted under linkage equilibrium (e.g. the frequency of AB might be 0.55 instead
of the predicted 0.42). When the observed haplotype frequencies differ significantly
from the predicted haplotype frequencies, the two loci are in linkage disequilibrium. The
existence of linkage disequilibrium typically indicates that the pair of loci are located
very close together on the same chromosome.

FST estimates are influenced by the choice and geographic distribution of analyzed popula-
tions. Generally, when populations are chosen to be more continuously distributed geograph-
ically, FST levels are somewhat reduced (Xing et al. 2010). FST can be unduly influenced by
high levels of drift in single populations, so methods have been formulated to eliminate this
bias (Patterson et al. 2012).

Display Methods

If a large number of populations (or individuals) are sampled, an n×n genetic distance matrix
becomes difficult to interpret. Statistical methods are used to reduce the complexity of a genetic
distance matrix to just a few important dimensions. Phylogenetic trees are sometimes used to
portray relationships among human populations (see Chapter 9), but this practice is sometimes
questioned because the tree structure may imply that populations have been isolated from
one another following a divergence (Sherry and Batzer 1997). Newer methods incorporate the
effects of migration in tree displays (Pickrell and Pritchard 2012).

Perhaps the most commonly used method for displaying genetic variation among popula-
tions or individuals is principal component analysis (PCA). PCA is widely used in many areas
of bioinformatics and is explained in more detail in Chapters 14 and 18. Briefly, PCA is a multi-
variate statistical technique in which an axis (a principal component [PC]) is projected through
a matrix of distances in an effort to capture the maximum amount of variation in a single axis
or line (reflected by the score of each population on the axis). This procedure is essentially a
multivariate version of a regression analysis. After accounting for this first PC, a second axis,
independent of the first one, is projected through the remaining variation in the matrix. The
PCs can be plotted against one another (as shown in Figure 15.1) to display the variation cap-
tured in two dimensions. Often, the first two PCs reflect geographic locations of populations
quite well, and formal methods have been designed to assess the degree of fit between genetic
and geographic distances (Wang et al. 2012). Additional PCs can be examined to assess fur-
ther aspects of genetic variation among populations or individuals. PCA yields results similar
to those of multidimensional scaling, which is implemented in the popular PLINK software
package (Purcell et al. 2007).

In its earliest applications, PCA was confined to population-level comparisons because typ-
ically only a few dozen loci could be genotyped. With so few loci, a high level of sampling
variance existed, but this could be minimized by combining individuals together in pre-defined
populations. Designating a priori population membership introduces bias, however, and it is
preferable to analyze variation at the individual level. This is now achieved through the use of
large-scale single nucleotide polymorphism(SNP) microarrays or whole genome sequencing,
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Figure 15.1 Principal components analysis (PCA) of nine world populations and three test samples. Indi-
viduals of similar ancestry show tight population clustering. The three test samples (large triangles) are
placed in different locations on the plot, reflecting different ancestry for each of the samples. Sample
A has genetic affinity with the African reference samples, sample F is similar to the European samples,
and sample M is clustered among the South American samples. The reference populations are Africans:
Kenyans (LWK), Nigerians (YRI); Europeans: CEPH with European ancestry (CEU), Great Britons (GBR);
South Asians: Pakistanis (PJL), Sri Lankans (STU); East Asians: Han Chinese (CHB), Japanese (JPT); and
South Americans: Peruvians (PEL).

in which thousands to millions of SNVs can be assessed in each individual (as in Figure 15.1).
In general, individuals group according to their population affiliation, but there is often overlap
between defined populations, especially among geographically contiguous or admixed pop-
ulations (Rosenberg et al. 2005). PCA results can be influenced by factors such as linkage
disequilibrium (Box 15.1) and ascertainment biases in microarray data (Albrechtsen et al.
2010a), so appropriate precautions must be taken in designing and interpreting PCA studies.

Because PCA can detect genetic similarities among individuals and populations, it is also
widely used in genome-wide association studies (GWAS) as a tool to detect and adjust for pop-
ulation stratification in cases and controls. Using genome-wide SNV data, the popular EIGEN-
STRAT tool (Price et al. 2006) performs PCA on case and control individuals and enables users
to eliminate or adjust for genetic outliers that could cause spurious gene–disease associations.

Demographic History Inference

The display methods just discussed provide a useful picture of genetic variation, but they
are not necessarily informative (and can even be misleading) about migration events or
changes in population size (Novembre and Stephens 2008). Furthermore, microarray-based
SNVs, which have often been used in analyses of population genetic variation, are biased
because they were typically selected for relatively high frequency (> ∼0.10) in populations
of interest for genome-wide association studies (usually Europeans) (Lachance and Tishkoff
2013a). Rare variants, which are highly informative for studies of population history, are
vastly under-represented in microarray datasets, as are many variants found in non-European
populations (Rosenberg et al. 2010). In the past several years, several major population
surveys have been undertaken to obtain unbiased depictions of whole genome sequence
variation: the 1000 Genomes Project (Auton et al. 2015; Sudmant et al. 2015a), the Simons
Genome Diversity Project (Sudmant et al. 2015b; Mallick et al. 2016), the UK10K Project
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(UK10K Consortium et al. 2015), and the Exome Aggregation Consortium (ExAc) and
Genome Aggregation Database (gnomAD) (Lek et al. 2016). The UK10K Project and the ExAc
and gnomAD databases focus primarily on individuals with disease phenotypes. With DNA
sequence data in hand, methods can be used that take advantage of the full range of genetic
variation, enabling a much richer portrait of human population history (Box 15.2).

Box 15.2 Inferring Demographic History

The multiple sequentially Markovian coalescent (MSMC) method can be used to infer effec-
tive population size using whole genome sequence data from one or more individuals.
Starting with a mapped whole genome Binary Alignment Map (BAM) file, variants are first
called using Samtools, BCFtools, and the bamCaller.py script. The output is a Variant Call
Format (VCF) file and a mask file (indicating usable regions) for the sample. It is necessary
to provide a reference sequence and the average sequencing depth of the sample. If the
genotypes are to be phased (recommended), the data should be split into chromosomes.
An example of a command to generate the single nucleotide polymorphism (SNP) calls
and the sample mask file for chromosome 22 is as follows.

>samtools mpileup -q 20 -Q 20 -C 50 -u -r chr22 -f myReferenceGenome
myBamFile.bam | bcftools call -c -V indels| bamCaller.py depthOfCoverage
myBamFile_chr22_mask.bed.gz | bgzip >chr22.vcf.gz

In this example, mpileup (part of Samtools) is run with the map quality (-q) and mini-
mum per base alignment quality (-Q) set to 20, and the adjusted map quality (-C) set to 50.
The uncompressed output (-u) is piped to BCFtools for calling. The consensus caller (-c)
is used, variant sites (-v) are emitted, but insertion/deletions are excluded (-V indels).
The output is piped to the bamCaller.py script, which generates a VCF file and an accom-
panying mask file that indicates the variant positions that are sufficiently covered to be
used by MSMC.

After generating the genotype calls for each chromosome, the data can be phased using
the SHAPEIT2 program. An individual sample may be phased using a reference panel that
matches the input sample’s population, or the sample may be phased together with 10
or more samples from the same population. The second option is recommended if the
test population is not well matched to an existing reference population. Each chromo-
some must be processed separately. It is important to remove multi-allelic SNP sites from
the VCF file prior to running SHAPEIT2. A genetic map for each chromosome should be
used to adjust for differences in the recombination frequency along the chromosome. An
example for phasing chromosome 22 in a group of 10 Tibetan samples previously called
and combined into a single VCF file is shown.

>shapeit --input-vcf Ten_Tibetans_chr22_bamCaller.vcf
-M genetic_map_chr22.txt -O Ten_Tibetans_chr22.phased -T 1 --aligned

>shapeit -convert --input-haps Tibetan_chr22.phased --output-vcf
Tibetan_chr22.phased.vcf

The phased data are used as input into the generate_multihetsep.py script to create
MSMC input files for each chromosome. Specific samples to be used for MSMC input can
be extracted from the phased VCF files using BCFtools. It may be necessary to update
(reheader) the VCF file produced by SHAPEIT2 before extracting the samples.

Once extracted, the sample VCF file and the corresponding sample mask file serve
as the input files for the generate_multihetsep.py script. The generate_multihetsep.py
script also takes as input a chromosomal mapping mask that specifies the uniquely
mapping regions on that chromosome. A mapping mask file can be created by the
user (see evomics.org/learning/population-and-speciation-genomics/2018-population-
and-speciation-genomics/psmc-msmc-activity/ for additional information). An example
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for generating an MSMC input file for two individuals (four haplotypes) from two different
populations is shown below. Note that each sample requires the phased VCF data and
the sample mask, but one mapping mask can be used for all samples. Prepare one file for
each chromosome.

>generate_multihetsep.py \
--mask Tibetan1_chr22.bed.txt.gz \
--mask Chinese1_chr22.bed.txt.gz \
--mask Unique_mapping_mask_chr22.bed.txt.gz \
Tibetan1_chr22.vcf.gz Chinese1_chr22.vcf.gz \ >msmc_input_chr22.txt

The output of generate_multihetsep.py contains a list of segregating sites, the number
of bases between the sites, and the phased alleles for the four haplotypes.

The MSMC program is now used to estimate the scaled effective population size and
the cross-coalescence rate. When the input files contain samples from two populations,
the cross-coalescence rate can be used to estimate the relative separation between the
populations on a scale of 0–1, where 0 is complete separation and 1 is no separation. Add
the --skipAmbiguous and the -P flag to calculate the relative cross-coalescence rate
(e.g. -P 0,0,1,1where 0 and 1 identify the haplotype associated with each population).
Use the files generated for each chromosome as input into the MSMC program.

>msmc --fixRecombination --skipAmbiguous -P 0,0,1,1 -t 12 -o my_msmc_output
msmc_input_chr1.txt msmc_input_chr2.txt ... msmc_input_chr22.txt

The final MSMC output file (see Figure 15.3) from this two-sample, four-haplotype run
contains the estimates of the coalescent rate for the first population (lambda_00), the
coalescent rate for the second population (lambda_11), and the coalescent rate across the
two populations (lambda_01). The relative cross-population coalescent rate is calculated
as (2*lambda_01)/(lambda_00+ lambda_11).

The output file also shows the time interval for each estimate. Time estimates and coa-
lescent rates are scaled by the mutation rate. Dividing the scaled time by the mutation
rate (e.g. 𝜇 = 1.25× 10−8 mutations/site/generation) yields the number of generations.
Multiplying the number of generations by the generation time (e.g. 30 years/generation)
produces a final time estimate in years. The inverse of the coalescent rate reflects the
effective population size (Ne) and is scaled by the mutation rate. The actual effective pop-
ulation size can be calculated from the scaled coalescent rate as Ne = (1/lambda_00)/𝜇.

This example serves as a general guide. The MSMC program and accessory scripts
have additional features and options that can be used to fine-tune performance and opti-
mize accuracy. Additional improvements to MSMC demographic modeling are expected in
MSMC version 2. Since MSMC output values are scaled, the values used for the mutation
rate and the generation time will affect the final estimate of the effective population size.
It is recommended that the confidence interval around these parameters be considered
when evaluating the results.

For example, approaches have been devised to use these large-scale sequence collections
to infer major demographic events such as migration, population bottlenecks, and popula-
tion expansions. Many of these methods make use of the concept of coalescence (Rosenberg
and Nordborg 2002). To understand the coalescence concept, imagine that DNA sequences
have been obtained for a small chromosome region in two individuals. If these sequences dif-
fer at five nucleotide positions, we can infer that at least five mutations have occurred since
the sequence was transmitted by the common ancestor of the two individuals. Because muta-
tion is a regular, clock-like process within a species, we can use the mutation rate to estimate
how long it would have taken for these five mutations to occur in the lineages that produced
the two individuals. In this way, we can assign an approximate date to the common ances-
tor. This approach can be extended to the human population in general by comparing DNA
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Figure 15.2 The coalescent process. Although the ancestral population contains multiple individuals,
all lineages but one eventually become extinct for any gene. Thus, all of the variation in the current
population can ultimately be traced to one common ancestor (the coalescent).

sequences from a sample of individuals and working backward to the individual from whom
the existing variation would have descended. This ancestral individual is termed the coales-
cent. Figure 15.2, which illustrates the coalescent concept, shows that all ancestral lineages
but one will eventually become extinct. In general, the larger the population, the longer this
extinction process takes, and the further back in time the coalescent occurs. Thus, there is a
direct relationship between population size and the date of the coalescent.

Methods have been developed to use the coalescent process to estimate the history of popula-
tion sizes from genome sequence data. For example, the pairwise sequentially Markovian coa-
lescent (PSMC) model compares the two DNA sequences in a single diploid individual using a
hidden Markov model to move along the DNA sequences, measuring haplotype differences to
make estimates of the coalescence time (Li and Durbin 2011). Because this method is limited
to a single individual, most coalescence dates are older than 20 000 years. This approach was
subsequently extended to multiple individuals (multiple sequentially Markovian coalescent
[MSMC] method) (Schiffels and Durbin 2014), which allows inference of more recent popula-
tion history. MSMC requires phased sequence data (see Glossary) and incorporates the effects
of recombination. In addition, because individuals from different populations can be analyzed
and compared, it is possible to estimate a cross-coalescence, which is a proxy for migration
rate. An example of human population history estimated by MSMC is given in Figure 15.3.
(See also Box 15.2 for details.)

Other methods for population history inference make use of the site (or allele) frequency
spectrum described earlier. One of the most popular of these, diffusion approximations
for demographic inference, or dadi (Gutenkunst et al. 2009), estimates parameters such as
population sizes, divergence times, admixture events, and migration rates using partial dif-
ferential equations to derive the allele frequency spectrum. Because of its multiple parameter
estimates, dadi can be computationally demanding, and it is limited to three populations,
each containing only a small number of individuals. Other methods have been developed to
extend and improve this approach. (Schraiber and Akey 2015; Novembre and Peter 2016).

These methods, especially when applied to whole genome sequence data, have yielded
many key insights about human evolutionary history (Novembre and Ramachandran 2011;
Veeramah and Hammer 2014; Auton et al. 2015; Mallick et al. 2016; Nielsen et al. 2017).
Broadly, they support a model in which anatomically modern humans arose first in Africa at
least 200 000 years ago, where they accumulated a rich reservoir of genetic diversity. A subset
of this population began to radiate out of Africa approximately 100 000 years ago, mostly
replacing archaic humans, such as Neanderthals, in other parts of the world. As humans
migrated throughout the world, they experienced successive reductions in population size
(a serial founder effect), resulting in a strong negative correlation between genetic diversity
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Figure 15.3 Multiple sequentially Markovian coalescent (MSMC) estimate of population histories. The
effective population size as a function of time in the past for Tibetans (red) and Han Chinese (blue),
estimated using four Han Chinese and four Tibetan genomes with greater than 99% corresponding
genetic ancestries (Hu et al. 2017).

and distance from the African origin (Ramachandran et al. 2005). In addition to providing
an overview of worldwide human demographic history, genetic studies have yielded detailed
portraits of continental and individual human populations, such as those of Africa (Camp-
bell et al. 2014; Beltrame et al. 2016), Asia (Abdulla et al. 2009; Liu et al. 2017), Australia
(Malaspinas et al. 2016), Europe (Fu et al. 2016; Gunther and Jakobsson 2016), the Indian
subcontinent (Reich et al. 2009), Oceania (Duggan and Stoneking 2014), and the Americas
(Skoglund and Reich 2016).

Although it is quite clear that anatomically modern humans largely replaced other hominid
species as they migrated out of Africa, studies of ancient Neanderthal DNA sequences demon-
strate that the genomes of all non-Africans studied thus far contain approximately 2% Nean-
derthal DNA. This reflects a small degree of ancient admixture (Sankararaman et al. 2014;
Nielsen et al. 2017). The uniformity of the admixture level among non-Africans suggests that
most of the mixture took place early in the radiation of humans out of Africa. Furthermore,
there is evidence that some Neandertal genetic variants, including those involving the immune
response and skin pigmentation, provided selective advantages as modern human populations
adapted to their new environments (adaptive introgression; Racimo et al. 2015; Dannemann
and Kelso 2017). Much Neanderthal variation, however, appears to have undergone negative
selection and was eliminated in modern human genomes (Sankararaman et al. 2014). Some
modern humans also admixed with Denisovans, an ancient sister species of Neanderthals
(Reich et al. 2010). Approximately 3–6% of each DNA sequence from modern Melanesians,
Papuans, and Australians, and approximately 0.2% of each DNA sequence from East Asians,
are of Denisovan origin (Racimo et al. 2015).

Admixture and Ancestry Estimation

Humans have a long and complex history of migration, gene flow, and population mixture
(Hellenthal et al. 2014). Large-scale genomic data have made it possible to estimate the extent
and timing of these events and their effects on individual ancestral composition. An early
method, called STRUCTURE (Pritchard et al. 2000), uses a Bayesian Markov chain Monte
Carlo (MCMC) algorithm to detect groups of individuals in whom Hardy–Weinberg equi-
librium (HWE) (Box 15.1) is maintained. (Deviations from HWE indicate that a population
sample may contain multiple subgroups.) The optimal number of groups within a sample can
be estimated, and, for each individual in a group, the proportion of ancestry derived from each
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Figure 15.4 Admixture analysis of nine populations and three test samples. Individuals are displayed
along the X-axis. The proportion of ancestry is shown on the Y-axis. Each individual is represented by
a single bar. Five ancestry components are each indicated by a color. Each bar represents one individual
and shows the fraction of ancestry for each of the ancestry clusters. Each of the three test samples has
a predominant ancestry, yet all have some admixture as indicated by the different colors. Compare the
ancestry estimates for the three test samples with the location of each sample in principal component
analysis (Figure 15.1). For definitions of abbreviations, see the legend to Figure 15.1.

group is estimated. The timing of admixture events is not estimated, but the STRUCTURE
program provides a useful display of ancestral composition. This method can become com-
putationally demanding if the number of samples is large. Subsequent improvements, such
as Frappe (Tang et al. 2005), ADMIXTURE (Alexander et al. 2009), and fastSTRUCTURE
(Raj et al. 2014), provide increased computational speed and accuracy to detect population
structure and estimate individual ancestry (Figure 15.4; and see below for details) (Liu et al.
2013). The Chromopainter and fineSTRUCTURE (Lawson et al. 2012) algorithms incorporate
haplotype data to improve the accuracy of detection of fine population structure (FST < 0.01)
and ancestry estimation, at the expense of some increase in computational time. The program
known as fineSTRUCTURE has been used, for example, to detect population structure even
within relatively homogeneous populations such as those of Great Britain (Leslie et al. 2015),
where the average FST value is less than 0.001.

Other tests of admixture take advantage of the fact that gene flow produces individuals in
whom large chromosome segments are derived from more than one ancestral population.
Because of recombination, these chromosomal segments or “haplotype blocks” will become
shorter with time; therefore, the average length of these blocks provides a means of dating
major admixture events. This principle has been incorporated in the programs ROLLOFF
(Moorjani et al. 2011) and GLOBETROTTER (Hellenthal et al. 2014), which have been used
to date major migration events such as the Bantu expansion in Africa, the Mongol expansion
in Eurasia, and relatively recent north African gene flow into southern Europe (Hellenthal
et al. 2014).

Following is a more detailed example to illustrate how admixture analysis and PCA can be
used in ancestry analysis of three specific individuals wanting to know more about their ethnic
ancestry. This is the kind of analysis commonly performed by many commercial DNA testing
companies. A typical starting point for this type of ethnic ancestry analysis is a multi-ethnic
Variant Call Format (VCF) file containing genotypes in rows and individuals in columns.
Whole genome sequencing (WGS) data from 26 world populations are readily available from
the 1000 Genomes Project. Using this resource, reference populations can be selected for the
analysis. New study samples can then be merged into the reference VCF file to examine the
genetic relationships among all individuals and to assess potential stratification issues for
case–control studies.

The tools needed for this example are VCFtools or BCFtools, PLINK and PLINK2, EIGEN-
SOFT (version EIG-6.1.4), ADMIXTURE, and a plotting package of your choice (Excel, R, etc.).
These programs typically need to be installed on a modern, multi-core LINUX or UNIX sys-
tem. There are many high-quality software packages available for PCA. This example uses
these particular tools because they are well established, optimized for genetic data, and have
additional functionality for file manipulation, case–control studies, and hypothesis testing.
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This ancestry analysis example uses a VCF file created from whole genome sequencing
of nine populations from five distinct regions of the world. The sample populations are
Africans (Nigerians [YRI] and Kenyans [LWK]), Europeans (Utah CEPH [CEU] and Great
Britons [GBR]), East Asians (Chinese [CHB] and Japanese [JPT]), South Asians (Pakistanis
[PJL] and Sri Lankans [STU]), and South Americans (Peruvians [PEL]). There are 20 samples
per population. This dataset was assembled from the 1000 Genomes WGS data and filtered
to contain approximately ∼6.77 million common (maf≥ 0.05) SNPs. A second VCF file
contains three test samples of unknown ancestry. The two VCF files can be downloaded from
www.wiley.com/go/baxevanis/Bioinformatics_4e.

The two VCF files are first indexed and merged using BCFtools to create a single compressed
VCF file. Once this is done, the VCF file must be converted to PLINK binary format. PLINK pro-
vides a convenient and rapid format for filtering samples and markers. For most steps, PLINK2
is used for better performance.
>bcftools index world_samples.vcf.gz
>bcftools index test_samples.vcf.gz
>bcftools merge -Oz world_samples.vcf.gz test_samples.vcf.gz -o merged.vcf.gz
>plink2 –vcf merged.vcf.gz --input-missing-phenotype -9 --make-bed --out merged

Next, the data must be “cleaned” so that all samples and variants have minimal missing data
and well-supported genotype calls. These settings can vary but, in general, the best results are
obtained when all samples and all loci have less than 10% missing data. For most applications,
the variants that deviate strongly from HWE should be removed. PLINK2 can be used to per-
form these three filtering steps in a single command, given below. Only the merged binary
PLINK file (bfile) is required in the command.
>plink2 --bfile merged --mind 0.05 --geno 0.05 --hwe 0.001 --make-bed --out
merged_cleaned

Many population models assume that genetic markers are independently segregating. There-
fore, it is important to remove closely linked markers that are in strong linkage disequilibrium.
This step also reduces redundant genetic information and the size of the dataset. Using PLINK2
and the commands given below, markers in a 50 kb sliding window are first identified if their
pairwise correlation (r2) exceeds 0.1. The second step extracts the non-correlated markers.
>plink2 --bfile merged_cleaned --indep-pairwise 50kb 1 0.1
>plink2 --bfile merged_cleaned --extract plink2.prune.in --make-bed -out
merged_cleaned_pruned

For the dataset used here, one will notice a sizeable reduction in the number of SNPs:
∼6.77 million starting loci will be filtered to ∼140 000 unlinked loci. In general, a mini-
mum of ∼100 000 SNPs is recommended for full genome analysis and case–control p value
adjustments; however, many population structure questions may be addressed with as few as
10–20 000 unlinked variants if the populations are relatively distinct. The data are now ready
for PCA and admixture analysis.

For this example, the EIGENSOFT package will be used to perform a PCA. The cleaned
and pruned data can be exported to a standard linkage file using PLINK. With the command
given below, a pedigree (linkage) file (.ped) and a map file (.map) can be created. The missing
phenotype value (−9) added earlier can be changed in place to the unaffected phenotype value
(1) using the UNIX sed command.
>plink --bfile merged_cleaned_pruned --recode --out pca_data
>sed -i ‘ s/-9/1/’ pca_data.ped

The pedigree file can now be converted to EIGENSTRAT format. Copy the parameter file
from the convertf folder of the EIGENSOFT package to the current directory and edit the
file as shown in the example to convert a pedigree (.ped) file to an EIGENSTRAT file. The
pca_data.ped and pca_data.map files can be generated by passing the parameter file to CON-
VERTF using the following command.
>convertf -p par.PED.EIGENSTRAT

http://www.wiley.com/go/baxevanis/Bioinformatics_4e
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The smart_pca.perl script is now used to call SMARTPCA and perform the PCA analysis.
The number of shared alleles at every locus will be assessed for all pairwise combinations
of individuals. This will create an allele-sharing covariance matrix for all possible pairwise
combinations of samples, which can be used to create the output files. The three output files
from the CONVERTF program can be used as inputs into the smartpca.perl script. The options
for smartpca.perl specify the converted genotype data (-i), the converted SNP data (-a), the
converted sample information (-b), the number of PCs to output (-k), an output file of PCs
(-o), a plot of PC1 and PC2 (-p), the eigenvalues for all individuals and PCs (-e), the logfile
(-l), and an outlier switch (-m) set to 0 to prevent outlier removal. If one is doing case–control
studies, the program can be used to identify samples that are statistically different from other
samples in the dataset.

>smartpca.perl -i pca_data.eigenstratgeno -a pca_data.snp -b pca_data.ind
-k 12 -o pca_data.pca -p pca_data.plot -e pca_data.eval -l pca_data.log -m 0

The eigenvectors can be examined and plotted using the data found in the pca_data.pca.evec
(or pca_data.pca) file. The data for each sample and the percentage of the variance accounted
for by each of the PCs 1–12 are shown in the file. Note that the first PC captures the highest
percentage of the variance, and each subsequent PC captures less. The decrease typically fol-
lows a negative exponential curve, and the first several PCs are most informative for ancestry
and population structure. By plotting PC1 and PC2, the relationships among the 180 world
samples and the three test samples can be visualized (Figure 15.1). Plotting other dimensions
may also give additional insight into the population relationships.

The three test samples are located in different regions of the plot, indicating different ances-
try for each of the samples. One sample is located near the YRI and LWK groups, indicating
mostly African ancestry, the second sample has predominantly northern European ancestry,
and the third is grouped with South Americans, likely indicating Native American ancestry.

The following steps demonstrate how ADMIXTURE can be used to estimate the proportion
of ancestry of each individual in our current dataset. Return to the binary PLINK file that
has been cleaned, filtered, and pruned. This file will be the input for ADMIXTURE. Because
the individuals in the data are from five distinct well-separated geographic regions, a value of
K = 5 is a reasonable number of population clusters for this analysis. It is recommended that a
most likely value of K be estimated directly from the data, that all values K = 2 … 10 be exam-
ined, and that all additional population information be considered when choosing the optimal
number of clusters for a given dataset. Using a large number of markers (>100 000) improves
the accuracy of the ancestry estimates, especially when the populations are closely related. In
this dataset there are sufficient markers to achieve good ancestry estimates. The ADMIXTURE
program can be run using the final binary pedigree file, merged_cleaned_pruned, as the input.

>admixture merged_cleaned_pruned.bed 5

ADMIXTURE produces two output files. The merged_cleaned_pruned.5.Q file contains the
point estimates of ancestry for each sample. Confidence intervals for the point estimates can be
obtained by adding-B to the command. For clarity, sample names can be added to the ancestry
point estimates file using the names from the pedigree file used for PCA using the commands
below.

>cut -f2 -d’ ‘ pca_data.ped >names
>paste -d’ ‘ names merged_cleaned_pruned.5.Q > ancestry.5.Q

Population samples in this file are ordered alphabetically by the population identifiers (e.g.
CEU for Europe, CHB for East Asia, GBR for Europe, and so forth). Each row represents one
sample. There are five ancestry columns corresponding to the fraction of ancestry estimated
for each of the five clusters. The row values sum to 1.00. The first 20 samples have ancestry
estimates that exceed 0.99 in one of the columns; these are all CEU samples. The GBR sam-
ples (rows 41–60) also have high estimated ancestry in this same column (cluster). Thus, this
column represents the cluster most closely associated with European ancestry. Examining the
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East Asian CHB and JPT samples will allow one to locate the column (cluster) that is associated
with East Asian ancestry. This process can be repeated for each of the populations.

The table of ancestry results can be more conveniently visualized by plotting all samples
as stacked bars in a single plot (Figure 15.4). At the end of the plot are the three test sam-
ples, enlarged for clarity. Sample A has ∼87% African ancestry and ∼13% European ancestry.
This individual self-identifies as African–American, and the ancestry result is not unexpected.
Many African–Americans have some European–American admixture. Sample F is a Finnish
individual and is most similar to the other Europeans but also has about ∼9% ancestry that
does not cluster with the European samples used in this dataset. Sample M self-identifies as
Mexican, and shares ∼79% ancestry with the South American reference samples but also has
∼13% ancestry that is attributable to European admixture and ∼8% Asian ancestry. Finally,
compare the results of the model-based approach with the PCA. Note how genetic admixture
can place samples in intermediate positions between two non-admixed reference populations
in the PCA. For example, sample A, an African–American individual, is positioned between
the reference African and European clusters.

Detection of Natural Selection

Many or most regions of the genome are thought to have little or no functional significance
and are therefore selectively neutral. The major forces affecting their variation are mutations
(which introduce novel variants) and genetic drift (which may eliminate them or increase their
frequency owing to stochastic variation in small populations). In contrast, coding and regula-
tory regions of the genome are potentially subject to natural selection because of their roles in
maintaining important functions. Natural selection exists in several basic forms. Positive selec-
tion, which is considered the major force in adaptive evolution, increases the frequencies of
variants that confer a survival or reproductive advantage. Negative selection, also termed puri-
fying selection, is exerted against deleterious variants. Many harmful variants are removed by
natural selection before they can achieve an appreciable allele frequency. This form of nega-
tive selection, termed background selection, produces regions of the genome that tend to lack
variation and can be highly conserved across species (Vitti et al. 2013).

Positive selection can result in a selective sweep, in which a new, adaptive variant arises and
rapidly increases to high frequency or fixation because of its selective advantage. This scenario
is often termed a hard sweep and is relatively easy to detect in genomic data using the meth-
ods discussed below. Hard sweeps, however, appear to be relatively rare in human populations
(Pritchard et al. 2010). In contrast to the classic hard sweep scenario, new variants may be
selectively neutral at first and can increase in frequency because of genetic drift. If the variant
(or variants) later becomes selectively advantageous, this is termed selection on standing vari-
ation. Owing to their longer history and the potential for recombination, standing variants can
sometimes be found on different haplotype backgrounds. Selection on this form of standing
variation is termed a soft sweep (Pritchard et al. 2010). Because of its relative complexity, a soft
sweep is more difficult to detect in genomic data than is a hard sweep (Teshima et al. 2006).

Whereas positive selection produces alleles of high frequency and negative selection yields
alleles of low frequency, another form of selection, termed balancing selection, tends to
maintain alleles of intermediate frequency. This can occur when heterozygotes enjoy a
selective advantage compared with both forms of homozygotes. A classic example of heterozy-
gote advantage (also known as over-dominance) is given by sickle cell disease in malarial
environments. This recessive condition is caused by a specific amino acid change in the
𝛽-globin (also known as hemoglobin beta) locus and is usually fatal if not treated (Rees et al.
2010). Thus, homozygotes are strongly selected against. However, heterozygotes are 50–90%
less likely to contract severe Plasmodium falciparum malaria than are normal homozygotes
because their erythrocytes are inhospitable to the malarial parasite (Bunn 2013). Thus, the
sickle cell-causing variant increases in frequency, but only to a certain degree, because at
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too high a frequency the burden of sickle cell disease in the population would outweigh the
anti-malarial advantage. Accordingly, the allele frequency of the sickle cell variant can be as
high as 0.15–0.20 in malarial environments (Piel et al. 2010).

Balancing selection favoring allelic diversity is also thought to be largely responsible for
the high levels of genetic variation seen in genes involved in the immune response, such as
the major histocompatibility complex and the ABO blood group (Hughes and Yeager 1998;
Key et al. 2014). Balancing selection on some immune-response genes has persisted for mil-
lions of years, resulting in polymorphisms that are shared among humans and other apes
(trans-species polymorphisms) (Azevedo et al. 2015).

Many methods have been devised to detect different types of natural selection (Fu and Akey
2013; Vitti et al. 2013; Fan et al. 2016). Relatively recent selection in human populations can
be detected by relatively straightforward comparisons of allele frequency differences among
populations. For example, an elevated locus-specific FST value, relative to the genome average
across all loci, can be an indication of natural selection, as in the case of skin pigmentation
genes discussed earlier. The population branch statistic (PBS) (Yi et al. 2010) is a related test
that compares the branch lengths of population trees on a gene-by-gene basis to search for
genes in which one population has an unusually long branch length, indicating substantial
divergence from other populations.

Another class of selection statistics is based on the fact that rapid positive selection
increases the frequency of the selected variant as well as nearby linked variants. Thus, there
is an increased level of linkage disequilibrium in the region. In effect, haplotypes consisting
of multiple linked alleles are increased in frequency because of selection. Therefore, many
individuals in the population will have a relatively long region of complete (or nearly com-
plete) homozygosity because they will have two identical copies of the selected haplotype.
Under neutrality, such haplotypes would soon break down due to recombination, but positive
selection increases their frequency rapidly enough to outpace the effects of recombination.
Methods such as the extended haplotype homozygosity (EHH) test (Sabeti et al. 2002) and
integrated haplotype score (iHS) (Voight et al. 2006) search for regions in which tracts of
homozygosity are larger than would be expected in the absence of selection. A variation on
these tests, termed the cross-population extended haplotype homozygosity (XP-EHH) statistic
(Sabeti et al. 2007), compares haplotype lengths between pairs of populations. The EHH and
iHS tests are especially capable of detecting incomplete selective sweeps (i.e. the selected
allele has not yet reached a frequency of 1.0), while XP-EHH can detect a haplotype that
has reached fixation in one population but not in another. These methods are commonly
employed on genome-wide datasets (either microarray SNVs or whole genome sequences),
so a challenge is to determine whether a putative selected region is functionally significant
or merely represents the upper tail of a statistical distribution of haplotype lengths. Another
challenge is that the selected region may contain multiple genes, any of which could contain
the actual variant under selection. In general, these methods are more suitable for detecting
hard sweeps than soft sweeps (Vitti et al. 2013).

Several methods have been designed to take advantage of sequence data to detect more sub-
tle selective events like soft sweeps and selection on polygenic traits (e.g. height). For example,
the singleton density score (SDS) (Field et al. 2016) exploits the fact that chromosome regions
near selected variants have lower frequencies of linked singleton alleles (a singleton allele
occurs only once in the population). Compared with methods such as iHS, SDS has substantial
statistical power to detect very recent selection on standing variation or on polygenes. When
applied to a large British sequence dataset (UK10K Project), SDS demonstrated selection
for light hair, blue eye color, and increased height in the past 2000–3000 years (Field et al.
2016). Identity-by-descent methods, which identify selected DNA segments inherited from
a common ancestor, also have increased power to detect selection on standing variation
(Albrechtsen et al. 2010b).

Finally, some selection–detection approaches have amalgamated several existing tests to
increase the power and accuracy of signal detection. One of the most popular, the Composite
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Figure 15.5 A Manhattan plot of Composite of Multiple Signals (CMS) scores (Y-axis) across the 22
autosomes (X-axis) (Hu et al. 2017). Each dot represents one single nucleotide variant. This plot, based
on whole genome sequence data collected from Tibetans, shows high levels of positive selection on the
EGLN1 and EPAS1 genes (see text), in addition to several other genes, including the vitamin D receptor
gene (VDR).

of Multiple Signals (CMS) test (Grossman et al. 2010), combines the iHS, XP-EHH, and FST
tests with two additional tests (one based on frequencies of newly arisen, “derived” alleles and
one based on absolute length of haplotypes). An advantage of CMS is that it can localize the
selected variant much more precisely than any of the single tests. When applied to the 1000
Genomes Project dataset, CMS identified a number of new regions likely to be under selec-
tion, including a number of innate immune-response genes (Grossman et al. 2013). Because
these tests are genome wide in their coverage, it is common to graph the results as a “Manhat-
tan plot,” similar to the graphs generated in a genome-wide association study (Figure 15.5).
As in studies of disease-causing variants, it is critical to demonstrate the functional signifi-
cance of putative selected variants through in vitro experiments and studies of animal models
(Lachance and Tishkoff 2013b).

These methods have been used to detect the effects of natural selection on a number of
human genes, many of which are related to disease resistance (see Table 15.1 for examples).
Because different environments harbor different pathogens, it is not surprising that many
selected genes encode components of the immune response (Quintana-Murci 2016). Malaria,
which still causes up to 1 million deaths per year (Reiff and Striepen 2009), provides a classic
example of selection for disease resistance and has been a selective agent in tropical environ-
ments for 10 000–20 000 years (Volkman et al. 2001). As discussed previously, P. falciparum
has resulted in balancing selection on several genes that can also cause disease (Table 15.1).
Plasmodium vivax, another cause of malaria, has exerted strong selection on the Duffy blood
group locus, which encodes a chemokine receptor on erythrocyte surfaces that is used by P.
vivax to enter the cells. A null allele at this locus, and the consequent absence of the receptor,
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Table 15.1 Examples of genes that have undergone natural selection in human populations.

Adaptation Gene (gene product) Reference

Malaria resistance HBB (𝛽-globin) Allison 1954; Kwiatkowski 2005
HBA1 (𝛼-globin) Flint et al. 1986
G6PD (glucose 6 phosphate
dehydrogenase)

Tishkoff et al. 2001; Sabeti et al.
2002

FY (Duffy blood group) Hamblin and Di Rienzo 2000;
Hamblin et al. 2002

Melanin expression in skin
in response to sunlight

SLC24A5 (solute carrier; cation
exchanger)

Lamason et al. 2005

SLC45A2MAPT (solute carrier) Norton et al. 2007
OCA2 (melanosome membrane
protein)

Donnelly et al. 2012

MC1R (melanocortin 1 receptor) Savage et al. 2008
Hereditary lactase
persistence; ability to
digest cow’ s milk in
adulthood

LCT regulatory region (lactase
expression)

Tishkoff et al. 2007

Ability to digest starch AMY1 (amylase gene copy
number)

Perry et al. 2007

High-altitude hypoxia
adaptation in Tibetans

EPAS1 (HIF2A; component of
hypoxia-inducible factor [HIF]
pathway)

Beall et al. 2010; Simonson et al.
2010; Yi et al. 2010

EGLN1 (PHD2; regulator of HIF
pathway)

Simonson et al. 2010; Lorenzo
et al. 2014

Trypanosome resistance in
Africa

APOL1 (apolipoprotein L1) Genovese et al. 2010

Adaptation to diet rich in
omega-3 fatty acids in
Inuits

FADS2 (fatty acid desaturase) Fumagalli et al. 2015

Many other examples of natural selection in humans have been discovered or suggested, and this tables lists
only salient examples of genes under selection for each trait. For more complete lists, see Sturm and Duffy
(2012), Scheinfeldt and Tishkoff (2013), Vitti et al. (2013), Fan et al. (2016), and Haasl and Payseur (2016).

is highly protective against P. vivax and has a frequency of nearly 100% in most sub-Saharan
African populations (Hamblin and Di Rienzo 2000). It is absent in other human populations.
Additional disease-related examples of selection are listed in Table 15.1.

Changes in diet can also have strong selective effects. For example, infants worldwide pro-
duce lactase, an enzyme that allows them to metabolize lactose in their mothers’ milk. In most
populations, lactase expression is downregulated in adults, but cattle-herding populations in
Europe and parts of Africa maintain lactase production through adulthood (hereditary lactase
persistence). Selection on regulatory elements near the lactase gene (LCT) has occurred inde-
pendently in European and African populations, providing an excellent example of convergent
evolution in humans (Tishkoff et al. 2007). It has been estimated that the African variant arose
approximately 5000 years ago, while the European variant arose 9000 years ago (Tishkoff et al.
2007; Fan et al. 2016). However, recent studies based on 230 ancient DNA samples suggest that
the European variant arose more recently, about 4000 years ago (Mathieson et al. 2015).

Another good example of a dietary adaptation is an increase in the number of copies of the
salivary amylase-encoding AMY1 gene after the adoption of agriculture (Perry et al. 2007).
Amylase facilitates the salivary hydrolysis of starch components in the types of food more
common in agricultural populations and may help to protect against intestinal disease. DNA
sequencing of wolf and dog genomes has demonstrated a similar increase in amylase copy
number as dogs became domesticated and became dependent on human-generated agricul-
tural products (Axelsson et al. 2013).
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As humans have migrated throughout the world, they have adapted selectively to a large
variety of different climates, latitudes, and altitudes (Jeong and Di Rienzo 2014). Variation in
skin pigmentation is associated with latitude and is thought to reflect adaptation to variation
in sunlight exposure (Sturm and Duffy 2012). As shown in Table 15.1, a number of genetic
variants associated with pigmentation have been the targets of natural selection. It has long
been thought that increased melanin pigment production in tropical environments protects
against harmful ultraviolet radiation, while decreased melanin at higher latitudes may facili-
tate vitamin D production in low-light environments (Jablonski and Chaplin 2010). However,
the vitamin D hypothesis remains controversial, and other mechanisms may help to account
for variation in human skin pigmentation (Sturm and Duffy 2012).

Just as climatic factors such as sunlight vary with latitude, oxygen concentration varies with
altitude. Because of oxygen’s vital role in survival, it is not surprising that decreased oxygen
availability at high altitude has resulted in strong natural selection in some high-altitude
populations. Among the best-studied high-altitude populations are Tibetans, who have lived
for thousands of years at altitudes of 4000 to almost 5000 m. Oxygen availability at this altitude
is 40% less than at sea level. Non-adapted individuals frequently exhibit hypoxic responses
such as high-altitude pulmonary or cerebral edema, pulmonary hypertension, and mountain
sickness (Macinnis et al. 2010). Native Tibetans, who thrive at these altitudes, exhibit a suite
of unique, heritable traits, including protection from polycythemia (proportionally increased
erythrocyte number), elevated birth weights compared with non-high-altitude individuals,
and increased arterial oxygen saturation (Beall 2007). Tibetan hemoglobin levels at high
altitude are similar to those of non-adapted populations at sea level, allowing Tibetans to
avoid harmful consequences of polycythemia. Genome-wide scans for natural selection, using
approaches such as the iHS, XP-EHH, PBS, and CMS tests, have demonstrated that several
genes, including EPAS1 and EGLN1, have undergone strong positive selection in the Tibetan
population (Beall et al. 2010; Simonson et al. 2010; Yi et al. 2010; Hu et al. 2017).

The EPAS1 and EGLN1 genes encode components of the hypoxia-inducible factor (HIF)
pathway and have emerged as targets of natural selection in multiple genetic studies (reviewed
in Simonson et al. 2015). Both genes contain variants that have high frequencies in Tibetans
(>80%) but are virtually absent in neighboring populations, such as the Han Chinese.
Given the critical role of the HIF pathway in erythropoiesis, these genes represent plausible
candidates for the Tibetan high-altitude phenotype. The EPAS1 haplotype that has undergone
positive selection in Tibetans was likely contributed to Tibetan ancestors by Denisovans
(Huerta-Sanchez et al. 2014), which is another example of adaptive introgression. A recent
whole genome sequence analysis indicates that this is the only Denisovan gene that has under-
gone positive selection in Tibetans (Hu et al. 2017). EGLN1 has undergone positive selection
in both the Tibetan and high-altitude Andean populations (Bigham 2016), but, as with LCT,
different variants have been selected in the two populations. Functional analysis of EGLN1
expression in a cell culture system has demonstrated that the Tibetan-specific variants reca-
pitulate the Tibetan phenotype of reduced erythropoiesis under hypoxic conditions (Lorenzo
et al. 2014), a good example of functional validation of a statistically identified selection target.

Other Applications

In addition to illuminating our understanding of human evolutionary history, studies of
genetic variation have several other important applications in forensic science, human
genetics, and medicine. For example, population genetic studies have shown that traditional
concepts of human “races” are simplistic and potentially misleading because of the complex
history of migration and admixture in human populations (Jorde and Wooding 2004; Royal
et al. 2010). Estimates of genetic ancestry at the individual level, such as those shown in
Figure 15.4, help to avoid the misperception that humans can be accurately categorized into
discrete, mutually exclusive categories.
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Population genetic theory and methods have also been highly useful in the forensics arena,
where genetic variation in populations must be assessed to derive accurate random match
probabilities (i.e. the probability that someone else in a population could have the same
genotype profile as the suspect under criminal investigation) (Kayser and De Knijff 2011).
Population stratification, which can be analyzed using population genetic methods, plays
an important role in accurately estimating these probabilities. In addition, the patterns of
variation revealed in large-scale population genetic studies help to assess the appropriateness
of reference populations used in forensic analysis.

Finally, population genetics has contributed substantially to the goal of identifying and char-
acterizing disease-causing genes. Disease-causing variation is a subset of genetic variation in
general, and the same evolutionary processes can affect both neutral and disease-causing vari-
ants. Population genetic concepts such as HWE and linkage disequilibrium are used routinely
in searches for disease-causing genes (Manolio 2013; Visscher et al. 2017). Evolutionary con-
servation across species is used to assess the functional significance of both non-coding and
coding DNA (Encode Project Consortium 2012) and to help assign pathogenicity scores to can-
didate disease-causing variants (Cooper and Shendure 2011). Studies of population genetic
variation have helped to elucidate the roles of rare and common alleles in disease causation
(Tennessen et al. 2012; Quintana-Murci 2016). Population genetic datasets such as the 1000
Genomes Project (Auton et al. 2015) provide invaluable information on the rarity and distribu-
tion of disease-causing candidates. They also help to estimate the extent to which genetic find-
ings in one population can be applied to others (Rosenberg et al. 2010; Marigorta and Navarro
2013). It is fair to state that, without a good understanding of population genetics and variation,
our ability to detect and understand disease-causing variation would be severely compromised.

Summary

Human population genetics has evolved considerably in the past several decades. Most theo-
retical and methodological advances have been driven by two factors: vast improvements in
computational power and a wealth of detailed genetic data, now typified by whole genome
sequences. Because of these changes, it is now possible to infer detailed aspects of popula-
tion history, including population bottlenecks and expansions, migration events, and natural
selection on both Mendelian and polygenic traits. Because of the complexity of human demo-
graphic history, it remains challenging to parse some of the more subtle aspects of human
genetic evolution, such as soft selective sweeps and repeated admixture events. Nevertheless,
substantial progress is being made in solving these challenges. With the steady accumulation
of data, methods, and findings, population genetics will doubtless play an ever-increasing role
in our understanding of human evolution, health, and disease.

Internet Resources

Ancestry and admixture estimation and dating
1000 Genomes Project www.internationalgenome.org
ADMIXTOOLS reich.hms.harvard.edu/software
ADMIXTURE software.genetics.ucla.edu/admixture
BCFtools samtools.github.io/bcftools
Frappe med.stanford.edu/tanglab/software/frappe.html
GLOBETROTTER paintmychromosomes.com
HAPMIX www.stats.ox.ac.uk/~myers/software.html
TreeMix web.stanford.edu/group/pritchardlab/software.html
VCFtools vcftools.github.io/index.html

http://www.internationalgenome.org
https://reich.hms.harvard.edu/software
http://software.genetics.ucla.edu/admixture
https://samtools.github.io/bcftools
http://med.stanford.edu/tanglab/software/frappe.html
http://paintmychromosomes.com/
http://www.stats.ox.ac.uk/~myers/software.html
http://web.stanford.edu/group/pritchardlab/software.html
https://vcftools.github.io/index.html
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Detection of natural selection
CMS and CMSGW www.broadinstitute.org/cms/cms-composite-

multiple-signals
MEGA7 (Tajima’s D, HKA, etc.) www.megasoftware.net
Singleton density score (SDS) web.stanford.edu/group/pritchardlab/software.html
Selscan (integrated haplotype score [iHS] and
cross-population extended haplotype
homozygosity [XP-EHH])

hernandezlab.ucsf.edu/software

Population history inference
Dadi bitbucket.org/gutenkunstlab/dadi
Multiple sequentially Markovian coalescent
(MSMC)

github.com/stschiff/msmc github.com/stschiff/
msmc2/releases

MSMC-tools github.com/stschiff/msmc-tools
Pairwise sequentially Markovian coalescent
(PSMC)

github.com/lh3/psmc

Samtools www.htslib.org
SHAPEIT mathgen.stats.ox.ac.uk/genetics_software/shapeit/

shapeit.html

Population structure analysis
EIGENSOFT www.hsph.harvard.edu/alkes-price/software
EIGENSTRAT www.hsph.harvard.edu/alkes-price/software
fineSTRUCTURE paintmychromosomes.com
PLINK zzz.bwh.harvard.edu/plink
PLINK2 zzz.bwh.harvard.edu/plink/plink2.shtml
STRUCTURE, fastSTRUCTURE web.stanford.edu/group/pritchardlab/structure.html
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Metagenomics and Microbial Community Analysis
Robert G. Beiko

Introduction

The human microbiome, defined by Joshua Lederberg as “…the ecological community
of commensal, symbiotic, and pathogenic microorganisms that literally share our body
space,” is of central importance to human health. Environmental microbiomes are equally
important as they support the basic biological processes upon which all life depends, and their
response to changing climate will fundamentally influence the health of the biosphere.
We can now investigate the composition and function of the microbiome in depth using
techniques such as metagenomics, where environmental DNA sequencing is used to provide
an in-depth cross-section of the taxonomic and functional diversity of a metagenome sample.
Metagenomics and other techniques have driven a rapid growth in the scope of exploratory
and experimental studies performed on the microbiome. While metagenomic data analysis
makes use of classical bioinformatic techniques including sequence alignment and homol-
ogy assessment, the high level of biological diversity in most samples (often >100 named
species) and fragmentary nature of the sequence data present unique challenges that require
the development of specialized bioinformatic techniques.

Metagenomic sequence analysis and related approaches can provide a detailed, if incom-
plete, profile of the microbiome. Modern DNA sequencing platforms can generate tens
of millions of short (150–250 nt in length) DNA sequences that represent a sample of the total
DNA present in a microbial community. Starting with these sequence reads, the challenge
of metagenomic data analysis is to infer community structure and function in a given
sample and to enable comparisons across multiple samples. With taxonomic and functional
information in hand, researchers can ask detailed questions about microbial communities,
such as: “Are there consistent microbial signatures in chronic conditions such as Crohn’s
disease and type II diabetes?,” “What is the microbial carbohydrate catabolic potential
in cattle rumen?,” “How is the human microbiome influenced by diet and how does it impact
human health?,” “What constitutes ‘normal’ seasonal variation in freshwater microbial
communities?,” and “How is this seasonal variation influenced by rare disturbance events?”

Many computational steps are needed to span the gap between raw sequence reads
and robust ecological inferences. Although many excellent algorithms and software tools
have been developed for microbiome analysis, many methods make assumptions that
may be at odds with the actual structure and function of the community. A widely cited
example is the problem of compositionality in normalized taxonomic abundance profiles.
For instance, representing sequence counts as microbial population proportions can induce
false correlations among taxa and incorrect inferences of community structure. To provide an
overview of metagenomic data analysis, this chapter will focus on three central challenges:
(i) making sense of fragmentary and incomplete DNA sequence data, (ii) using appropriate
representations of community diversity and function, and (iii) finding appropriate techniques
to summarize and compare microbiome samples.

Bioinformatics, Fourth Edition. Edited by Andreas D. Baxevanis, Gary D. Bader, and David S. Wishart.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/baxevanis/Bioinformatics_4e
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Although prokaryotic organisms (i.e. bacteria and archaea) are often the focus of micro-
biome studies, other entities including viruses, single-celled eukaryotes, and even small
multicellular organisms such as nematodes can be considered as part of the microbiome.
However, the choice of experimental technique strongly influences the type of informa-
tion that is recovered. For example, marker-gene analyses that amplify a specific region
of the genome via the polymerase chain reaction (PCR) often target only prokaryotes, and,
depending on the choice of primers, may return information only for bacteria. Assessing
viruses requires a different set of techniques including selective filtration, and computational
approaches that depend on a single, universal marker gene cannot be used. The choice
of target organisms may be explicitly hypothesis driven, or implicit owing to the choice
of assessment technique.

Why Study the Microbiome?

In a study published in 2017, researchers examined the effect of microbiota transfer therapy on
symptoms associated with autism spectrum disorder (ASD). The trial introduced a “healthy”
set of gut microbes into a set of children with ASD over the span of 7–8 weeks. The findings of
the study were remarkable: not only did the severity of gastrointestinal symptoms drop by over
80%, but clinical symptoms associated with autism showed marked and persistent improve-
ment (Kang et al. 2017). How can microbial therapy have such a profound effect on health
and cognitive status? The key lies in the metabolic and signaling interactions that link the gut
microbiota and the host. In the case of autism, different types of bacteria have been associated
positively and negatively with ASD, although no precise microbial “signature” has yet been
identified. The mechanisms that drive host–microbe interactions in ASD are difficult to assess
and work is ongoing, but immune dysregulation induced by the microbiome is likely to play a
key role (Vuong and Hsiao 2017).

A key element to assessing the impact of interventions such as microbial therapy on the
patient is an assessment of changes in the microbial community that are induced by the inter-
vention. To do this, it is necessary to perform “before and after” assessments of the microbiota.
How can this be done? Culturing the complete repertoire of bacteria is impractical and, in
many cases, impossible because of the large number of species and the recalcitrance of many
species to be grown in the laboratory. The most widely used approach is to collect molecular
data using high-throughput DNA sequencing approaches, then use bioinformatic techniques
and reference databases to connect the observed information (such as DNA sequences) with
information about the taxonomic diversity and molecular functions present in a sample. In the
case of the autism study outlined above, the authors used DNA sequences as proxies for micro-
bial biodiversity, and were able to correlate the abundance of taxa such as Bifidobacterium and
Prevotella with patient improvements in a number of standardized assessments for symptoms
of autism.

Hypothesis-driven experimental and clinical studies can provide detailed information about
the relationship between changes in the microbiome and changes in, for example, the health of
a human host. Even surveys of the microbiome from a set of human subjects or environmental
samples can be highly informative. Large-scale microbiome mapping projects, including the
first Human Microbiome Project (Turnbaugh et al. 2007; Huttenhower et al. 2012), focused
their efforts on constructing a baseline microbiome found in nominally healthy human sub-
jects. Many studies have compared the microbiome of individuals in different countries, differ-
ent geographic areas within the same country, or even different buildings and transit centers
within a single city. Metagenomic analysis has also been used to identify and profile specific
functional genes within the human microbiome, including genes for vitamin and short-chain
fatty acid synthesis, as well as genes that confer antimicrobial resistance.

Environmental microbiome studies have expanded our knowledge of the microorganisms
that underpin nutrient cycling and sustain most ecological interactions. Early investigations
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of the ocean microbiome revealed the presence of SAR11, which is now known to be the most
abundant group of microorganisms in the ocean. Metagenomic analysis revealed a signifi-
cant amount of variation and potential environmental filtering of SAR11 types, suggesting
different ecological interactions and different impacts on nutrient cycling depending on the
geographic location (Brown et al. 2012; Giovannoni 2017), and latitudinal gradients of biodi-
versity and function. Metagenomic analysis of the Gulf of Mexico after the 2010 Deepwater
Horizon oil spill revealed an increased presence of organisms such as Oceanospirillum that
were capable of oil degradation (Lu et al. 2012). Although this increase suggests a potential
for the use of Oceanospirillum in bioremediation, its impact in the aftermath of the Deepwater
Horizon oil spill is uncertain. Other large-scale environmental surveys have also been com-
pleted, such as the Tara Oceans initiative (Sunagawa et al. 2015) and the Earth Microbiome
Project (Thompson et al. 2017). In addition to the discovery of novel taxonomic groups and
ecological associations, such surveys provide a baseline and a reference database for future
studies. As the Earth’s biodiversity suffers increasing pressure as a result of environmental
damage and climate change, understanding the environmental microbiome will be of central
importance in both assessing and anticipating the impacts of change, and developing mitiga-
tion strategies.

The Origins of Microbiome Analysis

A pioneering analysis in 1985 profiled genetic sequence data directly from the environment
(Stahl et al. 1985). Using direct sequencing of 5S ribosomal RNA (rRNA), the authors were
able to identify relatives of cultured thermophilic organisms and describe the structure of the
microbial community in Octopus Spring at Yellowstone National Park by mapping the recov-
ered sequence into a larger phylogenetic tree. This thermal hot spring, with a slightly alkaline
pH and a temperature of 91 ∘C, was found to have a thriving microbial community with mem-
bers living at higher temperature and pH than their previously characterized distant relatives.
In 1991 the first study based on the 16S rRNA gene (henceforth “16S” or “16S gene”) was pub-
lished, which was used to describe community structure in the Sargasso Sea (the deep blue
sea surrounding Bermuda). With the level of resolution afforded by the 16S gene, the authors
were able to discover the highly diverse and abundant SAR11 cluster of organisms (Giovan-
noni et al. 1990). By the mid-1990s, the pace of 16S surveys was accelerating, driven in part
by decreases in the cost of Sanger sequencing and the rapid increase in available 16S data. As
a result, the Ribosomal Database Project (RDP; Cole et al. 2014) saw a massive increase in its
sequence collection, from just 471 to over 100 000 ribosomal sequences in the 10 year period
between 1992 and 2001.

Although metagenomics has become nearly synonymous with DNA sequencing in the
twenty-first century, the first use of the term was by Handelsman et al. (1998), who used
functional cloning vectors to express genes isolated directly from the environment. The term
“metagenomics” refers to the study of multiple genomes at a time in a manner that does
not depend on bacterial isolation and culture. However, the term grew to encompass other
environmental characterization approaches, particularly direct DNA sequencing from the
environment, which was the centerpiece of landmark papers that focused on characterizing
the microbiome of the Sargasso Sea and acid-mine drainage environments (Tyson et al.
2004; Venter et al. 2004). Despite the utility of DNA sequencing in characterizing microbial
communities, the presence of genes in a sample does not guarantee that they are actively
contributing to biochemical processes in the corresponding system. DNA surveys based on
marker genes and metagenome samples do not differentiate the expression of genes under
different conditions, or the metabolic consequences of gene expression. This limitation has
spawned an expanded set of “meta-omic” or “multi-omic” techniques, so named because
they span multiple methods of assessment, including metatranscriptomics, metaproteomics,
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and meta-metabolomics that target community RNA, protein, and metabolite composi-
tion, respectively. These approaches can distinguish samples that do not show substantial
differences in DNA content. However, these techniques are more expensive and sample
preparation and storage are typically more complicated. These emerging methods hold great
promise, but, given the widespread use of DNA-based approaches, the majority of this chapter
will focus on marker-gene and metagenomic analysis.

Metagenomic Workflow

There are many variations in the analysis of metagenomic and related types of data, but there
are strong similarities in the experimental and analytical pipelines used for all such studies
(Figure 16.1).

• Sample collection is performed according to a standard collection protocol. This protocol
may involve filtering by size, core sampling, swabbing, and the like. An important consid-
eration is the choice of conditions used to store the DNA. For instance, leaving samples at
room temperature for a substantial length of time can negatively impact the composition of
the microbial community along with the taxonomic and functional distribution of the gen-
erated sequences (Choo et al. 2015). Samples prepared for other types of approaches (e.g.
metatranscriptomics) must be treated with extra care. For example, samples that will be
characterized using mass spectrometry must not be frozen prior to extraction.

• The technique used for DNA sequence extraction typically depends on the source habitat
for reasons of chemistry and physical consistency of samples. For example, soil samples
typically contain humic acids – compounds that interfere with enzymes used to prepare
and sequence DNA – so techniques such as DNA purification must be performed prior to
DNA sequencing.

• Preparation for DNA sequencing is then performed by constructing a sequence “library.”
A sequence library is a collection of specially prepared DNA fragments derived from the
genome or genomes being sequenced. The library preparation step may involve DNA shear-
ing, amplification via PCR, the addition of adapters to facilitate sequencing, and the addition
of short, distinctive DNA sequences (Hamady et al. 2008) to distinguish multiple samples
that are being sequenced in the same run. The preparation protocol is usually specific to the
DNA sequencing platform that will be used.
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Figure 16.1 General workflow for DNA-based microbiome analysis.
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General Considerations in Marker-Gene and Metagenomic
Data Analysis

Refinements to the general workflow described above can have significant impacts on the
downstream bioinformatic analyses that need to be performed.

The choice of DNA sequencing platform can strongly influence the recovery of information
about the microbiome. DNA sequencing technology is changing rapidly, and the selection of
a sequencing platform for a given analysis will depend on a combination of factors including
cost, expected error rate, expected error profile, read length, and availability. As the sequencing
cost per nucleotide base continues to drop and new technologies emerge, the best choice of
platform for a given project will change. In general, diversity studies benefit from longer read
lengths. Marker-gene studies are often based on short fragments of a gene, but sequencing
longer fragments or the entire gene provides more resolution for taxonomic classification. In
shotgun metagenome studies, the determination of which DNA fragments came from which
genomes is greatly assisted by the availability of reads that are >1000 nucleotides in length.
Such reads are more likely to span regions that are difficult to assemble, such as repetitive,
low-complexity regions or paralogous genes. This facilitates the assembly of larger contigs.

Several sequencing platforms currently account for nearly all environmental DNA studies.
The Illumina series of DNA sequencing machines produce a very large number of sequence
reads at relatively low cost, but sequence reads are short – typically only 150–300 nt in length.
The sequencing error rate of Illumina machines is approximately 0.1%. Given their popularity,
short-read Illumina sequence data will be the focus of much of this chapter, although other
techniques will be mentioned as appropriate. The Pacific Biosciences (PacBio) RS II produces
much longer reads, with a median read length typically between 5000 and 10 000 nt. While
this can be an advantage for microbial community analysis, the sequencing error rate (>10%) is
very high. It is common in many applications to use long PacBio reads to create an approximate
scaffold of metagenomic contigs, then do Illumina sequencing to correct errors to the greatest
extent possible. Nanopore sequencing is relatively new and is beginning to see applications
in many areas of investigation. Like PacBio, the Oxford Nanopore MinION can produce long
reads, although it also suffers from a relatively high error rate. The Nanopore approach is the
most costly per nucleotide of sequence, but its current key advantages are portability and the
ability to do “real-time” sequencing.

Data quality is a significant concern in metagenomic and marker-gene studies. As men-
tioned above, sequencing errors can present significant challenges to analysis. All DNA
sequencing platforms produce errors, but different platforms generate different types of errors
(e.g. sequence substitutions versus insertions). It is therefore necessary to filter sequence reads
based on quality metrics, which are often represented in a FASTQ-formatted file (Cock et al.
2009). Phred scores are a widely used measure of sequence quality, and express the probability
of a base being called incorrectly. FASTQ files augment the typical sequence and header
information with a base-by-base representation of Phred scores. FastQC (www.bioinformatics
.babraham.ac.uk/projects/fastqc) is a widely used tool to summarize sequence reads from a
sample based on their Phred scores, and perform trimming of low-quality sequence regions
and removal of low-quality reads (Figure 16.2).

Typically, reads with an average quality score below a given threshold will be removed, as
will sections of reads with low-quality base calls. Although different quality thresholds can be
used, a common approach is to truncate reads after encountering a nucleotide with associated
quality less than a given threshold, or to discard a read entirely. Chimeric sequences can also
arise during the process of PCR; since these are derived from parts of two different sequences,
they are very misleading from a taxonomic perspective and should be removed.

The computational cost of analysis is also important. Given that many metagenomic datasets
contain a million or more sequence reads, applications whose run time or memory usage scales
quadratically, or worse, with input dataset size will not be viable unless the datasets are very
small or have been aggressively filtered prior to a detailed analysis. A simple example would

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Figure 16.2 FastQC summary of DNA sequence read quality for an Illumina sequencing run. For each
read position (horizontal axis), the distribution of quality scores (vertical axis) is shown. Although the
first few read positions have good scores on average (green band), quality score distributions increase
rapidly, with many sites showing poor quality across all reads (red band). Source: www.bioinformatics
.babraham.ac.uk/projects/fastqc/bad_sequence_fastqc.html.

be an all-versus-all homology search. In this example, a dataset containing n sequences would
require approximately n × n = n2 comparisons, but a dataset twice as large would require
2n × 2n = 4n2 comparisons. With metagenomic datasets comprising hundreds of millions of
reads and reference databases comprising tens of thousands of sequenced genomes, these scal-
ing properties are prohibitive and efficient alternatives are required. Sequence alignment is
an area where scaling performance has been intensively studied; see Baichoo and Ouzounis
(2017) for a review.

The two primary classes of sequence-classification approaches used in microbiome analysis
are sequence searching/alignment and compositional similarity. Sequence searching and
alignment can be used to identify homology and the degree of similarity between query
sequences and sequences in a reference database (see Chapter 3). Compositional similarity
is a method in which sequences are decomposed into summary vectors wherein each vector
element describes one attribute of the sequence. By far the most common such representation
involves k-mers (described in greater detail in Taxonomic Assignment and Profiling), where
a sequence is decomposed into all its constituent words of length k. While k-mers sacrifice
information about the positional context of words within the larger sequence, they can
be orders of magnitude faster to compute than sequence alignment approaches. Sequence
searching/alignment and compositional similarity approaches have been adapted from
methods developed before the advent of metagenomic sequencing, but refinements to these
methods have been necessary to address the unique aspects of metagenomic datasets.

Another important consideration in metagenomic data analysis is the completeness and
reliability of reference databases. Databases of 16S genes now contain in excess of 2 million
sequences with assigned taxonomic information, but environmental 16S surveys inevitably
yield sequences with very low levels of similarity to any sequences in the reference database.
What should be done with these mystery sequences? One option is to use an unsupervised

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/bad_sequence_fastqc.html
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/bad_sequence_fastqc.html
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approach that associates environmental sequences with one another based on sequence
identity or some other criterion, rather than via comparison with a reference database.
Another option is to report information at some higher level; for example, a given sequence
might be confidently classified to phylum Proteobacteria, but not to any more specific
level. In this case, the sequence could be included in a high-level taxonomic summary but
excluded from other ranks. Reference taxonomic databases also demonstrate the limitations
of prokaryotic taxonomy, as sequences associated with different taxonomic groups are often
commingled in 16S trees (see Chapter 9).

Similar limitations apply in the assignment of functional annotations to metagenomic reads.
Functional assignment via homology (using BLASTX or other sequence-searching algorithms
outlined below; see also Chapter 3) is common practice, but reference databases contain many
genes of unknown function. Even in Escherichia coli strain K-12 MG1655, the most intensively
studied of all microorganisms, many predicted genes are identified as “hypothetical” or “puta-
tive.” Predicted genes in many metagenomic sequence datasets often match genes of no known
function and must, therefore, be discarded or binned as “other” in functional summaries.

Another important consideration is the ecological relevance of observed microbial/sequence
diversity collected from a given sample site. The Baas-Becking hypothesis that “Everything
is everywhere, but, the environment selects” is true for many microorganisms, as they are
highly mobile and not limited by barriers to migration (Baas-Becking 1934). Nearby habitats
are highly connected, as is clearly illustrated by the transmission of pathogens from host to
host, as well as the recolonization of nearby habitats after an environmental disturbance. While
fecal samples are often used as proxies for the human gut microbiome, targeted studies have
demonstrated that different parts of the gut can harbor different types of microorganisms, and
a fecal sample may represent a mixture of organisms from different sub-habitats (Stearns et al.
2011). Migration and habitat connectivity can lead to microbial communities which contain
organisms that are ecologically irrelevant. Deep sequencing of ocean habitats (Caporaso et al.
2012) has revealed the presence of many sequences at extremely low levels of abundance. As
a result, the organisms represented by these sequences may, in many cases, have a minimal
impact on the surrounding environment. However, it cannot be assumed that rarity implies
irrelevance, as rare groups can provide essential metabolic processes, and some rare taxa show
occasional spikes in abundance, a property known as conditional rarity (Shade et al. 2014).
Repeated sampling and repeated experiments can potentially distinguish rare from irrelevant
taxa, but, in any case, the researcher must be careful in making assumptions about the ecolog-
ical relevance of observed taxa and functions.

Marker Genes

A marker gene is any DNA sequence with some expressed function (typically a structural RNA
or protein) that is present in all members of a taxonomic group of interest, and sufficiently
variable to distinguish different members of the group. The 16S gene is a marker gene that
dominates general surveys of bacterial and/or archaeal diversity, for several reasons. First, as
a key structural component of the ribosome, 16S rRNA is present in all prokaryotes. Second,
since the 16S gene has long served as the basis for early molecular phylogenetic studies, it
has been extensively characterized in many microorganisms and serves as the most compre-
hensive genetic biodiversity resource available. Third, the 16S gene contains highly conserved
regions that serve as useful sites for PCR priming across a wide swath of biodiversity. Fourth,
conserved regions flank nine variable regions that are specific enough to resolve many groups
to the genus, species, or strain level (Figure 16.3). Fifth, since the 16S gene does not encode
a protein, it does not exhibit the usual pattern of codon degeneracy, which would complicate
primer design.

Consequently, using a relatively simple protocol involving the isolation and sequencing of
16S genes, it is possible to characterize the majority of bacterial diversity in a sample. This
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Figure 16.3 Primary structure and variable regions of the 16S ribosomal RNA gene. Hypervariable
regions with high entropy can distinguish different lineages of bacteria, while low-entropy regions
are suitable for polymerase chain reaction primer design. Colors indicate the number of times a given
homologous site is observed in archaeal sequences in RIM-DB (Seedorf et al. 2014). Source: doi.org/
10.7717/peerj.494/fig-2.

strategy has been successfully implemented in thousands of environmental DNA surveys.
However, when designing a 16S experiment, it is important to keep in mind several limitations
of the approach. First, multi-copy genes can lead to over-representation of some bacteria in
an amplified sample, requiring stoichiometric corrections (Kembel et al. 2012). In rare cases,
multiple copies may differ by up to 10% in their nucleotide sequence, making correct species
assignment difficult. Second, when designing an amplicon experiment based on short reads, it
is important to choose specific primer pairs that target a subset of all variable regions. Primer
bias may lead to over-representation of certain genes at the expense of others, and each choice
of primer pairs can miss certain genes entirely. Studies performed with different variable
regions cannot be compared reliably. Third, the 16S gene cannot always resolve very close rela-
tionships within species or isolates, as any observed variation may be due to sequencing errors.

In spite of these limitations, the 16S gene remains the most widely used target for metage-
nomic studies and can generate robust results that are at least internally consistent within
a study. If the drawbacks of 16S are unacceptable for a given study, a common approach
is to use alternative markers or to make taxonomic inferences directly from metagenomic
data as described in Metagenomic Data Analysis. Examples of markers that are useful across
a wide range of taxa include the chaperone gene cpn60, which is present in single copy
across a broad range of microorganisms, and rpoB′, which encodes a subunit of the RNA
polymerase holoenzyme, which is useful for some taxonomic groups such as halophilic
archaea. Lineage-specific marker genes can provide better resolution at the species and strain
level: for example, within the proposed species Candidatus “Accumulibacter phosphatis” the
polyphosphate kinase (ppk) gene is often used to resolve ecologically distinct sublineages
within the group. The intergenic transcribed region (ITS) between the 16S and 23S genes
(Box 16.1) is highly variable because of diminished selection pressures, and can also be
used for profiling of closely related taxa within a sample. Alternative markers are far less
extensively characterized than the 16S gene, but are nonetheless sufficient to resolve diversity
at the desired level in many cases.

Box 16.1 Ribosomal RNA Genes

The ribosome is the protein synthesis center of the cell and is essential to all living
organisms. Its structure is very complex, and in prokaryotes the ribosome comprises three
RNA molecules (termed ribosomal RNA or rRNA) and approximately 50 different pro-
teins. The prokaryotic rRNAs are referred to by their Svedberg sedimentation constant,
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with 5S (∼120 nt in length), 16S (∼1500 nt), and 23S (∼2900 nt) subunits. In addition to
their universal distribution across the tree of life, rRNA genes have an advantage over
protein-coding genes as their diversity is not influenced by redundancy in the genetic
code since they are not translated into protein. Instead, mutation and substitution rates in
16S are governed by structural interactions with varying degrees of conservation. Among
rRNA genes, 5S is often viewed as too short and lacking sufficient variational informa-
tion to support broad phylogenetic surveys, although its length was an advantage in early
studies. The 23S gene has considerable potential (Hunt et al. 2006) and is indexed in
databases such as the Ribosomal Database Project and SILVA, but it has been far less
intensively studied and is much more poorly represented in reference databases, validated
polymerase chain reaction primer pairs, and protocols. Between the 16S and 23S lies the
intergenic (or internal) transcribed spacer (ITS) region, which is present in all prokaryotes
but evolves much more quickly because of diminished selective pressures. This region,
which can contain short transfer RNA-encoding genes, is very useful for differentiating
closely related organisms whose 16S rRNA genes may be identical. For example, Rocap
et al. (2002) used ITS sequences to differentiate the closely related but highly ecologically
diverse cyanobacterial genera Prochlorococcus and Synechococcus.

Eukaryotic organisms have the homologous 18S rRNA gene, which serves the same function
in the ribosome as the 16S gene and is also a useful taxonomic marker. The 18S gene shares
many of the advantages and disadvantages of the 16S gene. However, it is difficult to target
18S analysis to the microbiome specifically, since many microbial eukaryotes share greater
similarity with their closest multicellular relatives than they do with one another. In some
cases, these microbial eukaryotes can also exhibit highly divergent 18S sequences that make
the generation of universal primers difficult. Another problem linked with 18S microbiome
analysis is that many habitats, including the human gut, are flooded with host DNA that can
dominate the results of a DNA sequencing run. Since these host DNA sequences are often
not of interest, they represent wasted sequencing effort that impedes the recovery of adequate
microbiome 18S information. Techniques such as the use of blocking primers that specifically
interfere with the amplification of host DNA are often used.

Although many software tools have been developed to execute different steps in the bioin-
formatic analysis of 16S sequences, two software packages, QIIME (Caporaso et al. 2010) and
mothur (Schloss et al. 2009), implement standardized pipelines that have been used in the
majority of 16S analyses. Variants that address important limitations and assumptions of the
basic workflow have been developed; in some cases, these variants are gaining widespread use.

Quality Control

PCR chimera checking is done using software such as UCHIME (Edgar et al. 2011). The clear-
est signal of a potential chimeric sequence is when different regions of a sampled sequence
have strong matches to different sequences in a reference database, or in the sample. Rather
than attempt to reconcile each part of the sampled sequence, it is simply discarded from the
analysis.

Grouping of Similar Sequences

Once quality control has been performed, sequences must be assigned to groups that will
serve as indivisible “units” in a downstream analysis. The most straightforward approach is
to treat each group of unique sequences separately, but this strategy has two key limitations.
First, quality control cannot screen out all sequencing errors, and the filtered dataset will still
contain sequences that differ from true environmental sequences. Second, an environmental
survey can generate tens of thousands of unique sequences or more, which may pose a barrier
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to downstream analyses whose efficiency decays rapidly with increasing numbers of units.
Therefore, it is common to use a clustering strategy that groups sequences into larger units
based on some measure of similarity. Alternatively, newer approaches aim to build clusters
that are flexibly defined based on the distribution of similar sequences in the sample, rather
than on a universal similarity threshold.

An operational taxonomic unit or OTU is a grouping of entities (sequences in this con-
text) that collectively satisfy a pre-defined similarity criterion. OTUs are simply pragmatic
proxies for microbial “species.” Still the most widely used approach in marker-gene analy-
sis, OTUs are commonly defined based on sequence similarity expressed as a percentage. A
common threshold for defining OTUs is 97%, since similarity at this identity level is a widely
accepted species definition for prokaryotes (Stackebrandt and Goebel 1994) and is sufficient
to group real sequences and their close variants generated by sequencing errors into a sin-
gle unit. However, the approach suffers from major drawbacks. In particular, 97% OTUs can
merge sequences from organisms with very different roles in the microbiome. Conversely, eco-
logically cohesive groups may be split up into multiple 97% OTUs. Another key limitation is
that 16S gene sequences do not cluster perfectly into distinct OTUs. Ideally, an OTU, defined at
a given similarity threshold, would contain sequences that all satisfy that threshold, and would
contain no sequences that are also highly similar to sequences in a different OTU. However,
this is not the case, and techniques are needed to untangle complicated relationships among
sequences to yield coherent OTUs. A common approach is to define a seed sequence, either a
best match to a reference database or a designated sequence within the sample, that is used to
recruit other sequences into its cluster. In this context, all sequences with 97% or greater iden-
tity to a given seed sequence would be assigned to the seed’s cluster, even if they had similarity
to other sequences not assigned to this cluster. However, the resultant grouping of sequences
into OTUs can depend heavily on centroid selection.

Amplicon sequence variant (ASV) approaches present alternatives to the OTU approach
that are more sensitive to patterns of sequence variation specific to a given dataset. For
example, Swarm clustering (Mahé et al. 2014) is an alternative to fixed threshold OTU
clustering. The Swarm application performs greedy single-linkage clustering by identifying
seed sequences at random, then growing the corresponding clusters by adding all other
sequences that satisfy a pre-specified identity threshold. Since this process is repeatedly
performed until all clusters have stabilized, there is no dependence on the choice of initial
seed. The greedy approach can occasionally generate clusters that are too large, so a second
step is implemented which can break up these clusters. The refinement step considers the
relative abundance of observed sequences within a cluster, and breaks connections in cases
where abundant sequences (“peaks”) are connected only via less abundant intermediates
(“valleys”).

Oligotyping (Murat Eren et al. 2013) is another type of clustering approach. It attempts to
distinguish true sequence variation from sequencing errors by distinguishing mutations at dif-
ferent sites in the 16S gene. Intuitively, if a site in the 16S gene shows large amounts of variation
within an OTU, then sequence differences at that site are likely to reflect true mutations. By
contrast, sequencing errors are distributed randomly across the gene and will thus appear at
sites that are otherwise invariable. Oligotyping implements this idea by calculating the Shan-
non diversity across all sites in the 16S gene, and using only those sites with high information
content (i.e. greater variation) to define types that can be considered as independent entities.

DADA2 (Callahan et al. 2016) is a recent clustering method that uses error-rate information
to model the probability that an observed sequence variant i is produced by a sequencing error.
The algorithm uses error probabilities and a Poisson model to determine if the abundance of
the variant i is easy to explain as an error variant or a true sample sequence variant j. A low
abundance of i relative to j yields a large p value, indicating that i is likely an error variant,
while a high abundance relative to j suggests that i is a true sequence variant. The algorithm
works iteratively from a single, large partition of all sequences, gradually subdividing the set
until all subsets represent a single true sequence and its error variants.
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The choice of clustering approach can have a dramatic impact on the number of units recov-
ered and the corresponding downstream analysis. For example, a study by Koskinen et al.
(2017) examined the number of groups recovered using either OTU clustering or the DADA2
pipeline. Using a PCR primer pair designed specifically to target archaea, the authors recovered
between 320 and 490 OTUs (with a 97% identity cut-off) from a single stool sample, depend-
ing on the processing pipeline used, versus only eight DADA2 clusters from the same sample.
Given the explicit models used by DADA2, the authors of the study viewed its predictions as a
more accurate assessment of archaeal diversity in the microbiome.

Taxonomic Assignment

Since the principal value of marker-gene analysis is to assess the taxonomic profile and diver-
sity of a given sample, assignment techniques are needed to make this link (Box 16.2). There are
two basic strategies for taxonomic assignment: supervised approaches use a reference database
to make assignments to specific taxonomic groups, whereas unsupervised approaches build
representations from within the dataset (for example, OTUs with no assigned taxonomy), mak-
ing no recourse to reference information. Hybrid approaches, where reference database assign-
ments are complemented by unsupervised assignments of sequences with no high-confidence
database match, can also be used.

Box 16.2 Diversity at Different Taxonomic Ranks

Bacteria and archaea are classified according to the traditional Linnean hierarchy of
kingdom (or superkingdom or domain), phylum, class, order, family, genus, and species.
However, microorganisms that share the same taxonomic name can have very different
properties that impact their ecological role in the microbiome. For example, the genus
Escherichia, which largely encompasses the named species E. coli, includes pathogens
that affect a wide variety of hosts, including toxigenic foodborne pathogens such as
strains O157:H7 and O104:H4. However, the group also includes strain K-12, which is
harmless and has served as the model organism for much of molecular biology, and strain
Nissle, which is recognized as having probiotic properties (Sonnenborn and Schulze
2009). Generalizations based on taxonomic names must be treated with great caution.
A higher abundance ratio of the dominant phyla Bacteroidetes to Firmicutes in the gut
has been associated with reduced obesity and other conditions (Ley et al. 2005), but
both phyla encompass symbionts (for example, many short-chain fatty acid-producing
members of the Lachnospiraceae family within Firmicutes) and pathogens (including
Bacteroides fragilis within Bacteroidetes). Prokaryotic taxonomy is also highly contentious
and fluid, in part because of the avalanche of new organisms that are being discovered
and described both in the environment and in the laboratory.

Four reference databases are commonly used for taxonomic assignment: the RDP (Cole et al.
2014), Greengenes (DeSantis et al. 2006), SILVA (Quast et al. 2013), and the National Center for
Biotechnology Information (NCBI) non-redundant (nr) sequence database (NCBI Resource
Coordinators 2018). These databases differ substantially in size, coverage of different taxo-
nomic groups, and the source of their taxonomic assignments. Indeed, other work (Balvočiūtė
and Huson 2017) showed discrepancies in the taxonomic assignments provided by each of
these resources.

Given the richness of reference databases, a common strategy is to perform taxonomic
assignment of amplified sequences by comparing against a database of sequences with known
taxonomic assignments. These assignments are typically done based on sequence similarity,
which can be expressed in different ways. Similarity can be based on a simple search,
where taxonomy is assigned to a sampled sequence based on its best match in a reference
database. However, this approach suffers from limitations, particularly when a gene matches
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Similarity: vector dot product
Sim(S1,S2) = ϕ1iϕ2i = 11∑

i

Dissimilarity: Euclidean distance

D(S1,S2) = (ϕ1i – ϕ2i)
2 = 2.828∑

i

AGCCTCGTTAACG
AGCTTCAAAGACG

S1
S2

ϕ1 ϕ2

1AA 2
1AC 1
1AG 2
0AT 0
0CA 1
1CC 0
2CG 1
1CT 1
0GA 1
1GC 1
0GG 0
1GT 0
1TA 0
1TC 1
0TG 0
1TT 1

Figure 16.4 k-mer decomposition of a nucleotide sequence with k = 2. Two sequences, S1 and S2, are
decomposed into overlapping words of length 2. The corresponding 24 = 16 word counts are expressed
as a vector. Calculating similarity and dissimilarity values can then be computed from these vectors.

equally well to sequences from disparate taxonomic groups. A more refined approach is to
use phylogenetic placement, which assigns taxonomy based on the optimal placement of a
sequence in a phylogenetic tree of reference sequences. This approach can provide more
precise taxonomic assignments, especially in the case of relatively novel sequences, but can
be extremely time-consuming as likelihood scores may need to be calculated for all potential
placements within a tree. Pplacer (Matsen et al. 2010) is an example of a popular phylogenetic
placement software package.

k-mer decomposition is an alternative approach to taxonomic assignment that sacrifices
some information within DNA sequences to dramatically increase the speed of an analysis.
Instead of representing a DNA sequence as a complete series of bases, decomposition con-
verts a sequence to counts of short, overlapping sequences of length k. For example, with
k = 2 the sequence AGCCTCGTTAACG would be represented as {AA} = 1, {AC} = 1, {AG} = 1,
{AT} = 0, and so on (Figure 16.4). Sequences can then be compared based on their k-mer distri-
butions by expressing the distance between a pair of sequences in terms of the Euclidean dis-
tance between their frequency vectors. For taxonomic assignment, both the reference sequence
database and the set of sampled sequences are converted into k-mer distributions, and statisti-
cal or machine learning approaches are used to compare these decompositions. The Ribosomal
Database Classifier (Wang et al. 2007) is a widely used approach that uses a naive Bayes (NB)
classifier trained on the RDP database to assign taxonomic information to sequences. Since
the NB approach produces likelihood and posterior probability scores, sequence classifications
can be constrained such that only predictions with an associated probability greater than a
pre-defined threshold are accepted. Even if precise classification is not possible, assignment at
taxonomic ranks such as class or phylum may have 100% associated confidence.

Calculating and Comparing Diversity

Many concepts initially developed in plant, animal, and fungal ecology have been adapted
to microbial ecology. A particularly important aspect of ecological analysis is the assess-
ment of biodiversity in a descriptive or relative context. The diversity of organisms at a
given site can be a simple yet powerful indicator of the state of that site. For instance, a
human-derived sample with few species or OTUs might suggest a state of poor health (e.g.
dysbiosis); similarly, unexpectedly low diversity in a soil sample may reflect contamination
or other environmental challenges. Single-site or alpha diversity (see Glossary) aims to
express these concepts quantitatively. Another important question relates to the similarity
in taxonomic diversity between two or more sites. Although alpha-diversity measures can be
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contrasted between the sites, it is often of greater interest to identify which specific taxonomic
groups are common between two or more sites, and which are distinct. In this context,
the similarity between two sites may reflect common environmental factors, consistent
interspecies interactions, or other factors. Beta-diversity measures are used to perform these
comparisons.

Samples can be assessed and compared based on specific taxa of interest: for example, those
taxa that disappear after antibiotic treatment. Since 16S analysis generates information about
relative abundance, quantitative calculations of diversity can also be performed. Richness mea-
sures are based on taxonomic presence and absence, whereas diversity measures consider both
the presence and the relative abundance (also known as the evenness) of taxa. Another distin-
guishing feature of diversity calculations is whether they are non-phylogenetic, in which all
units (e.g. species or OTUs) are treated as equally dissimilar; or phylogenetic, in which the rel-
ative similarity of units is accounted for in the diversity calculation. In some analyses, it may
be desirable to consider degrees of similarity such that closely related OTUs contribute less to
overall diversity than do distantly related OTUs.

It is usually necessary to normalize samples in a study to compare them on an equal footing.
Since each sample will have a different number of associated sequences, richness, and diversity
calculations will be biased in favor of samples with either high or low read counts. Rarefac-
tion in the context of OTU normalization involves randomly removing sequences from each
sample until they each have the same sequence count, typically the count of the smallest sam-
ple in the dataset. However, rarefaction discards valid data. Another approach is to divide
the count of each sequence in a sample by the total read count of the sample. While this
approach preserves information, it introduces the problem of compositionality, in which obser-
vations are not independent owing to the normalization. An alternative approach is to use the
zero-inflated Gaussian model implemented in the R package metagenomeSeq (Paulson et al.
2013). This method computes distributions for all OTUs with a strong tendency toward zero
values because of the typical sparsity of OTU tables (i.e. most OTUs are absent from most sam-
ples). Each approach performs well under different circumstances, as recently reviewed by
Weiss et al. (2017).

Alpha-diversity approaches consider the distribution of taxa in a single sample or at a single
site. Rarefaction curves are used to assess the coverage of the total underlying diversity in a
given sample. The key principle in most rarefaction strategies is to assess how much “new”
diversity is added as the sample size is increased, typically by plotting a curve of taxon count
versus sample size. If the count of taxa (e.g. OTUs) increases only very slowly as sample size
increases, then the underlying diversity is likely to be well covered. Conversely, if observed
taxa continue to increase with increasing sample size, then there is very likely poor coverage
of the taxa that are present in the sampled habitat (Figure 16.5).

Richness measures consider the number of taxa present in a sample, without considering
their relative abundance. The simplest measure of richness is to count the number of taxa
observed in a sample. The phylogenetic variant of species counting is to sum all the branches
in a tree that relate the different taxa to one another (Figure 16.6).

Richness measures are straightforward to use, but do not distinguish rare from abundant
taxa, and therefore can be unduly influenced by the large number of rare OTUs that are found
in most microbiome samples. Diversity measures consider both the count of species and their
relative abundance. For example, the Shannon diversity index quantifies the entropy of a sam-
ple using the following formula:

H′ = −
R∑

i=1
pi ln pi

where i iterates over each species with indices 1 … R, and pi is the proportion of species i rela-
tive to all sampled species. The maximum value of the Shannon index increases with increasing
R, and with increasing evenness of the sample (i.e. when pi = 1/R for all i). The Simpson index,
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Figure 16.5 Rarefaction curves for microbial communities sampled from six different habitat types. Two
samples (young secondary regrowth and young rubber garden) are approaching asymptotes more rapidly
than the other samples, suggesting these habitat types have been sampled more completely than the
other four. Source: Labrière et al. (2015; doi.org/10.1371/journal.pone.0140423.s001).

Figure 16.6 Unweighted phylogenetic
alpha- and beta-diversity measures. Left:
the phylogenetic diversity of a sample is
equal to the sum of branch lengths from
all leaves of the tree that are represented
in a sample, up to the root of the tree.
The example on top covers a wider phylo-
genetic range than the bottom example,
and therefore has a larger diversity score.
Right: the UniFrac score considers the
number of branches unique to one sample
or the other (indicated with red and
blue), divided by the total number of
branches in the tree. In the top example,
several ancestral branches are shared,
leading to a relatively low UniFrac score.
In the bottom example, only the root is
shared between the two, which yields a
much higher beta-diversity score. Source:
Karlsson et al. (2015; doi.org/10.1371/
journal.ppat.1005225.g004).

which expresses the probability that two taxa drawn at random from a sample will be the same,
is also commonly used:

𝜆 =
R∑

i=1
pi

2

Weighted phylogenetic diversity measures, which adjust the contributions of different tree
branches according to the abundance of taxa they cover, complement the phylogenetic richness
measures described above.

Beta-diversity approaches compare taxonomic distributions between samples or sites to yield
an expression of dissimilarity. Beta diversity is typically calculated between all pairs of sites,
with multivariate methods then used to summarize the pairwise patterns. These measures can
be classified in a manner similar to alpha-diversity measures: qualitative measures are akin to
richness indices, while quantitative measures correspond to diversity measures. Phylogenetic
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and non-phylogenetic variants exist as well. Qualitative measures consider only the presence
and absence of shared taxa between two samples. The simplest such measure is the Jaccard
index(J), which for a pair of sites A and B is:

JA,B = A ∩ B∕A ∪ B

where A∩B is the intersection (i.e. the set of taxa that are shared between A and B) and A∪B
the union (i.e. the set of taxa that are found in at least one of A and B). These quantities are equal
if both sites have identical sets of taxa, in which case JA,B = 1. The Jaccard index is the direct
counterpart to species richness, and 1− J is a widely used measure of dissimilarity. A widely
used qualitative measure of diversity is unweighted UniFrac, first introduced by Lozupone
and Knight (2005). This method maps taxa onto a phylogenetic tree, and divides the lengths
of all branches covered by both samples by the total length of all branches in the tree. The
motivation behind UniFrac and the plethora of other phylogenetic diversity-based approaches
(Parks and Beiko 2013) is to assign lesser importance to differences that are due to closely
related organisms, assigning greater importance to differences at higher levels of divergence.
Quantitative measures consider the relative abundances of taxa when making a comparison.
The Bray–Curtis dissimilarity index (BCI) is a quantitative variant of the Jaccard index:

BCIA,B = 1 −
2CA,B

SA + SB

where CA,B is the shared count of taxa, i.e. if a given taxon T is present five times in sample
A and seven times in sample B, then CA,B will be incremented by 5. SA and SB are the total
counts of all taxa in both samples. If two samples have the exact same counts for all taxa, then
the BCI will be equal to 0. Weighted UniFrac considers shared branches as with its unweighted
counterpart, but weights each branch according to the relative abundance of taxa covered by
that branch.

Calculating beta-diversity measures between all pairs in a set of samples yields a matrix
that expresses the similarity or dissimilarity of each pair of samples, and can be summa-
rized in several different ways. A common approach is to use methods that extract shared
patterns of covariance across many samples, allowing low-dimensional visualization of
the high-dimensional matrix. Widely used examples include principal coordinate analysis
(PCoA), also known as multidimensional scaling, and non-metric multidimensional scaling
(NMDS). PCoA is an ordination technique that identifies linear correlations between the
calculated dissimilarity values in the matrix. Orthogonal linear correlations are termed
principal coordinates, with the importance of each coordinate reflecting the amount of
variance it captures from the original dataset. Eigenvalues indicate how much of the original
variance in the dataset is reflected in a given principal coordinate. Principal coordinates are
ranked in decreasing order of importance, and can then be plotted against one another. Sets
of samples that cluster together in the resulting plot are likely to share common patterns of
diversity, then may be interpreted in light of an environmental or other variable. PCoA is
closely tied to the more familiar principal component analysis (PCA), but whereas the starting
point for PCA is a data table, PCoA uses a matrix that can be based on any beta-diversity
measure. NMDS generates axes without the linearity assumptions of PCoA and operates by
embedding samples in a two- or three-dimensional space to minimize a “stress” criterion.
Stress is expressed as a mismatch between the rank order of dissimilarity values in the matrix
and the corresponding ranks of distances in the NMDS plot. The NMDS approach iteratively
adjusts the positions of points in the plot to minimize stress (Figure 16.7).

The plethora of diversity formulae available highlights the absence of obvious and objective
criteria to judge and compare sample diversity. There is no single best measure for all situ-
ations. For example, Parks and Beiko (2013) simulated different types of shift in community
structure, and demonstrated that different measures of phylogenetic beta diversity were most
effective under different simulated conditions. Since the detection of patterns of interest can
depend on the choice of method used, it is worthwhile to consider several methods that tend
to give contrasting results.
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Figure 16.7 Principal coordinate analysis (a) vs. non-metric multidimensional scaling (b), showing two
contrasting views of the gut microbiota of brood-parasitic brown-headed cowbird (Molothrus ater) and
three comparator groups. Dashed lines are bounding boxes for each sampled group. Source: Hird et al.
(2014; doi.org/10.7717/peerj.321/fig-5).
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Associations with Metadata

Many statistical and machine learning approaches have been used to associate taxonomic
information with environmental metadata parameters such as originating body site, soil pH,
and nutrient concentrations. A variety of two-sample and multiple sample tests such as the
t-test and analysis of variance (ANOVA) (and permutational variants thereof, such as PER-
MANOVA) have been used to identify significant distinctions between and among samples.
The large number of sequences and OTUs recovered from marker-gene analyses raises a mul-
tiple test problem in statistical analysis: with so many potential predictors, some are likely
to produce significant relationships due to chance. In such cases, it is essential that a multi-
ple test correction, such as the Bonferroni or false discovery rate correction (see Chapter 18),
be applied. Effect size must be considered in addition to statistical significance, as statistical
results may have very small p values but uninteresting differences between different types of
sample. STAMP (Parks et al. 2014) and LEfSe (Segata et al. 2011) are two programs that aim to
address several of the statistical challenges in metagenomics. LEfSe works by assessing differ-
ences between sample types using linear discriminant analysis, then identifying those features
that contribute the most to the distinctions between classes. LEfSe produces visualizations
that highlight those taxa that are over- or under-represented in different classes of samples
(Figure 16.8).

Machine learning approaches have also been used to find associations between the micro-
biome and environmental data. The high dimensionality of 16S sequence and OTU data
requires methods that can process many inputs, and potentially the use of up-front feature
selection methods to pare down the candidate groups of interest. Knights et al. (2011) applied
several approaches that span statistics and machine learning, including random forests and
elastic net classifiers, to the classification of several reference metagenomic datasets using
OTUs as input. No clear winner was found, consistent with the “no free lunch” theorem that
loosely states that no single classifier will be globally most effective for all types of classifica-
tion problem. Ning and Beiko (2015) applied feature selection and random forest classifiers to
the classification of oral microbiome samples, and found that flexible phylogenetic definitions
of groups were often more effective than strictly defined OTU thresholds, highlighting the
limitations of OTUs in microbial community analysis.

Marker-gene-based approaches exploit genomic diversity to build comprehensive views of
microbial diversity. However, the limitations described in this section need to be considered
when designing a marker-gene survey and interpreting the results. Comparisons of different
approaches for taxonomic profiling of microbial communities have raised significant concerns
about the accuracy of PCR-based analyses (Schirmer et al. 2015). Beyond these technical con-
siderations, another significant pitfall lies in the assignment of putative ecological roles to
taxa or OTUs based on their taxonomic name alone. Given the capacity of microorganisms for
rapid ecological diversification, a named species or genus may comprise many distinct lineages
that perform different tasks, and may sometimes exhibit strong negative correlations in their
abundance. In spite of these limitations, marker genes such as 16S genes are useful tools for
generating hypotheses about important drivers of change in community diversity and function.

Metagenomic Data Analysis

The utility of marker genes lies in their ubiquitous distribution across all sampled taxa;
however, their abundance or taxon assignments provide little direct evidence of commu-
nity function. The inferred presence of specific taxonomic groups may imply the presence
of specific biochemical functions, but direct functional evidence needs to be obtained
through different means. The first metagenomic (as opposed to marker-gene based) analysis
(Handelsman et al. 1998) used cloning and expression in vector libraries rather than shotgun
sequencing to assess the range of functions present in a microbial community. However,
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Figure 16.8 Visualizing the differences between two groups of gut microbiome samples in LEfSe. In
this example, the phylogenetic distribution of operational taxonomic units from the guts of individuals
with (green) or without (red) helminth colonization (a). Red dots indicate phylogenetic groups and spe-
cific taxa that are over-represented in the helminth-negative group, while green groupings indicate the
reverse. (b) Magnitude of effect size, according to linear discriminant analysis (LDA) score. Source: Lee
et al. (2014; doi.org/10.1371/journal.pntd.0002880.g003).

cloning approaches are expensive, and high-throughput sequencing (which the remainder of
this section will address) rapidly became the standard approach to characterize the functional
and taxonomic diversity of a microbial community. The level of detail afforded by DNA
sequencing allows a more complete enumeration of candidate functions within a microbial
community, which can then be used to build models of community function.

Predicting Functional Information from Marker-Gene Data

Recently developed methods such as Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States or PICRUSt (Langille et al. 2013) aim to predict the

https://doi.org/10.1371/journal.pntd.0002880.g003
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metagenomic functional repertoire from a marker-gene survey. These predictive approaches
exploit the growing number of sequenced microbial genomes, which provide linkages
between markers and candidate functions. PICRUSt is based on the insertion of sampled 16S
sequences into a reference tree that includes 16S sequences from all microbial genomes. The
functional predictions for this environmental sequence will be based on the gene content of
genomes that are nearby in the 16S tree. The entire set of functions in the metagenome is
predicted based on the sum of all functions associated with each environmental sequence,
weighted by their relative abundance in the sample.

The accuracy of PICRUSt is dependent on two related factors: the availability of suitable
genomes in the reference database and the conservation of functional traits. Accuracy is high-
est when there are many sequenced genomes that are closely related to constituents of the
metagenome. Initial validation across several habitats showed the highest accuracy in predict-
ing gut metagenomes; this is due in large part to the intensive sequencing of many reference
genomes from the human gut microbiome. Conversely, PICRUSt accuracy in habitats with far
fewer reference genomes available, such as hypersaline environments, was much lower. The
second key driver of accuracy in PICRUSt is the degree to which different functional traits are
conserved. Core functions such as ribosomal proteins are conserved across much greater taxo-
nomic distances, and are therefore much easier to predict. Lower average accuracy is obtained
for traits that are less well conserved, such as habitat-specific transporters, since these traits
will be much more unevenly distributed across a small taxonomic range. Uncertainty in predic-
tions is expressed as a confidence interval around the mean prediction, with smaller confidence
intervals corresponding to more confident predictions. Although PICRUSt can only generate
predictions of the functional breakdown of a metagenome, these predictions can be used in
many of the tools that are typically applied to real metagenomic data.

Metagenomic Analysis Protocol

As in the case of 16S analysis, many options are available to perform each relevant step of
metagenomic analysis. Since metagenomic datasets comprise reads sequenced at random
from many genomes, some aspects of metagenomic analysis resemble those used in genome
assembly and analysis. However, the heterogeneous origin of sequence reads confounds steps
such as sequence assembly, and creates a need for taxonomic assignment. Microbiome Helper
(Comeau et al. 2017) is a software package for metagenomic analysis that integrates a suite
of standard tools into an overall workflow. Other metagenome workflow tools include the
metagenomic version of “A Modular, Open-Source whole genome assembler” (metAMOS;
Treangen et al. 2013) and MEtaGenome ANalyzer (MEGAN; Huson et al. 2016). Although
the remainder of this section is presented as a plausible linear workflow for metagenomic
data analysis, different aspects such as gene annotation, sequence searching, and functional
assignment can be accomplished in the same step. For example, if metagenomic genes are
annotated via sequence alignment against a reference database, then functional annotations
of the reference genes can be assigned to predicted genes at the same time.

Quality Control and Merging of Paired-End Reads

Since metagenomics involves sequencing of random DNA fragments, sequences from phage,
virus, and eukaryotic host organisms may be removed from a dataset if they are not of interest
in the study. These are typically removed through comparisons against a reference database,
using an efficient read mapper such as Bowtie2 (Langmead and Salzberg 2012). Metagenomic
reads that match sequences from the reference database are removed from the metagenomic
dataset.

Since some DNA sequencing platforms sequence both ends of a DNA fragment, the two
corresponding “paired-end” sequences can be stitched together in order to retain information
about their proximity to one another in the source genome. Depending on the fragment size
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and read length, these reads may even overlap, in which case contiguous sequences can be
obtained using read-stitching programs such as the Paired-End reAd mergeR (PEAR; Zhang
et al. 2014). If reads do not overlap, then there will be unknown sequence between the two
paired ends, but their spacing relative to one another will still be known.

Assembly

Although metagenome analysis can be performed directly on DNA sequence reads, longer
contigs provide a great deal more information about linkage between genes, and provide bet-
ter statistical information for inference of taxonomic and functional distributions. One key
assumption of standard genome assemblers is that all reads originate from the same clonal
organism. With metagenomic data this is clearly not the case, and assembly is confounded by
the need to identify subsets of reads which should be assembled. If closely related strains are
present in a given sample, it may be impossible to identify the originating strain of a particular
read, and to perform cross-strain assemblies where highly conserved regions are interspersed
with strain-specific regions of high variation or differential genome content. Key indicators
of assembly quality such as N50 (a measure of contig length distribution) are irrelevant in
the assessment of assembly quality, since rare organisms in the sample will not be well cov-
ered by sequencing reads, and will therefore tend to assemble into short contigs or remain as
unassembled fragments. Long-read sequencing offers a tremendous advantage in these cases,
as reads that are several thousand nucleotides in length offer better information for assembly
purposes, and can span many difficult to assemble regions, including those that contain repeat
sequences, and strain-specific gene content. Although paired-end Illumina reads are shorter,
they can nonetheless still produce larger contigs than unpaired reads alone.

Metagenome assembly can be simplified by binning sequence reads and contigs into multi-
ple subsets which can then be assembled further. This binning can be accomplished by com-
paring contig properties – nucleotide composition and relative abundance, in particular. Since
fragments of the same genome often have similar patterns of nucleotide composition (i.e.
k-mer distributions), contigs with similar distributions can be assumed to derive from the
same originating genome. Abundance-based binning approaches are based on the idea that
organisms with similar abundance in a sample should generate metagenomic contigs with the
same relative abundance. These approaches have allowed the reconstruction of complete or
near-complete genomes from the environment. For example, Albertsen et al. (2013) used dif-
ferential abundance profiles and tetranucleotide frequencies to assign assembled scaffolds to
31 distinct population bins from a wastewater reactor sample, then assembled the reads within
the 13 most abundant bins into draft genomes. Through this method, the authors were able to
distinguish and reconstruct four high-quality genomes from the little characterized TM7 phy-
lum. However, binning approaches are limited by the amount of information they can extract
from short reads, and customized metagenome variants of existing genome assembly tools
such as Ray Meta (Boisvert et al. 2012) and metaSPAdes (Nurk et al. 2017) have emerged.

Gene Annotation and Homology Searching

Searching for homologous sequences against reference sequence databases is an essential
step in the functional and taxonomic annotation of metagenomes. In general, only regions
that encode proteins or structural RNAs (such as rRNAs and transfer RNAs) are targeted
for homology-based annotation. An obvious challenge in gene annotation for metagenomic
datasets is that metagenomic reads and contigs are highly likely to contain fragments of open
reading frames (ORFs) and may be missing 5′ regions, 3′ regions, or both. In some cases, there
may be insufficient information in a given DNA sequence read to make any annotation call,
but, even if a gene fragment of substantial length is present, the correct start or stop codon
may be missing. Although not unique to metagenomic datasets, the challenge of identifying
novel genes with no known homologs in existing sequence databases is especially acute in
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metagenomic gene annotation. Complementary approaches, such as identifying ORFs based
on codon usage patterns, can therefore be important as well. For example, Zhu et al. (2010)
extended the widely used GeneMark gene annotation software package (see Chapter 5) to
develop MetaGeneMark, which applies compositional statistics from reference microbial
genomes to metagenomic reads.

Homology-based gene annotation can be achieved in several ways. Read-mapping
approaches based on the Burrows–Wheeler algorithm for sequence alignment can be applied
to perform tiling of metagenomic reads and contigs against reference genomes. In many
cases, especially where novel taxonomic groups are present in a metagenomic sample, the
similarity between the query and reference sequences may be too low to be recognizable
using Burrows–Wheeler approaches such as the Burrows–Wheeler aligner (BWA) (Li and
Durbin 2009) and Bowtie 2 (Langmead and Salzberg 2012). More dissimilar sequences can
be recognized using the BLAST suite of algorithms (Altschul et al. 1997) – specifically,
BLASTN for direct nucleotide–nucleotide comparisons and BLASTX for comparisons of a
reference database of proteins against a six-frame conceptual translation of metagenomic
sequences (see Chapter 3). An advantage of BLASTN is that it can recognize intergenic
sequences as well as protein-coding genes, and thus has the potential to identify genomically
close sets of genes (often referred to as linked or syntenic genes) instead of individual genes
with no positional context. However, BLASTX searches are conducted in the more highly
conserved protein sequence space, which makes BLASTX more suitable for detecting remote
homologs. This sensitivity comes at a significant cost, as the six-frame translation and
dynamic programming elements of BLASTX can be computationally time-consuming for the
comparison of large datasets against large reference databases. Recent methods to accelerate
sequence alignment have yielded speed-ups of up to four orders of magnitude relative to
BLASTX. In one such example, DIAMOND (Buchfink et al. 2015) was used successfully to
compare a set of arctic permafrost environmental samples against the NCBI nr database in
less than 3 hours on a single workstation, as compared with 800 000 CPU hours for BLASTX.
DIAMOND achieves this speed-up using a range of optimizations, including a different
strategy to seed alignments and a reduced amino acid alphabet (11 amino acids instead of the
usual 20).

For highly sensitive searches, approaches such as hidden Markov models (HMMs) can be
used (see Box 5.3). HMM residue frequencies as well as site-specific insertion and deletion
probabilities in proteins are especially popular for the annotation of short protein functional
sequence motifs owing to their increased sensitivity. HMMs are typically trained from refer-
ence sequence databases, with HMMs potentially corresponding to protein domains or other
functional groupings. Functional Ontology Assignments for Metagenomes (FOAM) (Prestat
et al. 2014) is a set of over 70 000 HMMs trained from Kyoto Encyclopedia of Genes and
Genomes (KEGG) orthology groups, which can serve as a reference database for metagenome
sequence comparisons.

Taxonomic Assignment and Profiling

The homology-based procedures described above yield database matches with corresponding
functional labels; if the match between query and reference sequences is high enough, then it
may be justifiable to assign the corresponding taxonomic label (e.g. genus and species) to the
metagenomic sequence. Performed over an entire metagenomic dataset, this approach could
be used to build a global taxonomic summary of the sample, and to precisely assign taxonomic
information to specific reads and contigs (and their corresponding functional information;
see Functional Predictions). However, metagenomic datasets present several obstacles to this
general approach. First, as in other analyses, novel taxa that lack representation in reference
databases will not be classifiable at the lowest taxonomic ranks: instead, higher taxonomic
ranks such as order, class, or phylum may represent the most precise classifications that can
be made. Second, as different types of genes show different degrees of conservation, it may
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be possible to distinguish some genes (e.g. rapidly evolving metabolic genes) at the species or
strain level, but not highly conserved genes such as those that encode ribosomal proteins or
16S rRNA. Third, as prokaryotic genome sizes can vary by over an order of magnitude, larger
genomes will be over-represented in a sample relative to smaller ones, skewing the predicted
taxonomic distribution. This limitation mirrors the copy number problem in 16S gene anal-
ysis. Finally, mobile genetic elements such as plasmids and genomic islands can readily be
moved between distantly related organisms through the process of lateral gene transfer, and a
gene that was recently acquired into a recipient may still be classified to the donor organism.
Therefore, some classes of genes must be treated with caution.

k-mer decompositions have been exploited by many software packages to achieve rapid tax-
onomic classification of metagenomic sequences. Depending on the method used to compare
distributions, k-mer-based approaches can be many orders of magnitude faster than sequence
alignment approaches. Distance calculations, interpolations of higher order k-mer abundances
and machine learning approaches such as NB (Rosen et al. 2011) have all been used to compare
the composition of metagenomic sequences against reference sequence databases. In general,
these methods tend to be faster but less precise than BLAST algorithms for taxonomic assign-
ment. Kraken (Wood and Salzberg 2014) uses an alternative approach to k-mer modeling and
matching that yields high precision while retaining significant speed-ups relative to BLAST.
The key to Kraken is the decomposition of sequences into long (by default, 31 nt) k-mers: rather
than trying to compute distances between profiles (which would be practically impossible with
431 31-mers), each identified k-mer is treated as a potential taxonomic marker in its own right.
Precomputed phylogenetic trees are inferred from genomes in a reference database, then each
observed k-mer is mapped to the last common ancestor of all organisms in which that k-mer
is found. For example, if a given 31 nt sequence was observed only in the order Enterobacte-
riaceae, then it would be treated as distinct for that group. Metagenomic reads or contigs are
then decomposed into k-mers, which are then compared against a reference tree. The sum total
of evidence from the set of k-mers is then used to identify the most probable originating lin-
eage of the corresponding metagenomic sequence. In trials with simulated metagenomic data,
Kraken showed nearly equal sensitivity to the MegaBLAST algorithm, with a nearly 1000-fold
speed-up.

Given that metagenomic samples contain fragments of the 16S gene, it is possible to
extract these gene sequences and perform taxonomic classifications that can be compared
against standard 16S surveys. A significant advantage of this approach is the elimination of
amplification bias, since PCR primers are not used in metagenomic data generation. However,
taxonomic profiling in this manner discards nearly all of the other metagenomic data, and
comparisons across different fragments of the 16S gene can be difficult. Furthermore, one of
the key drivers of 16S use in amplicon studies is its tractability for amplification, but metage-
nomic data provide information about dozens of core genes that are single copy and highly
conserved. Genomic databases comprising tens of thousands of taxonomically referenced
genome sequences allow detailed investigation of the taxonomic patterns associated with
these core genes.

Subset-based approaches offer another route to performing taxonomic assignments. These
methods produce taxonomic summaries of metagenomes based on the annotation of a small
set of core genes that are present either in most genomes or in targeted subsets of genomes.
Two widely adopted methods, PhyloSift and MetaPhlAn, illustrate the contrast between
these approaches. PhyloSift (Darling et al. 2014) uses a set of 37 widely distributed protein
families, plus the 16S gene, that show high phylogenetic congruence. These sequences
are first identified in a metagenomic dataset via fast sequence alignment searches against
the reference database. The reference set for each gene is maintained as a model multiple
sequence alignment and a phylogenetic tree. Once matching sequences are identified, they
are aligned precisely to the model alignment using HMMs, and inserted into the reference
tree using Pplacer. The summary of phylogenetic placements leads to the inferred taxonomic
composition of the metagenome. By contrast, MetaPhlAn (Segata et al. 2012) takes the
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opposite approach by building a reference database of >400 000 genes that are “core” to
genomes within a specific clade, and excluded from all genomes outside that clade. Given the
small size of the reference set of genes to the set of all genes, homology-based processing of a
metagenomic dataset can be achieved very quickly.

Of course, as a researcher wishes to learn not only “who is there” and “what they are doing,”
but additionally “who is doing what,” then they must match each metagenomic read or con-
tig to reference databases using some combination of compositional assessment and sequence
alignment. Kraken achieves this through its unique compositional approach, and BLAST offers
a highly sensitive but relatively slow sequence alignment approach. A limitation of BLAST is
that the best match of a metagenomic sequence to a database may not represent the correct tax-
onomic classification, either because the sequence is novel or because there are many database
matches with nearly equal scores. Mirroring the phylogenetic approaches adopted by Kraken
and PhyloSift, some methods use phylogenetic mapping of all predicted protein sequences
to make taxonomic predictions. MEGAN uses an effective last-common-ancestor mapping to
estimate the taxonomic rank of a metagenomic sequence.

Functional Predictions

Although “function” can be a difficult term to define, in general its use in metagenomics
refers to the capacity of organisms in the microbiome to perform enzymatic reactions, engage
in ecological interactions with other organisms including the host, and construct important
molecular structures such as the flagellum. Function can be categorized in many ways; for
example, the top level of the Gene Ontology (see Chapter 13) hierarchy breaks functions into
the three categories of biological process (a series of functions, for example a biochemical
pathway), molecular function (the type of reaction catalyzed by a given enzyme), and cellular
compartment (the location in which a protein’s action takes place, for example in the cytosol
or the periplasmic space). Functions can also be described at different levels or organization:
for instance, KEGG can define function at levels including function, pathway (a collection of
functions), and module (a collection of pathways). The simplest way to summarize functions
for a metagenome is to carry out a sequence alignment search against a reference database,
and summarize the search results in terms of the presence or absence, relative abundance, or
diversity of a particular function in the metagenome. However, this basic approach has several
limitations.

The first limitation is the possibility of false-negative annotations of proteins. In many cases,
homologous proteins that are highly similar can in fact have different functions: for example,
transporters and efflux pumps with similar amino acid sequences can act on different sub-
strates and with different reaction kinetics, making it very difficult to predict a molecular target
for these proteins in the absence of a large and well-characterized reference sequence database.
At the same time, many predicted proteins from a metagenome may match hypothetical pro-
teins with no validated function or may match no reference proteins at all. These proteins
will therefore contribute no direct information to the functional summary. The use of differ-
ent reference sequence databases will lead to different balances between false-positive pre-
dictions and unannotated genes; the Swiss-Prot database (UniProt Consortium 2018), which
comprises only sequences with manually annotated and reviewed functions, will produce rel-
atively few functional annotations, but these will generally be of high quality. Conversely, the
KEGG database (Kanehisa et al. 2017) has a higher coverage of functions, the majority of which
have not been experimentally validated or manually reviewed. KEGG will consequently tend
to produce more incorrect annotations. Specialized, curated sequence databases can be used
to focus on particular functions, including CAZy (Cantarel et al. 2008) for carbohydrate-active
enzymes and Comprehensive Antibiotic Resistance Database (Jia et al. 2017) for antimicrobial
resistance genes.

Another problem with functional annotation is the promiscuous assignment of pathways
based on the presence of relatively few steps in the pathway, or because of the presence of



528 Metagenomics and Microbial Community Analysis

a single function in multiple pathways. Naive prediction will produce an excessively large
set of pathways, many of which are functionally irrelevant in the sample. MinPath (Ye and
Doak 2009) was developed to address this limitation by identifying a minimal set of path-
ways that can cover all annotated functions in a metagenome. Applying MinPath to refer-
ence metagenomes reduced the number of predicted pathways by as much as 50%. HUMAnN
(Abubucker et al. 2012) uses MinPath as part of a pipeline to predict, then filter, predicted
functions and pathways, and report the presence and relative abundance of pathways.

Statistical Associations

As with marker-gene analysis, an important goal of metagenomics is to discover statistical
associations between inferred patterns of biodiversity and environmental parameters. Taxo-
nomic associations and co-occurrence patterns can be augmented with functional diversity
and changes in the relative abundance of closely related organisms that have different ecolog-
ical roles. Jonsson et al. (2016) recently reviewed a range of statistical tests and applications
for comparing functional distributions across metagenome samples. This study found that the
tools used in transcriptional profiling to assess differential expression between two or more
samples, DESeq2 (Love et al. 2014) and edgeR (Robinson et al. 2010), were most effective rel-
ative to standard statistical procedures such as the t-test. The availability of functional data
also offers the opportunity to perform comparative analyses of metabolic networks. BiomeNet
(Shafiei et al. 2014) uses unsupervised Bayesian methods to identify subnetworks that differ-
entiate types of metagenomic samples. Since the division of metabolic networks into pathways
can be somewhat arbitrary, approaches that do not presuppose particular boundaries on path-
ways can be more sensitive to functional variation.

Metagenomics is a powerful technique that can generate a comprehensive profile of a micro-
bial community sample. The diversity of sampled sequences can reveal critical strain-level
diversity and variation, and the assembly and annotation methods described above have been
used to reconstruct genomes from previously uncharacterized phyla. Another valuable appli-
cation of metagenomic analysis is in the discovery of novel gene variants that have different
substrates or activity levels. Metagenomic data inherit many of the limitations of genome anal-
ysis, including short-read assembly and the challenges of homology-based functional annota-
tion. Accurate long-read sequencing will significantly reduce assembly problems. However,
given the relatively high cost of long-read sequencing, sequencing effort that is wasted on
host DNA incurs a substantial additional cost. Although highly effective at giving a functional
cross-section of a microbiome sample, metagenomics provides no evidence about transcrip-
tional responses to environmental stimuli or changes. As with marker-gene analysis, it can be
difficult to identify which microorganisms inferred to be present in a microbial community
sample are “true” members of the community, i.e. metabolically active and interacting with
other organisms, versus those that are ephemeral in a given habitat. Making these distinctions
requires targeted approaches that consider functions and ecological roles of the constituents
of the microbiome. Hanage 2014) outline some of the data interpretation challenges involved
in metagenomic data analysis.

Other Techniques to Characterize the Microbiome

So-called multi-omic datasets aim to address some of the limitations of marker-gene and
metagenomic analysis. These include, for example, measurements of transcript and protein
expression. Stable diversity, reflected by similar metagenomic profiles, may conceal signifi-
cant transcriptional variation in response to medication, rapid temperature shifts, day/night
patterns, and other environmental parameters. Other approaches, such as metabolomics,
track the metabolic outputs of the microbiome rather than molecular sequence data (see
Chapter 14). Finally, methods to tease apart the complexity of the metagenome can enable
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precise characterization of subsets and individual constituents of the microbiome. Franzosa
et al. (2015) outlines many of these multi-omic techniques in detail.

Pioneered in the early 2000s, metatranscriptomic datasets characterize global microbial gene
expression using approaches such as RNA-seq. Metatranscriptomics makes use of differen-
tial expression analysis to identify expressed genes and differences among samples. DESeq2
(Love et al. 2014) is a program that is commonly used to identify transcripts with differen-
tial abundance between multiple samples, by mapping sequence reads to reference sequences
then computing the fold change and statistical significance of differences. Metaproteomics
bypasses nucleotide sequencing and uses protein digestion and mass spectrometry to identify
fragments that map to reference genomic and metagenomic sequences. Proteomic techniques
(see Chapter 11) can be discovery based, in which case information about the presence of all
proteins is sought, or targeted, where a small subset of proteins is selectively monitored. The
latter provide more precise information about proteins that may be critical in community func-
tion, or that may serve as candidate biomarkers.

One of the key roles of microorganisms in many settings is to produce metabolites that
can serve as energy sources for other organisms. Through their enzymatic activities they can
also transform extracellular compounds, changing their function and role. Meta-metabolomics
identifies unique spectral patterns generated by different metabolites in a system, then matches
these to known metabolites via comparisons against a reference database. Metabolite pro-
files are characterized by identifying spectral peaks and matching these peaks against ref-
erence spectral databases using software such as XCMS (Smith et al. 2006), as described in
Chapter 14.

Stable isotope probing can be used to track the flux of metabolites between members of a
community. Isotopes of atoms that are widely used in metabolism such as 13C and 15N can
be used as tracers, as an organism supplied with these isotopes will integrate them into its
biomolecules, then transfer them to other organisms. Berry et al. (2013) used stable isotope
probing to track the flow of metabolites from a mouse host to intestinal microbiota, and fluores-
cent in situ hybridization (FISH), which can measure the expression of specific marker genes,
to identify Akkermansia muciniphila and Bacteroides acidifaciens as important consumers of
host proteins.

Given the diversity of many environments, it is inevitable that some microbial taxa will be
poorly represented in metagenomic samples, yielding partial or no assemblies and incomplete
characterizations. Subdividing or subsampling microbiome samples can increase the recov-
ery of taxonomic groups of interest. Even if single isolates cannot be grown in pure culture,
in many cases enrichment cultures with lower diversity can be grown. If an enrichment cul-
ture cannot be further purified, then the corresponding smaller set of microorganisms may
have obligate interactions, such as metabolic pathway cross-feeding and environmental func-
tions like oxygen scavenging. The microbiome can also be subdivided into more tractable
subsets via cell sorting. Microorganisms can be partitioned by size, and based on other prop-
erties using FISH to target genes of interest. This approach was used to discover and describe
previously undetected, ultra-small Actinobacteria from the deepest parts of the Mediterranean
(Ghai et al. 2013). In the extreme case, sorting can yield individual cells that can then be
sequenced using single-cell techniques such as multiple displacement amplification (MDA).
Although MDA does not produce complete genome sequences and is susceptible to contami-
nation, the sequences obtained are informative and can serve as scaffolds for the assembly of
additional metagenomic data.

Recent advances in cell culture techniques have enabled the development of “culturomic”
approaches, in which microbiome samples are transferred to a range of different types of
media, with differences in growth conditions favoring different microorganisms. Growing a
range of lineages from the microbiome in isolation allows experimental screening and testing
to be carried out, complementing the molecular analysis.

Studies that combine different types of data can highlight the role of regulatory and other
processes in the microbiome. Although gene expression in bacteria is thought to be realized at
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the transcriptional level, recent work has suggested an under-appreciated regulatory role for
post-translational modification. Chen et al. (2016) integrated over 1000 metatranscriptomic
and metaproteomic datasets to propose an inverse relationship between genome size and the
importance of post-transcriptional regulation in Mycoplasma genitalium. McHardy et al. (2013)
combined metagenomic and meta-metabolomic analysis to identify correlations between the
presence of specific genera in the gut microbiome and specific metabolites observed. Among
other observations, they found strong associations between Roseburia and Faecalibacterium
and predicted short-chain fatty acid synthesis enzymes; given the importance of short-chain
fatty acids in inflammation and immunity, and as a nutrient source for colonocytes, this finding
highlighted the importance of these genera in the human gut.

Summary

The challenge of assessment and characterization of the microbiome of different habitats is
clearly illustrated by the myriad approaches that have been developed to sample and analyze
microbial samples. Microbiome analysis inherits all of the challenges and limitations of micro-
bial genome analysis, then overlays the challenges of high diversity, temporal instability, and
uncertain taxonomic and ecological units. Biases associated with sampling and analysis can
often skew the results. However, rapid advancement in bioinformatic techniques over the last
10 years have yielded robust results, and opened up new investigations into the structure and
function of the microbiome.

Anticipated improvements in microbiome sampling and analysis techniques will lead to
improved understanding of microbial communities in many settings. On the technical side,
long-read DNA sequencing will revolutionize the assembly and analysis of metagenomic data.
Although long sequence reads will increase the robustness of marker-gene analysis as well,
it remains to be seen whether 16S-based approaches retain their popularity in the coming
years as shotgun sequencing methods and single-cell sequencing methods continue to become
cheaper and more tractable. Growth in reference databases of genomes, including genomes
assembled from metagenomic data, will help to improve the taxonomic resolution of inferred
community structure. However, one of the most important shifts in the next 5 years will see the
increasing adoption and integration of meta-omic techniques, as well as meta-omic datasets,
to couple genetic potential with metabolic activity and explicit connections among commu-
nity members. The intersection of these approaches will be an increasing area of focus for
bioinformatic techniques in the near future.

Internet Resources

Major data resources
Earth Microbiome
Project

Large database of marker-gene surveys www.earthmicrobiome.org

Genomes OnLine
Database (GOLD)

Database for genome projects,
compliant with data-reporting
standards

gold.jgi.doe.gov

Greengenes (Second
Genome)

16S reference database greengenes.secondgenome
.com

Human Microbiome
Project (HMP)

HMP Data Analysis Control Center hmpdacc.org

MetaHIT European reference metagenome
project

www.metahit.eu

MG-RAST metagenomics
data server

Metagenomics data and analysis server metagenomics.anl.gov

Ribosomal Database
Project

16S reference database rdp.cme.msu.edu

http://www.earthmicrobiome.org/
https://gold.jgi.doe.gov/
http://greengenes.secondgenome.com
http://greengenes.secondgenome.com
http://hmpdacc.org/
http://www.metahit.eu/
http://metagenomics.anl.gov/
https://rdp.cme.msu.edu/
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SILVA 16S reference database www.arb-silva.de
Tara Oceans Databases for Tara Oceans expedition www.ebi.ac.uk/services/tara-

oceans-data

Functional information resources
CARD The Comprehensive Antibiotic

Resistance Database
card.mcmaster.ca

CAZy Carbohydrate metabolism database www.cazy.org
Gene Ontology Functional classifications of proteins,

with evidence codes
www.geneontology.org

Kyoto Encyclopedia of
Genes and Genomes

Large database of function, pathway,
and module information

www.genome.jp/kegg

UniProtKB/Swiss-Prot Database of experimentally validated
protein functions

web.expasy.org/docs/swiss-
prot_guideline.html

Marker-gene analysis tools
FastQC Quality control application for sequence

reads
www.bioinformatics
.babraham.ac.uk/projects/
fastqc

mothur Integrated pipeline for marker-gene
analysis

www.mothur.org

PICRUSt Software to predict metagenome
function from marker genes

picrust.github.io/picrust

QIIME 2 Integrated pipeline for marker-gene
analysis

qiime2.org

Metagenomic analysis tools
BiomeNet Method for identifying reactions that

are characteristic of different types of
metagenomes

sourceforge.net/projects/
biomenet

HUMAnN Software for pathway annotation of
metagenomes

huttenhower.sph.harvard
.edu/humann

metAMOS Metagenome workflow software www.cbcb.umd.edu/
software/metamos

MEtaGenome ANalyzer
(MEGAN) 6

Metagenome analysis software,
including last common ancestor
algorithm for classification

ab.inf.uni-tuebingen.de/
software/megan6

Microbiome Helper Metagenome workflow software github.com/mlangill/
microbiome_helper

Further Reading

Franzosa, E.A., Hsu, T., Sirota-Madi, A. et al. (2015). Sequencing and beyond: integrating
molecular ‘omics’ for microbial community profiling. Nat. Rev. Microbiol. 13: 360–372. A review
and prospectus of emerging DNA-based and complementary meta-omic approaches, and their
implications for future microbiome studies.

Hanage, W.P. (2014). Microbiome science needs a healthy dose of scepticism. Nature 512: 247. A
short piece that outlines some of the key pitfalls in the interpretation of metagenomic data and
the identification of biologically meaningful trends in the data.

Sczyrba, A., Hofmann, P., Belmann, P. et al. (2017). Critical assessment of metagenome
interpretation – a benchmark of metagenomics software. Nat. Methods 14: 1063. A recent
comparative evaluation of different techniques to assemble and assign taxonomic information
to metagenomic data.

Sharpton, T.J. (2014). An introduction to the analysis of shotgun metagenomic data. Front. Plant
Sci. 5: 209. A review of analytical techniques for metagenome analysis that lists and cites a wide
range of approaches.
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Translational Bioinformatics
Sean D. Mooney and Stephen J. Mooney

Introduction

Translational bioinformatics is an emergent discipline that leverages informatics and com-
putational methods to bridge the basic sciences with the clinic and clinical sciences. With
advances in genomic and other high-throughput technologies, we are seeing a revolution
surrounding informatics methods that directly impact human health. Given that we can
now inexpensively and rapidly profile human tissues and biofluids with highly reproducible
precision, this exciting field is growing quickly and evolving even faster. This chapter outlines
the basics of translational informatics, as well as areas of active research. The field is driven
by our ability to collect vast quantities of heterogeneous data, all describing patients, their
environment, and various experimental models of patient phenotype, including those deduced
using model organisms. Translational informaticians develop or leverage computational tools
to deepen our understanding of the relationship between genotype and phenotype, then use
that knowledge to improve patient health outcomes.

Technologies and data that are relevant to translational bioinformatics include high-
throughput molecular data (such as genomes, transcriptomes, proteomes, and metabolomes),
electronic health record (EHR) data, behavioral data such as those derived from smartphone
sensors, social media data, and environmental exposure data such as air or water quality
measurements. Computational tools are actively being developed to integrate two or more
of these types of data and then use them to describe and understand patient phenotypes.
From a phenotypic model, predictions can then be made about intervention outcomes, such
as treatment response or disease progression. For example, researchers are working on blood
tests for cancer detection, tests for clinical depression risk based on mobile smartphone
activities, and early detection of kidney disease from urine. However, much work still
needs to be done, as methods developed for human genomes and to identify disease risk
variants are still are not as accurate as clinicians themselves. Similarly, new methods for data
integration are being developed that include new types of data, making data integration easier
through the use of standard data models. Large groups of patient research study participants
(cohorts) are being recruited to understand population-based risks of disease and treatment
outcomes, creating even more data analysis opportunities; these projects include the Million
Veterans Program, the National Institute of Health’s (NIH) All of Us initiative, and the UK
Biobank.

Understanding and performing computational analyses using patient phenotypes is becom-
ing increasingly important in the study of genes and proteins, and that is one of the major foci
of the field of translational informatics. As we begin to understand the molecular causes of any
given disease at the gene and protein level, we begin to understand that differences in the actual
clinical expression of that disease can have a molecular basis. Quantifying a patient’s individ-
ual phenotype to tailor treatment is the basis of an important area of active research called
“precision medicine.” Precision medicine also helps us understand the molecular causes of
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a disease better, by developing increasingly precise classifications of patients into groups or
subtypes, thereby reducing heterogeneity of clinical observations.

To that end, the promise of translational informatics is very high. It is one of the few fields
of bioinformatics that can be directly used in the context of patient care. Methods to iden-
tify pathogenic variants can be used by clinical geneticists to make recommendations about
whether a patient is likely to be susceptible to a genetic disease. Tools for repurposing drugs or
drug interactions can be used by clinicians to identify custom therapies for patients. Biochem-
ical markers of subtype and disease staging can be used to make treatment decisions in cancer.
Methods that predict risks of disease can be integrated directly into the patient’s chart and the
health provider’s clinical informatics system. However, these applications do not come without
risk. The collection of large heterogeneous datasets describing patients can have an impact on
patient privacy. Similarly, inaccurate or poorly developed methods applied over-confidently
can lead to patient harm. It is important to understand the risks, benefits, and appropriate
application of any translational informatics study or method.

Databases Describing the Genetics of Human Health

One of the central challenges in the field of translational bioinformatics is understanding the
relationship between genotype and phenotype. As a result, much of the early focus of this field
centered on the collection and interpretation of human genomes. Sequencing genomes in clin-
ical settings is increasingly widespread and is being applied to many more patient populations
than before. This has given rise to large databases of genetic variants that have been anno-
tated with human diseases and phenotypes. These databases are based on scientific findings
from studies that identify genetic variants that are found in patients with certain conditions or
phenotypes more often than one would expect by chance; these studies are called association
studies. As association studies are based on a statistical observation, they may not necessarily
identify the underlying genetic cause of a disease, particularly if the number of participants
in the study is relatively small. Early databases of genetic variants associated with specific
diseases were created by manually curating papers that described identified pathogenic vari-
ants, but we have since learned that some of these variants were incorrectly associated and
are not actually pathogenic. To overcome this, newer genetic variant resources include not
only evidence from peer-reviewed publications but also provide other lines of evidence of
pathogenicity and causation, including genetic testing facility reports. The American College
of Medical Genetics (ACMG) has recently developed guidelines for the clinical interpretation
of genetic variants that includes the use of computational methods (Richards et al. 2015).

For largely historical reasons, pathogenic genetic variants are not located in a single, cen-
tral database. To fully annotate genomes with possible pathogenic variants, multiple resources
must still be used. There are ongoing efforts to create integrated interfaces that provide access
to many databases centrally, such as MyVariant.info (Xin et al. 2016), but these resources
generally do not provide access to the unique and extensive kinds of data found within com-
mercial or “commercial-like” genetic disease databases that require a license for use. For vari-
ants that cause inherited disorders, databases such as the commercial Human Gene Mutation
Database (HGMD) (Stenson et al. 2017) or the freely available ClinVar database (Landrum
et al. 2016) provide curated information on pathogenic variants and are widely used to anno-
tate sequenced human genomes. (Figure 17.1 includes a screenshot of a ClinVar entry for a
variant in the CFTR gene, the gene responsible for cystic fibrosis.) Variants that are associ-
ated with differences in treatment response are curated in the Pharmacogenetics Knowledge-
Base (PharmGKB) (Thorn et al. 2010) and in DrugBank (Wishart et al. 2018), and clinical
guidelines for the use of those variants are provided by the Clinical Pharmacogenetics Imple-
mentation Consortium (CPIC) (Relling and Klein 2011). Pharmacogenetics examples include
codeine, which is metabolized by the CYP2D6 product, and warfarin, which is metabolized
by VKORC1 and CYP2C9 products; in both cases, variants in these genes are associated with
different responses to these drugs. Somatic variants found in tumors are collected in the COS-
MIC database (Forbes et al. 2017). Other databases of interest include the publicly curated wiki
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Figure 17.1 ClinVar entry for a benign variant in the cystic fibrosis gene (CFTR). Variant includes multiple reports from testing
centers of evidence indicating the single nucleotide variant is non-pathogenic.
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SNPedia (Cariaso and Lennon 2012), a resource of curated human single nucleotide polymor-
phisms. Interestingly, the developers of SNPedia have developed a whole genome analysis tool,
Promethease, which uses SNPedia to annotate sequenced whole genomes or exomes. Another
highly used tool for annotating sequenced human genomes is ANNOVAR, which takes Variant
Call Format (or VCF, a standard text file format for annotated genetic variants) files as input
(Wang et al. 2010) and maps variants to genes, identifies classes of variants (such as inser-
tions, deletions, and single nucleotide variants), and provides other useful annotations, such
as mutation impact predictions.

Prediction and Characterization of Impactful Genetic Variants
from Sequence

Traditionally, associations of genetic variants with human disease were determined using
statistical differences in genetic markers inferred in case–control studies (Collins et al. 1999).
Recently, many complementary algorithms that use our understanding of biology to predict
and understand genetic variants that cause disease have been published. (For a review, please
see Cooper and Shendure [2011].) Variants can include single nucleotide variants, short
insertions and deletions (referred to as “indels” that are generally less than a few thousand
bases), and larger insertions and deletions that cause structural variations that can be quite
large and contain entire genes. Genetic variants that are discovered in the human population
can be grouped into categories based on whether they are relevant to human diseases and
conditions (Box 17.1). They include pathogenic variants, or variants that cause disease. Vari-
ants of unknown significance (VUS) possibly cause disease. Polymorphisms are present in the
population but do not cause a disease or condition. Bioinformaticians have known for some
time that pathogenic genetic variants tend to occur at sites of evolutionary pressure (Mooney
and Klein 2002). With the discovery that sites of functional and evolutionary importance are
more likely to be mutated in human genetic disease and the concurrent growth of databases of
known pathogenic variants, computational methods have been developed that use both to pre-
dict new genetic variants that are impactful. Typically, these approaches are supervised – that
is, they use a database of known impactful variants (having an effect) and neutral variants
(having no effect) to determine whether a variant that has never been seen before is likely to be
in the impactful set or the neutral set. These methods require a database of annotated variants
(a training set), statistically useful proteomic and genomic features for classification, and a
classification approach for prediction that uses the training set and features to classify variants.

Box 17.1 Gene Testing of Hereditary Cancers

Cancer risk can be significantly increased and age of onset can be significantly reduced,
depending on which genetic variants in specific genes an individual has inherited from
their parents. These cancers include specific types of breast, ovarian, colorectal, and
prostate cancers. Patients that inherit risk of these “hereditary cancers” are important
to identify early, as preventive screening or procedures (such as mastectomies) can
be performed in order to minimize cancer impact. In order to test for specific variants
in risk genes such as BRCA1, BRCA2, TP53, and PTEN, genetic tests can be performed.
Color Genomics, Invitae, Myriad Genetics, and other companies provide tests that can
be ordered by a provider and by the patient themselves. These test results provide risk
assessments and can identify both pathogenic and variants of unknown significance.

Characterizing Genetic Variants at the Protein Level

Pathogenic variants tend to occur non-randomly in protein structures and tend to be buried
within the protein, thereby disrupting protein structure (Wang and Moult 2003). These vari-
ants also tend to damage functional sites in proteins, such as binding sites (Lugo-Martinez
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et al. 2016). From these observations, two types of pathogenic prediction methods have been
developed. The methods differ in the training sets that are used to build them. The first group
of methods use mutations that have been interrogated experimentally (generally in vitro or in
a model organism). Examples of these methods include SIFT (Ng and Henikoff 2003), SNAP
(Bromberg et al. 2008), and others. The second group of methods use data on human disease
mutations. Examples of these methods include MutPred (Li et al. 2009), PolyPhen-2 (Adzhubei
et al. 2013), and others. Although these two families of methods are similar, the fact that they
use different training sets can lead to differences in the predictions they generate. The first
predicts impact on protein function, while the second predicts human pathogenicity. The accu-
racy of these methods ranges from 65% to 85% for non-synonymous single nucleotide variants,
depending on the specific software method used or even the gene where the variant occurs
(Ioannidis et al. 2016). In order to make analysis of amino acid substitutions in the human
proteome easier, researchers have developed the dbNSFP annotation database; this database
includes annotations from many different prediction algorithms, documenting the predicted
impact of all possible missense changes (Liu et al. 2016). dbNSFP contains all possible amino
acid mutations in the human proteome, so investigators that discover novel mutations can look
them up in the database without having to compute the impact prediction from many tools – a
long and difficult task!

Characterizing Genetic Variants at the Genomic or Transcriptomic Level

Not surprisingly, genetic variants that do not directly impact the protein sequence encoded by a
particular gene of interest can also cause disease. Variants can affect messenger RNA (mRNA)
splicing and processing (Wang et al. 2008; Mort et al. 2014), the regulation of transcription
or translation (Ritchie et al. 2014), functional sites in untranslated regions of transcripts, and
sites of epigenetic importance. In a mechanism that is similar to how variants affect protein
sequence and structure, variants that disrupt non-coding sites can also cause disease. While
many efforts have been made to identify these variants, their discovery has lagged behind that
of the more easily characterized variants that affect protein sequence. With the advent of whole
genome sequencing, identifying non-coding variants of importance has greatly facilitated the
identification of new pathogenic variants (Boycott et al. 2013).

Using Informatics to Prioritize Disease-Causing Genes

In addition to methods available to prioritize potential pathogenic variants, there are simi-
lar supervised approaches to prioritize genes that may cause (or be associated with) certain
diseases. For example, if 15 genes were hypothetically known to cause familial forms of Parkin-
son disease with high certainty, what would be the likelihood of identifying a 16th causative
gene? Answering this question is difficult, as there are 20 000 or so protein-coding genes in
the human genome that must be sifted through quite carefully to identify actual causative
genes. The hypothesis relies on each of the known training set genes sharing some molecu-
lar signatures (such as participation in common metabolic pathways) that can be captured as
“features” (variables used in machine learning); these features can then be used to implicate
additional genes as causative using either supervised or semi-supervised methods. This can
be done using bioinformatic methods and features that are similar to methods and features
used for predicting Gene Ontology terms or other annotations for a gene or protein (essen-
tially treating a disease association as an annotation). (See also Chapter 7 and Radivojac et al.
[2013] for a list of methods.) Features may include gene product function, pathways, tissue
expression, shared domains, literature co-occurrence, and many others. Methods that use this
“guilt by association” approach include ENDEAVOUR (Tranchevent et al. 2016), PhenoPred
(Radivojac et al. 2008), and GeneMANIA (Warde-Farley et al. 2010); they have all been used
for this purpose and are complementary to genetic approaches for associating new genes to
traits using statistical associations.
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Translating Model Organism Data to Humans

There are many humans with clinical phenotypes that are either difficult to diagnose or com-
pletely undiagnosable at the present time. Understanding these “undiagnosable diseases” is
an active area for the application of clinical genome sequencing to discover novel pathogenic
variants and underlying causation. Similarly, many genetic diseases have been characterized in
model organisms through RNA interference screens or genetic knockouts of genes orthologous
to disease genes in humans, and it is thought that these models could give insight into previ-
ously undiagnosed conditions in humans. Projects such as the Monarch Initiative (Mungall
et al. 2017) are using bioinformatic approaches to facilitate translating these animal model
phenotypes to human conditions and vice versa. Monarch is a broad knowledge base that
is integrating heterogeneous data from literature to help interrogate these underlying causes
of genetic disease, to understand patient phenotypes that are not clearly diagnosable, and to
better understand the mechanisms of disease using an open science approach. (See also Infor-
matics and Precision Medicine for a discussion of community challenges on how open data
can help advance science.)

Computing with Patient Phenotype Using Data in Electronic
Health Records

Introduction to Electronic Health Records

As mentioned above, describing a patient’s phenotype is becoming increasingly important for
understanding the molecular causes of disease and, to that end, researchers have increasingly
turned to the patient’s medical chart for insight into their phenotype (Pathak et al. 2013). Over
the past 20 years, medical records data, including patient charts, are being digitized into EHRs,
and the rate of adoption (and success in implementation) of these EHRs has differed from
health system to health system (Jha et al. 2009). These complex systems manage all aspects
of the inpatient and outpatient experience: scheduling patient visits, managing billing, sub-
mitting orders, tracking laboratory test results, facilitating return of results through patient
portals, and pretty much everything else surrounding clinical care. Not surprisingly, commer-
cial vendor EHR systems are large and complex. Unlike most other datasets described in this
book, health record data were not collected for research purposes and research use is gen-
erally a secondary use that was not necessarily considered when data were collected – and,
thus, health record data may be difficult to access and use (Vuokko et al. 2015). Typically, data
within an EHR can be structured (coded) or unstructured (such as plaintext or images). Struc-
tured data use specific terminologies, data dictionaries, or numerical values that can be easily
analyzed. Today, as much as 80% of the data within an EHR system are unstructured, thereby
creating a research challenge for bioinformaticians in tapping the heretofore inaccessible phe-
notypic information found within these patient records.

Data stored in EHR systems can follow data models that are unique to the site collecting the
data, even when a common vendor system is used. In order to extract the data from the source
system or to integrate with other systems data, a process of extraction, transform, and loading
of the data must be performed for them to be loaded into a clinical data repository that can be
analyzed. The extraction step downloads the data from the source system. The transformation
step may require changes in the data model or mapping specific fields to new terminologies or
datatypes. Data abstraction in the transformation step can be costly and may involve signifi-
cant manual curation. Throughout this process, data quality must be assessed and, if possible,
data must be corrected to maintain the highest standards. Finally, the loading process inte-
grates the transformed data into a data repository or data warehouse that houses the integrated
datasets. These repositories are generally relational databases and can be queried readily using
the widely used Structured Query Language (SQL).
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Table 17.1 Examples of commonly used biomedical ontologies and terminologies in translational
research.

Ontology Description

Gene Ontology (GO) Three terminologies widely used for annotating genes and proteins
describing molecular functions, biological processes, and cellular
components.

Human Phenotype Ontology
(HPO)

Concepts describing human phenotype and disease.

International Classification
of Diseases (ICD)

Diagnosis codes widely used in electronic health record systems.

Medical Subject Headings
(MeSH)

Terms used largely by librarians and curators to annotate and
categorize biomedical literature.

National Drug File (NDF) Standardized name, dosing and strength, package size, National
Drug Code, and other metadata for drugs in use at the Veterans
Affairs Medical Centers.

Phenotypic Quality
Ontology (PATO)

Terminology for annotating model organism phenotypes.

RxNORM Normalized drug names linked to many other terminologies.
Systematized Nomenclature
of Medicine – Clinical Terms
(SNOMEDCT)

A widely used clinical ontology.

Structured Clinical Data with Biomedical Ontologies

The development of biomedical ontologies has been critical in enabling the ability to effectively
mine and analyze patient data. An ontology is a structured vocabulary that describes a domain
with semantic relationships between the terms, and there are resources online that provide
access to standardized ontologies such as those provided by the National Center for Biomedical
Ontology (NCBO) (Musen et al. 2012) or the Open Biomedical Ontologies Consortium (OBO)
(Smith et al. 2007). Ontologies provide standard terminologies or codes that can be used for
describing a patient’s health status. For example, the International Classification of Diseases
(ICD) is likely the most used ontology in the world and is used as the standard diagnosis,
problem, and billing code classification for health record systems (Anonymous 1996). While
ICD only provides diagnosis codes, the Human Phenotype Ontology (HPO) provides access to
concepts of human phenotype (Kohler et al. 2017). For example, a patient may be diagnosed
with influenza (ICD terms under the identifier ICD:J09) in the EHR, but the patient may have
the phenotype of vomiting (HPO identifier HP:0002013), which might not have been entered
into the health record. Table 17.1 provides examples of terminologies used for coding in trans-
lational informatics. Often, vendor systems will use data dictionaries that are not standardized,
requiring subsequent mapping to a standard ontology to be useful for research purposes.

Common Data Models

As clinics, hospitals, and health systems accumulate more and more clinical data derived
from their patients, interoperability of those data with other datasets becomes important.
Interoperable data are useful operationally for exchanging data across different clinical sites.
They are also useful for research using data derived from different sources, such as compara-
tive effectiveness research, discovery of new risks of diseases or conditions, epidemiological
data science, and more. Data interoperability is achieved through common data models that
allow for integration and comparison. Common data models define standard tables and
standard ontologies that are used to describe clinical data. These data models will describe
patient information and demographics, patient encounters (or visits) including vitals and
billing diagnosis codes, prescriptions ordered, laboratory or other ordered procedures, and
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clinical narrative notes. Common data models can contain fully identified or de-identified
data. In the latter case, patient identifiers have been stripped out and other alterations have
been applied that will obfuscate the data and prevent the re-identification of patients (see
Ethical, Legal, and Social Implications of Translational Medicine for a discussion of protecting
patient privacy). For research use, data are typically (but not always) de-identified. The most
commonly used data models include the Observational Health Data Sciences and Informatics
(OHDSI) Observational Medical Outcomes Partnership (OMOP) data model (Gini et al. 2016),
the Patient-Centered Outcomes Research Institute data model (Fleurence et al. 2014), and
schema based on Fast Healthcare Interoperability Resources, or FHIR (Mandel et al. 2016);
FHIR is discussed in more detail below. As of this writing, more than 650 million patient
medical records are in the OMOP format. OMOP can be used to identify groups of patients
fitting certain criteria, such as age, gender, past diagnoses, medications ordered, and other
clinical criteria. The OHDSI project provides a number of software packages that can be used
for accessing the OMOP data model data, including the Atlas data browser and the Achilles
visual data quality viewer.

Much of Electronic Health Record Data are Plaintext

Medical records contain a wealth of text data in addition to structured (or coded) data. These
textual data can be a note that describes a patient encounter, the patient’s family history, any
known drug allergies, their medical history, pathology reports, and many other pieces of clin-
ically relevant information. Performing research analyses based on clinical notes can be dif-
ficult for several reasons. First, clinical notes can be identifying – that is, they may contain
patient identifiers like name and age information that researchers may not be legally or eth-
ically allowed to access. Second, clinical notes, being text, are difficult to analyze even when
using sophisticated natural language processing (NLP) algorithms. Third, clinical notes are of
uncertain research significance and their utility may be unclear. All this aside, notes are quite
important for translational research purposes, as much of the patient’s phenotypic descriptions
are embedded there. For example, terms such as “diarrhea,” “vomiting,” or “fever” may only
be found within note text. Tools such as MetaMap and others (Chiaramello et al. 2016) enable
recognition of concepts from ontologies not generally coded in health records. One such ontol-
ogy is the HPO, which contains concepts describing phenotypes including general terms like
vomiting or diarrhea and very specific terms like “Abnormal serum insulin-like growth factor
1 level.”

Informatics and Precision Medicine

Describing Patient Phenotype

Ironically, EHR data are not necessarily collected to accurately describe patient phenotype,
meaning they are an under-used (or altogether missed) opportunity to advance human dis-
ease research (Jensen et al. 2012). The reasons for this are complex. First, health records are
often used for billing, managing and tracking orders, and recording events that occur during
patient encounters. However, the collection of phenotypic data could span many encounters,
and ongoing problems may not be covered in a specific encounter; for example, a patient with
lupus might have been treated at an outpatient clinic for a seasonal cold, but no mention of
lupus is made in the notes for that visit. Second, the status of a phenotype can be very difficult
to determine even if a record of it exists. For example, a diagnosis billing code for a form of
cancer indicates something to do with cancer but does not specify whether the patient was
tested for cancer, had cancer and is in remission, has ongoing cancer, or is being diagnosed
with cancer. Further, exposures such as tobacco use, alcohol use, and other behaviors may
not be encoded into the record at all. Box 17.2 provides an example of how well-phenotyped
patients can be integrated with genetics to discover new associations.
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Box 17.2 Associating Clinical Phenotypes to Variants: The PheWAS Approach

Biobanks have become increasing popular as part of precision medicine programs at
academic medical centers. These resources generally contain a population of consented
or de-identified patients (who have given their permission to use their data and samples
they have provided for general research use), blood, and clinical health record data. If
many of the patients are genotyped or sequenced, association between traits (defined
as phenotypes derived from health records) and variants in the population can be found.
This was done at Vanderbilt University with the creation of BioVU, a DNA biobank.
Here, genotyping of thousands of patients in BioVU has been used as a first step toward
association of variants to ICD diagnosis codes in their medical records. From this, seven
phenotypes were replicated from previous genome-wide association studies (GWAS)
(Denny et al. 2010): atrial fibrillation, Crohn disease, carotid artery stenosis, coronary
artery disease, multiple sclerosis, systemic lupus erythematosus, and rheumatoid arthritis.
Since then, many other studies have been performed to discover new relationships that
have the potential to improve health outcomes.

Drug Repurposing

Informatics approaches enable the development of methods for hypothesizing the potential
new uses for previously approved drugs based on shared mechanisms (Dudley et al. 2011). For
example, thalidomide has been approved as a sedative and to treat leprosy (Laffitte and Revuz
2004); it was then repurposed and approved to treat multiple myeloma in 2012. If two con-
ditions share a common mechanism (such as aberrant phosphorylation by a specific kinase),
then therapies that target one condition may also apply to the other. This approach has been
applied to genomic, proteomic, and other high-throughput molecular datasets of diseases and
disease models, yielding databases of shared pathways and other mechanisms that can be used
to find potential new uses for existing drugs. Similarly, an alternative approach is to use small
molecules or drugs as perturbagens, interrupting intercellular processes in order to measure
molecular changes that they induce when administered to a specific cell line or organism; these
changes could include alterations in transcriptome gene expression. These high-throughput
screens can provide insights into similar mechanisms between disease and a potential ther-
apeutic. The Drug Repurposing Hub hosted at the Broad Institute is one such resource for
accessing large amounts of screening data that quantify the molecular impacts of drugs and
can be used to compare with patient-specific or other transcriptomic datasets (Corsello et al.
2017). As of this writing, the Drug Repurposing Hub had 6125 experimentally verified com-
pounds available for analysis.

Clinical Marker Development from -omics Data

Genomic, proteomic, and metabolomic technologies have enabled the development of
molecular marker technologies that can identify undiagnosed conditions or treatment
paths for patients. These markers could include genetic variants, expressed transcripts,
proteins or fragments of proteins, metabolites, or even specific microorganisms from the
human microbiota (Chapter 16). For example, the Clinical Proteomic Tumor Analysis
Consortium (CPTAC) (Edwards et al. 2015), an NIH-funded consortium, is developing both
the technologies and the data to find proteomic biomarkers in cancer for early detection,
diagnosis, and treatment quickly and inexpensively. Markers of disease can be developed
from any biochemically measured feature and can be associated to a diagnosis or treatment
outcome. Box 17.3 provides an example, focusing on the descriptions of markers of biological
aging.
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Box 17.3 The Markers of Aging

Investigators have spent their careers trying to understand the basic mechanisms of
human and model organism aging. Finding markers of human aging is still considered
a grand challenge of both biology and medicine. High-throughput studies have used
transcriptomes, proteomes, genetics, epigenetics, and metabolomics to find risk factors
for aging.

Marker 1: telomeres. Telomeric repeats form the end of chromosomes and their length
reduces with cell division. The telomerase protein extends these repeats, while short-
ening or completely losing the repeats is associated with apoptosis or senescence.
Shortened telomeres are associated with aging and enriched shortening (such as with
a dysfunctional mutant telomerase) is associated with aging phenotypes (Aubert and
Lansdorp 2008).

Marker 2: DNA methylation. More recently, high-throughput measurements of epigenetic
DNA methylation sites (5-methylcytosine) have been found to be markers of aging. In
aging fibroblasts, DNA methylation has been found to decrease with age, while immortal
cells maintain a steady level of methylation (Wilson and Jones 1983). This work was later
supported by a study on an aging cohort of elderly subjects between the ages of 55 and
92 years of age (Bollati et al. 2009).

Integration of Heterogeneous Data Sources

Recently, there has been increasing interest in integrating multiple datasets together that can
improve descriptions of patient phenotypes (Murdoch and Detsky 2013). These include behav-
ioral datasets, such as active or passive mobile health datasets, social media data, genetic
data, environmental exposure data, patient-reported outcome measures (PROMs) generated
through the use of survey instruments, or other patient-reported data (such as images pro-
vided by the patient). As a relevant example, wearable sensors can be used to provide “early
warnings” to patients with bipolar disorder (Prociow et al. 2012). In addition, there have been
a number of recent successes arising from the integration of datasets, such as prediction of
behavior using cellphone usage (Prociow et al. 2012), identification of adverse drug events
from social media data (Nikfarjam et al. 2015), or prediction of cardiac arrest incidence from
genetic variant and neighborhood conditions (Mooney et al. 2016a). It is expected that the
integration of medically relevant datasets will continue to improve our power to detect health
risks and to better describe outcomes through a better description of patient phenotype and a
patient’s environment.

Precision Medicine Initiatives

Published clinical studies typically compute average effects observed across a population
of humans. These effects differ from the effect that would be seen in randomly selected
individuals from that population or in a single patient in a clinic. There are likely to be ethnic
and other genetic differences, differences in socioeconomic status, lifestyle, risk profile, and
others (e.g. patient diversity in chronic kidney disease; Norris and Nissenson 2008). Genetic
similarity, for example, clusters by place of origin or ancestry, and clusters poorly with race
(Jorde and Wooding 2004). All patients are different, and we are just beginning to learn
how to treat a patient individually tailored to their person (the “N of 1” problem). As may
have become quite obvious by this point, translation of the population-based body of clinical
knowledge to individual patients in a data-driven way is difficult (Hamburg and Collins 2010).
In order to better assess this translational potential, large cohorts of volunteer participants are
being recruited to studies to assess general population-based risk factors, among other goals.
One such example is the NIH’s All of Us project, currently under way in the United States
with the goal of enrolling 1 million volunteers who agree to provide their clinical, genetic,
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mobile health data (mHealth), PROMs, biometric, and other relevant clinical data (Ashley
2015). The All of Us initiative is likely to provide important new insights into risk factors for
disease and deeper insights into outcomes of interventions developed using clinical studies.
All of Us is positioning itself as a model for open science and data sharing, enabling data
scientists access to richer data than have been widely available previously for any study and,
in the process, bringing a new set of challenges to the fore (Adams and Petersen 2016). It is
expected that genome sequences will be a core component of this research platform. Other
initiatives include P4 Medicine at the Institute of Systems Biology (Flores et al. 2013) and the
development of biobanks such as MyCode by the Geisinger Health System (Carey et al. 2016)
and BioVu at Vanderbilt University (Cronin et al. 2014).

Community Challenges Solve Innovative Problems Collaboratively

One approach toward solving challenging problems in translational informatics is to
engage the community of “citizen scientists” to bring forward unique and novel solutions
(Saez-Rodriguez et al. 2016). An ecosystem of data challenges has emerged across the
informatics domain. These challenges are often public and open to all participants. This
community first emerged from the Critical Assessment of Structure Prediction (CASP) (Moult
et al. 2011), a biannual unbiased assessment of the best methods for predicting macromolec-
ular structures. Since then, a number of other “critical assessments” have emerged, as well
as from other organizations, such as the DREAM challenges (Jarchum and Jones 2015), and
even for-profit companies focusing on hosting challenges (e.g. Kaggle). Challenges are an
excellent way to stimulate new methodology and innovation, to build collaborations, and
to assess methodology in an unbiased manner. Now there are challenges that range from
the development of new bioinformatic analysis tools, methods for clinical decision support,
and methods for NLP and genomics, among others. One notable family of challenges is the
regularly occurring Critical Assessment of Genome Interpretation (CAGI), an effort to assess
tools for inferring phenotype from human genetic sequences. Box 17.4 presents an example
of the CAGI whole genome prediction challenge using data derived from personal genomes.

Box 17.4 The CAGI Personal Genome Project Community Challenge

The Personal Genome Project (PGP) (Ball et al. 2014) was developed to enable research on
human genomes and encourages participation from individuals who adopt “open consent.”
Open consent allows personal genomes, traits, and other information to be released for
general research use. The PGP enrolls participants, has them sign on to open consent, has
them fill out a detailed health survey, takes a DNA sample, and then sequences and pub-
lishes their genome. The Critical Assessment of Genome Interpretation (CAGI) organizers
saw this as an opportunity to assess how well consumer genetic testing and other meth-
ods work at predicting traits directly from a genome sequence, and the PGP challenge was
born. In 2010, the challenge was simple: the first 10 PGP genomes were released without
the health survey data to challenge method developers. Developers then attempted to
predict both binary and numerical traits from the sequences. Once the predictions were
collected, the health surveys were made public and the accuracy of the predictions was
assessed. Subsequently, between 2010 and 2016, two other PGP challenges were held
where developers were asked to simply match a known trait profile (again derived from
health survey) to a genome. The list of profiles contained many decoys, making matching
even more difficult. A number of teams from across the globe submitted predictions. Over
the three challenges, many lessons were learned (Figure 17.2). First, matching an exten-
sive profile for an individual to a genome is a challenging problem and the best methods
were only able to match approximately 20% of the genome profile pairs. Second, individ-
ual traits are exceedingly difficult to predict, and sometimes just knowing how common a
trait is in a population is a challenge. Still, accuracy increased over time for the challenges.
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Electronic Health Record Systems can be Customized

One of the goals of translational medicine is the translation or implementation (use) of
new research findings back to the clinic. Traditionally, electronic medical record systems
have been difficult to engineer and customize for a specific clinical site. EHR systems have
mechanisms for extension and decision support built in, such as patient care provider alerting
based on rules. Alerts can be customized to occur when certain defined events occur within
the system and rules that trigger alerts can be customized to support notification of potential
medication interactions, reminders for laboratory tests or procedures, pharmacogenetics
indications, and others (Nishimura et al. 2015). Pharmacogenetic alerts, for example, can
facilitate personalized drug dosing using genetic data, and applications of these alerts were
seen as advantageous by prescribing physicians (Overby et al. 2015). Alerting with too much
frequency in EHR systems causes “alert fatigue,” where healthcare providers begin to ignore
alerts as they become more common, particularly when providing alerts for obvious or
false-positive actions. More recently, EHR systems have become even more customizable
and can be standardized using standard application programming interfaces (APIs) that are
interoperable across different system vendors. The most widely used standard is the Fast
Healthcare Interoperability Resources (FHIR, pronounced “fire”) (Mandel et al. 2016), a
communication and data standard being developed for extending EHRs. FHIR is enhanced
by Substitutable Medical Apps and Reusable Technologies (SMARTs) that enable building
novel applications that use FHIR APIs (such as mobile applications) (Bloomfield et al. 2017).
While “SMART On FHIR” is still in development, it is based on the HL7 communication

0

0

Stanke_1 (AUC = 0.7982) Stanke_2 (AUC = 0.7976)

Anonymous (AUC = 0.5170)

Gough (AUC = 0.6132)

Karchin (AUC = 0.8531)

0.1

0.1

0.2

0.2

0.3

0.3

S
en

si
ti

vi
ty

 (
T

P
R

)

1 – specificity (FPR)

0.4

0.4

0.5

0.5 0.6 0.7 0.8 0.9 1.0

0.6

0.7

0.8

0.9

1.0

Figure 17.2 Receiver operating characteristic (ROCs) curves of five submissions from the CAGI PGP 2015
matching challenge. Challenge developers submitted genome health profile match probabilities, and
these were used to compare against the actual known genotype–phenotype pairs. AUC, area under the
curve. See Cai et al. (2017) for more detail.



Ethical, Legal, and Social Implications of Translational Medicine 549

standard for communicating clinical data over the internet and is becoming widely supported.
SMART On FHIR represents a giant leap forward for translational informatics, as it opens the
interoperability of extensions of health record systems considerably.

Informatics for Prevention Policy

While much of the effort in the field of translational informatics has been focused on clinical
applications, biomedical informatics also has the potential to inform policy, particularly with
respect to prevention. For example, EHRs were used to efficiently study the collision risk ele-
vation connoted by specific medications (Rudisill et al. 2016). More broadly, deploying novel
information-gathering devices (e.g. air quality monitors mounted on public transportation
vehicles to provide real-time, spatially detailed estimates of air pollution in an urbanized area;
Devarakonda et al. 2013) and reusing information not initially gathered for health purposes
(Hipp et al. 2013; Lovasi et al. 2013; Mooney et al. 2016b) – so-called “effluent data” (Mooney
and Pejaver 2017) – is a mainstay of modern public health informatics research (Eysenbach
2009; Lazer et al. 2014; Santillana et al. 2014).

Ethical, Legal, and Social Implications of Translational Medicine

Given that the methods and results of translational bioinformatic research can have a direct
impact on patient care, there is now a much greater interest in the ethical, legal, and social
implications (ELSI) issues arising from the work being done in this field. These issues have
been heavily discussed in the context of human genome sequencing (Collins 1999) but
are equally important in the context of translational medicine. This chapter is not meant to
give the reader a complete background in ELSI but, instead, to highlight that special care
must be taken when developing directly translatable methods to patient care when using
genomics data. We direct the reader to several of the many good reviews available discussing
the impact of ELSI in genomics (Oliver and McGuire 2011; Callier et al. 2016) for a more
complete treatment of the subject.

There are a number of questions that should be considered when releasing new methods,
even if the method is intended for research use only. This includes what effect any new method
will have on patients or providers, or whether are there any unintended consequences of such
a tool. If the method is misused clinically, could patient harm come from its use? For example,
what are the risks of false positives? Finally, there are potential regulatory issues that can vary
from country to country that regulate the deployment of new clinical methods or return of
clinical results to patients.

Protecting Patient Privacy

One of the primary difficulties in performing research on patient-derived data is the pro-
tection of the privacy of patients, research participants, and their family members. When
research is performed, patient identifiers are generally removed; these identifiers include
the patient’s name, U.S. Social Security number, medical record number, address, phone
number, and similar personal data. In the United States, the Health Insurance Portability and
Accountability Act (HIPAA) of 1996 defines 18 identifiers that can be stripped from a dataset
to remove direct patient identification, and such datasets are called “limited.” De-identified
datasets can be created from limited datasets by further anonymization, including randomly
shifting dates of service or other transformations that obfuscate the data and make them
difficult to directly re-identify the patient from whom the data were originally derived. (Note
that institutional policies, human subjects research compliance regulations, and specific
laws can vary on approaches to de-identification.) It is every researcher’s responsibility to
ensure that patient confidentiality is kept; this includes ensuring information security, not
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attempting to re-identify patients, and using “honest broker” approaches when accessing
data. (Honest brokers are independent personnel who only provide data for research that
have been approved by an Institutional Review Board.)

Summary

The future of translational bioinformatics is bright and will only continue to grow. As we
learn more about the causes of disease through high-throughput experimentation, we begin
to develop new methods for early detection and diagnosis, new interventions, and new tools
for returning results to patients. We have become very good at sequencing and interpreting
genomes clinically. This has led to the development of many tools for prediction and priori-
tization of pathogenic or functional variants and disease-associated genes. We have begun to
connect genotype to phenotype better by connecting our rich knowledge of genetics to new
sophisticated models of patient phenotype using EHRs, behavioral data, and patient-reported
data, among others. This work has led to an explosion of activities surrounding computing
with patient data. Some emergent projects have included drug-repurposing efforts, community
challenges and open science, and useful clinical marker discovery. Further, using new tech-
nologies in EHR systems, such as standard APIs, we are be able to implement these findings
as data analysis and recommendation methods to directly impact clinical care by presenting
this information to either the patient or the provider through the health record or applications
developed ancillary to the health record.

Internet Resources

Kaggle A for-profit website for hosting
community challenges

Kaggle.com

Promethease A method for predicting
phenotypes from genetic data

www.snpedia.com/index.php/Promethease
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Statistical Methods for Biologists
Hunter N.B. Moseley

Introduction

The dramatic growth in the generation and accumulation of biological and biomedical data
during the twentieth century has created a fundamentally different data- and knowledge-rich
research environment in the twenty-first century. To effectively function within this environ-
ment, biologists must be able to utilize large amounts of data and accumulated knowledge
in their day-to-day research. These datasets often include thousands to millions to even bil-
lions of individual pieces of data that are simply too large for manual analysis. Therefore, it is
critical for biologists to understand derived summative representations of these large datasets.
A statistic such as the mean (or average) is a commonly used derived representation of a
set of data, and the field of statistics is the science involving the derivation and application
of useful statistics from datasets. In the context of bioinformatics, large datasets derived from
a variety of “-omics” technologies or aggregated information in knowledge bases must be sum-
marized by descriptive, summative representations that facilitate the evaluation of the dataset
and its utilization in other analyses. Often times, these other analyses produce new infor-
mation and knowledge from the dataset. But the fundamental understanding of a dataset,
the experiments that produced the dataset, and the methods used to analyze the dataset are
required to create accurate interpretations that form new information and knowledge. Statis-
tics provides a critical perspective and set of concepts for developing this fundamental under-
standing of a dataset and how it may be used effectively.

Descriptive Representations of Data

Data vs. Information vs. Knowledge

Data, information, and knowledge are related but separate and distinct concepts. These terms
are often used interchangeably, leading to confusion in exactly what is being collected, pro-
vided, or analyzed. Specifically, data are an unorganized collection of simple facts and obser-
vations. This definition of data begs the question: “What are observations?” An observation
is an acquired measure of a phenomenon. For a statistician, the phenomenon is a statistical
experiment. In a scientific research context, an observation is the determination of the amount
or degree of some property or characteristic of a specific physical entity or event. Thus, data
are an unorganized collection of such measurements. Information is data that are organized,
analyzed, and interpreted into a useful form, often for making decisions. Finally, knowledge is
information, understanding, and skills derived from education and experience in a particular
domain or area of study. As illustrated in Figure 18.1, individual observations are collected
into data, which are interpreted into useful information, which is further distilled into new
knowledge.

Bioinformatics, Fourth Edition. Edited by Andreas D. Baxevanis, Gary D. Bader, and David S. Wishart.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
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Collected

Interpreted

Distilled

Knowledge

Information

Data

Observation
Figure 18.1 Relationships between observation, data, information,
and knowledge. Source: Reproduced with permission of Hunter
Moseley, https://doi.org/10.6084/m9.figshare.4968125.v1. Licensed
under CC By 4.0.

From a data perspective, a collection of related observations representing the same or
similar phenomenon is called a random variable. This term has a more abstract definition
in statistics, where it is represented as a mathematical function that maps possible outcomes
from a statistical experiment (phenomenon) to a measurable space of possible values (obser-
vations). Depending on what property or characteristic is being measured, random variables
can be numerical or categorical, as shown in Figure 18.2. A numerical random variable is a
range of possible measurable quantities. If the range is defined in terms of real numbers or a
similar infinite number set, then the random numerical variable is continuous. In this context,
continuity is a property of the mathematical function f(x) representing the random variable,
where the limit of f(x) approaches f(c) as x approaches c. For example, measuring the distance
between donor and acceptor chromophores using fluorescence resonance energy transfer
(FRET) would be a continuous random variable, since a continuous range of real numbers
are possible observations (i.e. mapped outcomes of the statistical experiment representing a
set of observations generated from the FRET analytical experiment). Another example of a
continuous random variable is the length of time that a mouse searches for the platform in a
Morris water maze test. Now if the range is defined in terms of integers (i.e. positive and/or
negative counting numbers), then the random numerical variable is discrete. The number
of cells counted in a flow cytometer is a discrete random variable within a discrete range of

Type Random variable definition Example

Variable

Numerical

Numerical

Categorical

NominalOrdinalDiscreteContinuous

Continuous ...within a range of real or complex values

...within a countable range of integer values

...with a logical order or ranking

...without a logical sequence

Qualitative observations describing a characteristic or
relative quality

Discrete (cardinal)

Categorical

Ordinal

Nominal

How many? How much?

[0.0, 10.0]; {1.50, 4.58, 9.45}

Quantitatively measured observations

[0, 10]; {0, 3, 4, 7, 9, 10}

What type? What category?
What relative quality?

{1st, 2nd, 3rd}; {low, med, high}

{male, female}; {blue, green, red}

Figure 18.2 Types of variables and their hierarchical relationships. Source: Reproduced with permission
of Hunter Moseley, https://doi.org/10.6084/m9.figshare.4968143.v1. Licensed under CC By 4.0.
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natural numbers (i.e. non-negative integers). Another example is a “point count” or number
of a type of bird seen or heard at a given observation station over a set period of time. A
categorical random variable is a set of possible qualitatively measured observations describing
a characteristic or relative quantity. If the values have a relative or logical order or ranking,
then the categorical variable is considered ordinal. The relative order of nucleotides observed
for a specific nucleotide sequence is an ordinal random variable. Another example is the
reporting of the relative level of pain experienced by patients undergoing some procedure on
a scale of 1 (most severe pain experienced) to 5 (no pain). If the values have no logical order,
then the categorical variable is considered nominal. The sex of an animal is a nominal random
variable that, in most cases, is limited to male and female. Another example is a human cell
line with and without specific CRISPR-Cas9 gene knockouts.

Datasets and Data Schemas

A dataset and its older accepted spelling “data set” is simply a collection of related data and
information. But the canonical definition of dataset refers to a collection of related sets of data
and information that are organized with respect to observable phenomena (variables) and
entities that relate observations across phenomena (i.e. multiple statistical experiments). This
organization is usually represented in a two-dimensional matrix or relational table, where
columns or fields represent distinct variables of data and rows represent distinct entities.
For example, age, sex, race, weight, height, disease status, treatment, and other outcome
variables can be collected for a set of properly consented human subjects and organized
into a two-dimensional table where values for specific random variables (columns 2+) are
associated with a specific human being (with de-identified subject ID in column 1) for use
in a clinical trial (Figure 18.3a). In this context, the collection of inter-related observations
from a single clinical, biomedical, biological, and/or analytical experiment are organized into
these two-dimensional datasets. However, datasets can also refer to collections of canonical

Two-dimensional relational table(a)

(b) (c)

Deidentified
subject ID

Age Sex Race BMI Disease
status

Treatment HbA1c ...

...

...

...........................

...
...

...

S123dsd53 54 M C 27 Normal None 5.2

S534sde44 56 F AA 29 Pre Drug A 6.4

S348tfe12

Subject :
Subject :

52 F C 31 Full Drug B 8.5

Two-dimensional data schema Three-dimensional data schema

Experiment :
•

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

ID : VARCHAR
ID : VARCHARAge : FLOAT (continuous)

Age : FLOAT (continuous)Sex : CHAR [1] (nominal)

Sex : CHAR [1] (nominal)Race : CHAR [3] (nominal)

Race : CHAR [3] (nominal)BMI : FLOAT (continuous)

BMI : FLOAT (continuous)Status : SMALLINT (ordinal)

Status : SMALLINT (ordinal)Treatment : CHAR[20] (nominal)

Treatment : CHAR[20] (nominal)HbA1c : FLOAT (continuous)

HbA1c : FLOAT (continuous)

Figure 18.3 Organization of an example dataset. (a) Part of a two-dimensional (2D) relational table
relating de-identified human subjects (rows) to specific sample variables (columns). (b) A 2D data schema
showing the organization of the dataset and the types of variables. (c) A three-dimensional (3D) data
schema showing an additional relationship (dimension) of subjects to biological/analytical experiment.
Source: Reproduced with permission of Hunter Moseley, https://doi.org/10.6084/m9.figshare.4968146
.v1. Licensed under CC By 4.0.
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datasets, in which individual biological and/or analytical experiments represent a third
dimension. Therefore, a description of the organization of the dataset, called a data schema,
is required for analysis and interpretation of a dataset (Figure 18.3b,c). Also, a data schema
is often referred to as a data dictionary, database schema, or metadata, depending on the
context of use. As datasets continue to grow in size and complexity, the quality of the data
organization and data schema often becomes a limiting factor in the usability of a dataset.

As previously mentioned, datasets are usually too large to examine and understand by man-
ual inspection. Therefore, summative, descriptive representations of a dataset are required for
their evaluation and interpretation. Three major types of descriptive data representation are
data schemas, descriptive statistics, and graphs. As a starting point, a data schema provides a
very good descriptive overview of a dataset. From a well-described data schema, the number
and specific types of variables are easily determined. Also, the organization of variables with
respect to entity – the subject – becomes evident (Figure 18.3b), and higher order organiza-
tions relating variables and/or subjects across biological and analytical experiments can then
be deduced (Figure 18.3c).

Descriptive Statistics

A descriptive statistic is a single measurable characteristic that quantitatively describes or sum-
marizes a collection of related data (Daniel and Wayne 1995). However, in a strict statistical
definition, there are two related concepts: statistic and parameter. A statistic is a single mea-
sure of some sample variable or measurable sample attribute, where a sample is a subset of
entities from a population. The term parameter is reserved for a characteristic or attribute of a
population that often cannot be directly measured. Most datasets only contain data represent-
ing a subset of a population, known as a sample. For example, the mean height of 1000 female
tennis players would represent the mean height statistic for the sample of 1000 tennis play-
ers, which could be used to infer the mean height parameter for the population of all female
tennis players. But a dataset could also contain all data for a finite population like “all human
employees of a given business.” In this case, a parameter for this finite population could be
directly measured from the dataset and not just estimated from a sample statistic. However,
such narrowly defined populations can also be viewed as a sample of a much larger popula-
tion, like “all humans on the planet” or even “all humans who have ever lived or possibly could
live.” Therefore, classifying a measurable descriptive characteristic of given dataset variable as
a statistic versus a parameter is a matter of perspective.

Figure 18.4 provides a list of the most commonly used descriptive statistics for collections
of data representing sample variables. The first descriptive statistic in the light blue row is the
size (or cardinality) of a collection of data. The importance of size cannot be overstated, as it
represents the most direct measure of the quantity of data present in a set of related data – the
variable. The data quantity, in turn, typically limits the information content of the variable. The
next most commonly used descriptive statistics, shown in the light green rows in Figure 18.4,
are called statistics of central tendency. In statistics, central tendency is the typical, central,
expected value for a collection of values or a range of possible values. The best known statistic
of central tendency is the arithmetic mean or average for a collection of values. For example, the
mean of {3.2, 4.1, 4.1, 4.2, 4.4, 5.1, 5.1, 5.4, 5.4, 5.5, 5.8, 5.8, 6.2, 7.0, 7.5} is 5.25, which represents
a fairly typical value for this collection of values. In this context, the central or typical value rep-
resents the most frequently occurring value or set of values within a distribution, which is the
set of frequencies for all possible values that may occur. This highest frequency value or typical
value is often used to represent the location of a distribution of values within the larger set of
values describing a certain type of variable. Now, the arithmetic mean, or average, is the most
commonly used statistic of central tendency, because it provides the most accurate estimate of
an expected value given certain assumptions about a distribution (especially symmetry) and
requires the least quantity of data for both the accuracy and precision of its result. However,
for many real-world collections of data, other less precise statistics (especially the median and
the mode) provide a more accurate estimate of the expected value for a given distribution of
values. In particular, the median is often used to avoid the effects of extreme outliers in a col-
lection of data, as it is not sensitive to the presence of a few extreme outliers and it is easy to
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Figure 18.4 Commonly used descriptive statistics for sample variables. Light blue rows are statistics of data quantity.
Light green rows are statistics of central tendency. Light orange are statistics of expected intervals. Light yellow rows
are statistics of dependence. Source: Reproduced with permission of Cmglee, https://commons.wikimedia.org/wiki/File:
Visualisation_mode_median_mean.svg. Licensed under CC By 3.0.
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reliably calculate. The mode is very insensitive to various aberrations from commonly expected
distributions of values but is often less precise; it requires a much larger quantity of data for a
reliable calculation, making it much harder to calculate in a predictable manner.

The next category of descriptive statistics in the light orange rows in Figure 18.4 provide a
summary of the observed values in terms of expected intervals and dispersion. The simplest
of these statistics is the range that, mathematically, is the set of non-repeating values derived
from the collection of all observations (data) or all possible observations, where set is mathe-
matically defined as a collection of “distinct” objects, which are non-repeating values in this
situation. However, range has a variety of different but related meanings, including the classi-
cal statistical definition, which is the difference between maximum and minimum values from
a collection of values that are numerical or ordinal. However, the mathematical definition – a
set of non-repeating values – is most useful in the context of a nominal variable. For a numer-
ical or ordinal variable, the range is most often described as the interval encompassing both
the minimum and maximum values and is represented as these values separated by a comma
between brackets, such as the range [2, 11] for the collection of observations {2, 4, 5, 5, 5, 6,
6, 8, 11} (Galton 1886; Pearson 1895). A parenthesis can be used at either end to indicate up
to but not including the boundary value; for example, the notation [0, 10) indicates that the
range can include all values from 0 up to but not including 10. This definition of range best
captures the concept of an expected interval of values. Sample variance is the next descriptive
statistic of expected intervals and represents the spread of measured values around the sam-
ple mean. Like the mean, the descriptive accuracy of a variance with respect to an expected
interval of values depends on certain assumptions about the underlying distribution of values,
especially symmetry. The square root of the variance is the standard deviation (often abbrevi-
ated as SD or StdDev), a metric that is an easier quantity to relate to the sample mean. Standard
error of the mean (often abbreviated as SE or SEM) is a probabilistic description of the preci-
sion of the sample mean with respect to the population mean. The accuracy or confidence of
the sample mean can be defined in terms of standard error units under certain assumptions
of the underlying distribution of values, especially symmetry. The final descriptive statistic of
expected intervals is the confidence interval (CI) that identifies a range, which includes the
expected value at some level of confidence. This is a great description of an expected interval,
as it makes no assumptions about a distribution and, like the sample mode, is rather insen-
sitive to various aberrations of commonly expected distributions. An alternative formula for
calculating the CI based on the sample mean and standard error is CIx,z = [x − zSEx, x + zSEx],
where a z ≈ 2 is equivalent to a 95% CI and a z ≈ 3 is equivalent to a 99% CI.

The final category of descriptive statistics in the light yellow rows in Figure 18.4 provides
a description of dependence between two sample variables. Sample covariance describes how
two sample variables vary together and is calculated in a manner analogous to sample variance.
In other words, sample covariance describes how the measured values from both sample vari-
ables co-spread in a linearly dependent manner around their respective sample means. From
one visual perspective, covariance describes an area of co-dispersion centered on the sample
means, with the range of (−∞, ∞). Next, the Pearson’s correlation coefficient, or Pearson’s
correlation for short, describes the linear dependence between two sample variables (Pearson
1895). It is related to the covariance by the inverse of the standard deviation of both sample vari-
ables and is often viewed as a covariance normalized by the standard deviation of each sample
variable. This normalization forces the Pearson’s correlation into a range of [−1, 1], which is
often easier to interpret in terms of strength of the dependence between the two sample vari-
ables. This interpretability of correlation over covariance is illustrated in Figure 18.5, where
the covariances between x and y are the same for two samples, but the Pearson’s correlations
for blue and red samples are different. The higher variances present in the red sample repre-
sent a lower dependence between x and y even though the nature of the dependence (slope
of the black regression line) is the same. This example illustrates why covariance and corre-
lation cannot be quantitatively compared with each other, even though they can be qualita-
tively compared in terms of their sign: a positive covariance will have a corresponding positive
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Figure 18.5 Covariance versus correlation.
The red sample has higher sample variances
than the blue sample which equates to lower
correlation, even though the covariance is
the same between the sample variables.
Source: Moseley, Hunter (2017): Example of
covariance-correlation differences. figshare.
doi.org/10.6084/m9.figshare.4968149.v1.

rxy = 0.996
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correlation and likewise for negative and zero covariances and correlations. The Spearman’s
rank correlation coefficient (or Spearman’s correlation, for short) describes the monotonic,
non-linear dependence between two sample variables (Spearman 1904). A monotonic relation-
ship between two sample variables means that the rank order of the values of the two sample
variables is preserved. Visually, a monotonic relationship means that any given horizontal or
vertical line will only cross the curve described by the function y = f(x) once, where x and y are
the two sample variables. Spearman’s correlation describes the strength of this monotonic or
rank order dependence between two sample variables in a manner that is analogous to how the
Pearson’s correlation describes the linear dependence between two sample variables. Specif-
ically, Spearman’s correlation is calculated in terms of the preservation of the rank order or
inverse rank order between the two sample variables with a range of [−1, 1]. The final common
descriptive statistic of dependence is the coefficient of determination, which is a measure of
how well one or more sample variables fit a given mathematical model. However, from another
perspective, the coefficient of determination describes the model-based dependence of a set of
sample variables. This statistic is calculated as one minus the ratio of the sum of squares of the
residuals over the sum of squares of total differences between observed values and the sample
mean. The coefficient of determination can range from [0, 1] and is often described in terms
of the fraction of unexplained variance between the model and the data. For a linear model,
the coefficient of determination reduces to r2, the square of the linear correlation, which is
the square of a Pearson’s correlation if only two sample variables are involved. More broadly,
Pearson’s correlation, Spearman’s correlation, and the coefficient of determination all mea-
sure the strength of dependence between sample variables and some model describing specific
mathematical relationships. When there is an expected linear relationship between two sample
variables, a Pearson’s correlation is typically used to describe the amount of linear dependence.
When there is an expected non-linear monotonic relationship between two sample variables, a
Spearman’s correlation is used to describe the non-linear monotonic dependence. When there
is an expectation of a specific mathematical model involving one or more sample variables that
is not easily handled by the first two measures of dependence, a coefficient of determination
is typically used to describe the dependence of variable(s) with respect to the model.

The Right Graph Is the Most Descriptive Representation of a Dataset

Graphs are simplified drawings that illustrate one or more variables of data within a dataset.
In many cases, a graph provides a summative overview of the variables in a visual manner that
highlights specific descriptive statistics of the data or properties of a distribution (see the visual
descriptions in Figure 18.4). Often, a graph can visualize dependencies between variables,
making specific relationships apparent. There are many different types of graphs designed to
summarize or highlight sets of variables and even whole datasets in a variety of ways, such as
the many charts available in typical spreadsheet software. In most cases, the number of sam-
ple variables and/or experiments being organized, analyzed, or visualized together (that is, the
data dimensionality) limits which type of graph is usable for a particular visualization task.
Given that the vast majority of pictures are two dimensional, most data visualizations in the
form of a single graph cannot easily represent more than two dimensions of data directly. But
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Figure 18.6 Example histogram demon-
strating the frequency of black cherry tree
heights. Source: commons.wikimedia.org/
wiki/File:Black_cherry_tree_histogram
.svg CC BY 2.5, commons.wikimedia.org/
w/index.php?curid=3483039.

sometimes three dimensions is visualized with depth artificially implemented when a com-
pelling data visualization is needed like representing and comparing volume.

One of the simplest descriptive graphs is the histogram (Figure 18.6), which visualizes the
distribution of values for a given sample variable. From a statistical perspective, the histogram
visualizes the frequency of an ordered set of statistical events occurring in a sample variable.
Most often, each statistical event (i.e. a set of possible outcomes) is represented as a numeri-
cal range of possible values, and the height of each bar is the frequency of occurrence of the
represented event within the sample variable. Thus, a histogram often provides a clear visual
representation of the distribution of values if the right ordered set of ranges is used. However,
many times, we want to use a graph that enables the visual comparison of a single random
variable across multiple experiments. The box-and-whisker plot, or boxplot, was developed
exactly for this purpose back in the early 1950s and later popularized by the mathematician
William Tukey in the late 1960s (Spear 1952; McGill et al. 1978). Figure 18.7a illustrates the
parts of a standard boxplot, which includes the interquartile range (IQR). The bottom of the
box defines the first quartile (Q1 or 25th percentile, representing the lowest 25% of the data),
the middle indicates the median (Q2 or 50th percentile), and the top of the box defines the
third quartile (Q3 or 75th percentile, representing the highest 25% of the data). The whiskers
extend from the top and bottom of the box up to 1.5 times the IQR. Any value outside these
ranges is often indicated by an outlier point. The boxplot is often used for displaying and com-
paring distributions of data without making assumptions about the distribution, providing a
non-parametric view of the underlying data with respect to rank order and frequency that
facilitates visual comparison of datasets. However, the real cleverness of the boxplot was that
it enabled effective hand-drawing of descriptive graphs before computers were widely avail-
able for this task. But the simplicity of the box and whisker representation is also a drawback.
Figure 18.7b shows boxplots that appear to be almost identical (Choonpradub and McNeil
2005). However, the overlay of the data onto the boxplots in Figure 18.7c clearly illustrates
how different each sample is. Today, there are several variants of boxplots that are much more
descriptive than the original, easy-to-draw boxplot. The violin plot (Hintze and Nelson 1998),
the SinaPlot (Sidiropoulos et al. 2018), and their combination (illustrated in Figure 18.7d–f) are
visually very descriptive of the different distributions of values and provide a better comparison
of the four samples.

The next major type of descriptive graph is a scatter plot representing multidimensional
data points that visualize the co-dispersion and dependency between two or more sample vari-
ables that are typically quantified using correlation- and covariance-descriptive statistics. Each
data point illustrated on the graph represents an ordered set of linked values corresponding
to different sample variables; for example, (62.5 in., 101.3 kg) represents the measured height
and weight of a male human subject. Often, regression lines or curves are added to the graph
to illustrate the dependence of the sample variables with respect to a particular mathemat-
ical model or function. Figure 18.8 illustrates the usefulness of scatterplots in four famous

https://commons.wikimedia.org/wiki/File:Black_cherry_tree_histogram.svg
https://commons.wikimedia.org/wiki/File:Black_cherry_tree_histogram.svg
https://commons.wikimedia.org/wiki/File:Black_cherry_tree_histogram.svg
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Figure 18.7 Example boxplot and related variant graphs. (a) Schematic diagram of a boxplot. (b) Classical boxplot for four samples of
measurements. (c) Classical boxplot with data points. (d) Violin plot. (e) SinaPlot. (f) Violin plot with SinaPlot overlay. Graphs in (b)–(f)
were generated using ggplot2 in R. Source: Moseley, Hunter (2017): diagram of a box plot. figshare. doi.org/10.6084/m9.figshare.4993937
.v1. Moseley, Hunter; Flight, Robert M (2017): Standard Box Plot. figshare. doi.org/10.6084/m9.figshare.4968152.v1. Moseley, Hunter;
Flight, Robert M (2017): Boxplot with data points. figshare. doi.org/10.6084/m9.figshare.4968155.v1. Moseley, Hunter; Flight, Robert
M (2017): Example Violin Plot. figshare. doi.org/10.6084/m9.figshare.4968158.v1. Moseley, Hunter; Flight, Robert M (2017): Example
SinaPlot. figshare. doi.org/10.6084/m9.figshare.4968161.v1. Moseley, Hunter; Flight, Robert M (2017): Example Violin plot plus SinaPlot.
figshare. doi.org/10.6084/m9.figshare.4968164.v1.
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Figure 18.8 Anscombe’s quartet. Scatterplots with regression lines for four famous sets of data points that are visually very distinct,
but provide the exact same descriptive statistical values.

graphs known as Anscombe’s quartet (Anscombe 1973). In the early 1970s, Francis Anscombe
created four datasets, each containing two variables that provided identical values for all stan-
dard descriptive statistics, including linear regression lines. However, simple scatterplots of the
datasets reveal just how different these four datasets really are. What is most disconcerting is
the very high linear correlation rxy for two sets of points that clearly do not have the linear rela-
tionship indicated by the regression line. The four graphs are a warning not to over-interpret
descriptive statistics, especially in the comparison of small datasets and without knowing the
nature of the dependency between variables.

Scatterplots have also proven useful in visualizing certain derived summative properties or
statistics of high-dimensional datasets that contain hundreds or even thousands of related sam-
ple variables. The general approach is to derive a small set of descriptive latent variables (vari-
ables not directly observed) from a large set of related sample variables and then visualize this
set of latent variables with scatterplots. A very common method used for this approach is prin-
cipal component analysis (PCA), a method that derives principal components of correlation
(typically linear correction) from a set of continuous variables. PCA derives each component
of correlation in an order that provides the largest amount of variance in the dataset first, with
the first principal component representing the largest amount of variance, the second princi-
pal component representing the second largest amount of variance, and so on. The analysis is
typically repeated until either the desired number of components for visualization is obtained
or until a pre-defined fraction of dataset variance is represented by the resulting list of prin-
cipal components. Thus, PCA creates the smallest set of latent continuous variables with no
correlation between each other that represents the largest cumulative fraction of the variance
present in the original high-dimensional dataset. Figure 18.9 shows a PCA scatterplot of two
principal components of linear correlation derived from RNA-seq datasets for five groups of
human retinal pigmented epithelial cells immortalized with human telomerase reverse tran-
scriptase (RPE-1) and with three replicates in each group. One group is the control and the
other four groups represent small interfering ribonucleic acid (siRNA) knockdowns for three
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Figure 18.9 Scatterplot of the first
two principal components (PCs) from
principal component analysis. Source:
Moseley, Hunter; Flight, Robert M;
Wang, Qingjung (2017): PCA plot of
RNAseq dataset of CLN3 knockdown.
figshare. doi.org/10.6084/m9.figshare
.4994204.v1.
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different genes, with one gene knocked down in two different ways. The two principal com-
ponents contain over 50% of the variance in the combined dataset that includes thousands of
random sample variables for individual RNA abundances, which are typically used to infer lev-
els of gene expression. These first two principal components highlight the separation between
the five groups of RPE-1 cells and indicate that the difference between the five groups is rep-
resented in the largest sources of variance in the combined dataset.

As illustrated by the histograms, the various types of boxplots, and the scatterplots shown in
the figures discussed above, graphs can provide very descriptive representations of data. How-
ever, care must be taken to make them maximally descriptive. The following points provide
useful guidelines for making graphs very descriptive.

• Always include a descriptive title in a graph, such as “Isocitrate dehydrogenase 1 activity.”
Also, do not just repeat the axis labels in the title.

• Always label the axes with a descriptive name and the units of measurement; for example,
“Culture growth time (h),” “μg/ml protein,” or “Intensity (a.u.)”.

• Visually represent uncertainty in the data whenever possible and reasonable.
• Using error bars and visualizing the underlying distribution are two major ways to visually

represent uncertainty.
• Use error bars that are useful for interpretation. Typically, larger error bars help prevent

over-interpretation of data.
• Always identify the units and size of the error bars (e.g. “Error bars represent two SE units”).
• Include legends when multiple datasets, groups, or types of data are present and need to be

identified.
• Pick the right graph that does not hide key descriptive characteristics of the data. This may

require trying a variety of graphs with different settings to find the graph that is just right.
• Choose one message for each graph and focus on communicating just that message. For

instance, a graph may communicate one set of results and associated conclusion.

These guidelines both help an audience understand what a graph is representing and facili-
tate the interpretation of the underlying data represented in the graph. Figure 18.10 illustrates
why these guidelines matter. For instance, Figure 18.10a lacks quite a few descriptive items,
including a title, axis title, legend, and error bars, which limits the interpretability of the graph
and frustrates the reader. Smartly, Figure 18.10b has all of these visual characteristics, allowing
the viewer to quickly decipher what the graph represents and what is informationally impor-
tant in the graph – which, in this case, is a comparison of wild-type vs. knockout mice with
respect to locomotor activity.

https://doi.org/10.6084/m9.figshare.4994204.v1
https://doi.org/10.6084/m9.figshare.4994204.v1
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Figure 18.10 Example of how to make a graph descriptive. Source: Moseley, Hunter (2017): Bad and Good Graphing Examples.
figshare. doi.org/10.6084/m9.figshare.4994207.v1

Frequency and Probability Distributions

One of the main purposes of visualizing data is to verify that certain interpretations of descrip-
tive statistics are valid. When the number of observations are relatively few (i.e. less than 100),
direct visualization of data is relatively straightforward in most types of plots, including the
data visualized using the boxplot and boxplot variants in Figure 18.7c,e,f and the scatterplot
in Figure 18.10b. As the number of observations increases above 1000, direct visualization
of the data becomes harder. However, a visual description of the distribution of observations
is still needed to verify key assumptions often required for specific interpretations of more
quantitatively descriptive statistics. Remember that a frequency distribution is the frequency
at which specific values within a given set of values occur and a histogram (Figure 18.6) can
be a very descriptive visualization of a frequency distribution that summarizes a single ordinal
or numerical sample variable of data, especially when the amount of data being summarized
is large. The related probability distribution is the set of probability densities at which specific
values occur. In the context of a continuous random variable, a probability density is how likely
it is that a specific value (outcome) will occur relative to an infinite number of other possible
values (outcomes). Also, a probability is the likelihood of an event occurring, where the event is
defined as a continuous range of values in this context. Moreover, one can view probability den-
sity as the relative frequency that sums up to a total probability of 1 for the whole distribution.
Figure 18.11 illustrates the best known and most commonly observed probability distribution:
the standard normal distribution, also known as the Gaussian distribution. It is named the
Gaussian distribution after Carl Friedrich Gauss, who provided the first specific description of
the normal distribution in 1809 (Gauss 1809). In Figure 18.11, the x-axis describes values in
terms of a z-score, where z = (x− 𝜇x)/𝜎x. Here, the z-score represents the value in terms of a
deviation from the mean 𝜇x that is normalized by the standard deviation 𝜎x. Thus, the x-axis
is in units of standard deviation. The y-axis describes the probability density at specific values
of z, which is often described in terms of a probability density function, y = pdf(z); or pdf(x) if
the variable x is being directly used. Now, the actual probability P of certain statistical events
like {z ≥ a} can be defined as:

P(z ≥ a) =
∫

∞

a
pdf(z)dz

This is simply the area underneath the pdf(z) curve starting at z= a. Likewise, the probability
of a set of absolute z-values less than or equal to a certain number of standard deviation units

https://doi.org/10.6084/m9.figshare.4994207.v1
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Figure 18.11 The standard normal
distribution. Source: Moseley, Hunter
(2017): Description of a normal distri-
bution. figshare. doi.org/10.6084/m9
.figshare.4994210.v1
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can be expressed as:

P(−a ≤ z ≤ a) =
∫

a

−a
pdf(z)dz

For a normal distribution, 68.3% of the probability density lies within ±1𝜎 and 95.4% lies
within ±2𝜎. However, these expectations of probability are different for other common dis-
tributions. As illustrated in Figure 18.12, there are many different well-characterized distri-
butions seen in biological and biophysical data, like the log-normal distribution, the Poisson
distribution, and variants of the binomial distribution, especially the negative binomial distri-
bution. However, many collections of related observations represent a summation of several
similar but independent distributions that tend to approximate a normal distribution even
though the distributions themselves are not normal. While each independent distribution
technically represents a different phenomenon, pragmatically, it is not possible to collect them
as separate random variables a priori. This tendency for the sum of independent random vari-
ables to approximate a normal distribution is known as the central limit theorem, which is a
foundational principle of statistical and probability theory. The central limit theorem is also
the salvation of many biological and biophysical datasets, since collections of related observa-
tions are often a summation of distributions that can be approximated or treated as a normal
distribution.

However, real distributions are never as pretty as the ideal statistical model of the distri-
bution. Figure 18.13 shows graphs describing the distribution of certain bond lengths and
coordination angles in metalloproteins (Yao et al. 2017). Figure 18.13a illustrates several over-
lapped histograms of real distributions of bond lengths between specific metal ions and oxygen
ligand atoms in metalloproteins. Figure 18.13b displays several overlapped histograms of the
smallest ligand–metal–ligand angle for coordinated zinc metal ions. These distributions of
bond lengths and coordination angles were derived from three-dimensional, atomic-level rep-
resentations of metalloprotein structures within entries stored in the Worldwide Protein Data
Bank (wwPDB; see Chapter 12) (Berman et al. 2007). Several of these distributions show aber-
rations from the ideal normal distribution. The most striking aberration is having more than
one mode as illustrated by the bimodal green distribution in Figure 18.13b, involving the coor-
dination of a zinc ion by five ligand atoms. Modality or the number of modes present is a very
important characteristic to evaluate in real distributions, as most descriptive statistics of central
tendency, such as the mean and median, and descriptive statistics of dispersion, like variance,
are only quantitatively interpretable from a probabilistic perspective if the distribution is uni-
modal. However, well-resolved (non-overlapping) modes of a multimodal distribution can be

https://doi.org/10.6084/m9.figshare.4994210.v1
https://doi.org/10.6084/m9.figshare.4994210.v1
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Figure 18.12 Other well-described discrete and continuous distributions commonly observed or used with biological and
biophysical datasets. Source: By Skbkekas – Own work, CC BY 3.0, commons.wikimedia.org/w/index.php?curid=9447142. By
Tayste – Own work, Public Domain, commons.wikimedia.org/w/index.php?curid=3646951. By Krishnavedala – Own work, CC0,
commons.wikimedia.org/w/index.php?curid=39170496. By Geek3 – Own work, CC BY 3.0, commons.wikimedia.org/w/index.php?
curid=9884213.

separated, described, and treated as separate unimodal distributions. Also, the blue distribu-
tion in Figure 18.13a is not symmetric owing to an inflation (i.e. higher frequency) of the right
tail of the distribution. This deviation from symmetry around the mode of the distribution is
called “skewness” and an inflation of the right tail is defined as positive skew. Likewise, the red
distribution in Figure 18.13b is also not symmetric, with its left tail inflated in a negative skew.
Both multimodality and high skewness can inflate variance and cause serious deviations in
the mean and median, limiting the quantitative interpretability of these descriptive statistics.

As demonstrated in several previous figures, histograms and related distribution-descriptive
graphs like the violin plot are very useful for visually inspecting the distribution and verifying
key assumptions of distributions underlying specific interpretations of the data. However, a
minimum amount of data is required to generate these distribution-descriptive graphs. For
a histogram, a general rule of thumb is that at least 30 data points are required to represent
a unimodal distribution, as illustrated by the 31 points of data visualized in Figure 18.6. But
much more data are required to visually characterize other aspects of a distribution such as
modality and skewness, especially if modes are not well separated (Figure 18.13). There are
also multidimensional distribution-descriptive graphs, including contour plots, that can aid
in evaluation of multidimensional distributions. However, these types of graphs require much
more data before they become distribution descriptive.

https://commons.wikimedia.org/w/index.php?curid=9447142
https://commons.wikimedia.org/w/index.php?curid=3646951
https://commons.wikimedia.org/w/index.php?curid=39170496
https://commons.wikimedia.org/w/index.php?curid=9884213
https://commons.wikimedia.org/w/index.php?curid=9884213
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Figure 18.13 Bond length and coordination angle histograms for coordinated metal ions in metalloproteins.
(a) Bond length histograms for common metal ions bonded to oxygen ligands in metalloproteins. (b) Smallest
ligand–metal–ligand angle histograms for coordinated zinc ions in metalloproteins. Source: Yao, S., Flight,
R.M., Rouchka, E.C., and Moseley, H.N.B. (2017). Aberrant coordination geometries discovered in the most
abundant metalloproteins. Proteins: Structure, Function, and Bioinformatics 85, 885–907. Reproduced with
permission of Wiley.

Statistical Inference and Statistical Hypothesis Testing

Statistical Inference

Statistical inference is the process of forming judgments (or “propositions”) about the prop-
erties of a population, typically on the basis of (random) sampling, for the overall purpose
of gaining new information and knowledge and/or to make informed decisions. Figure 18.14
illustrates this process, starting with a population that is being analyzed. This population is ran-
domly sampled for an experiment where observations are acquired. This generates data that
can be used to derive descriptive statistics to infer specific parameters that characterize the
underlying population. These descriptive statistics are then interpreted to form new informa-
tion and knowledge. What is paramount in this process is that the sample, experiment, obser-
vations, and data are adequately inspected, reviewed, and evaluated so that derived statistics
can be used to infer parameters that accurately characterize the right population(s), allowing

Figure 18.14 Overview of the process
of statistical inference. FUV stands
for the fraction of unexplained vari-
ance. Source: Moseley, Hunter (2017):
Overview of a statistical inference
process. figshare. doi.org/10.6084/m9
.figshare.4994213.v1.
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reasonable interpretation that provides new information and knowledge. For example, con-
sider a laboratory that has created a mouse with a gene knockout that produces a very hairy
phenotype that they adoringly call the furball. This hairy phenotype is quite unique, so the lab-
oratory breeds 100 of these furballs to produce a random sampling in order to characterize their
hairy phenotype. Patches of hair on both the dorsal and ventral side of this sample of mice are
measured. The resulting dataset of hair measurements are described using both graphs, which
illustrate that the sample distribution approximates a normal distribution and mean and stan-
dard deviation-descriptive statistics that appears to completely reproduce the sample distribu-
tion. From this sampling, it is inferred that the population of furballs has a hairy phenotype
that is normally distributed and well described by their sample mean and standard deviation.
The laboratory further validates this result by repeating the random sampling 6 months later,
producing very similar inferences about the furball population. For datasets in public scientific
repositories, only the data and associated metadata can be adequately inspected, reviewed, and
evaluated before downstream analyses. This inspection of publicly archived data is absolutely
required, since not every dataset deposited into a repository has had the same level of prior
inspection and quality control; in addition, many repositories only require minimal standards
for deposition (Brazma et al. 2001). This has led many in the field of bioinformatics to view
public scientific repositories as useful and often essential but somewhat “dirty” (Kim et al.
2003). Therefore, many bioinformaticians consider the inspection and removal of unusable
data – that is, the “cleaning” of datasets – as the largest single part (and often most critical
step) of their work, typically taking ∼80% of their effort (Zhang et al. 2003). In reality, inspec-
tion, review, and evaluation are simply an underlying part of the overall process of statistical
inference, which may require revising or even repeating any given step of the process.

Statistical Hypothesis Testing

The main direct purpose of statistical inference is to form propositions or judgments and sta-
tistical hypothesis testing is one of the most common statistical methods used to form these
judgments of the data. Within the context of most bioinformatic analyses, a practical definition
of hypothesis testing is the comparison of a dataset (sample) with another dataset (sample) or
to a model to form a judgment based on the data. However, the more general, statistical def-
inition of hypothesis testing is the creation and testing of a testable hypothesis on the basis
of observing a phenomenon that is modeled via a set of random variables. The creation of
a testable hypothesis may technically be considered a separate step distinct from statistical
hypothesis testing but, often times, the creation of the exact testable hypothesis goes hand in
hand with actually testing this hypothesis, as a given hypothesis must be amenable to an avail-
able method of testing. Standard implementation of statistical hypothesis testing involves three
major steps. The first step involves creating a hypothesis of the form that a statistical relation-
ship between two samples exists. This hypothesis is called the alternative hypothesis (Ha) and
it is often directly based on an experimental hypothesis derived from a biological and/or ana-
lytical perspective. However, directly testing an alternative hypothesis Ha is often very hard
to do. The second step involves creating a logically opposite hypothesis, known as the null
hypothesis (H0), one that is much easier to directly test; in this case, that there is no statistical
relationship between two samples. In the third step, one directly tests the null hypothesis H0
(i.e. the non-existence of the statistical relationship) by comparing values of a statistic derived
from each sample. This approach is based on the fact that it is vastly easier to directly falsify
a hypothesis or statement than it is to directly prove that a hypothesis or statement is true.
Therefore, falsifying a null hypothesis H0 that is the logical opposite of the desired alternative
hypothesis Ha allows the desired alternative hypothesis Ha to be indirectly proven true – but,
to understand the null hypothesis H0 that is directly being tested, it is important to have a
clear definition of a statistical relationship in the context of descriptive statistics in order to
prevent confusion. When a derived statistic from a given random variable for two samples is
not statistically “the same,” this situation is interpreted in terms of the existence of a statistical
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relationship between the two samples with respect to this random variable. Thus, “sameness”
of the statistic derived from the two samples indicates that a statistical relationship does not
exist. For example, consider the null hypothesis H0, where the means of the heights for two
normally distributed samples of thoroughbred horses are the same, indicating that no relation-
ship exists between the two samples of thoroughbred horses with respect to their height. The
lack of statistical sameness (i.e. a statistical difference) would indicate that the null hypothesis
is wrong and a statistical relationship between the heights of the two thoroughbred horse sam-
ples does exist. Thus, statistically significant differences are used to falsify the null hypothesis
H0 that a relationship does not exist (i.e. the statistic is considered the same for both samples).
The main idea to remember is that statistically significant differences are used to falsify (reject)
the null hypothesis H0 that a statistic from two samples are statistically the same in order to
confirm an alternative hypothesis Ha that the statistics from the two samples are statistically
different and thus the relationship between the two samples exists. These differences in the
way that statisticians and biologists perceive, describe, and define the world is a source of a
lot of scientific confusion when these two groups of scientists try to communicate with each
other, often leading to ineffective or failed collaboration. Therefore, it is very important that
the establishment of collaboration across disciplines is done with a lot of patience and a focus
on detecting points of miscommunication that often derive from differences in terminology.

Consider the first two steps described above in a statistical hypothesis testing procedure in
the context of a biological example. Two sets of cell cultures are grown on plates; one is treated
with a drug while the other is not. Samples from both the media and cells of each plate are
taken and the relative amount of lactate is measured by a one-dimensional 1H nuclear mag-
netic resonance (NMR) experiment after a 24 hour exposure to the drug. The experimentalist is
first interested in testing the following experimental hypothesis: “The normalized lactate NMR
intensity observations from the media between case and control populations are different.” To
test the experimental hypothesis, the following statistical alternative hypothesis Ha is created:
the means xa and xb of the two collections of observations from samples Sa and Sb are different.
The alternative hypothesis Ha proposes that the relationship (difference in means) between Sa
and Sb exists. Next, the logical opposite null hypothesis H0 is created: the means xa and xb of the
two collections of observations from samples Sa and Sb are the same. The null hypothesis H0
proposes that no relationship between Sa and Sb exists and the rejection of the null hypothesis
H0 during statistical testing will validate the alternative hypothesis Ha, supporting the inter-
pretation that the two sets of cell cultures represent two distinct populations. The statistician
in the group asks for a description of each “sample.” The experimentalist starts to describe the
“samples” taken from each cell culture. Neither one realizes that the word “sample” means
something else to other and the sparks start to fly as they misunderstand what the other is
saying.

Type I and II Errors that Arise from Statistical Hypothesis Testing

When testing a null hypothesis H0, there is a judgment of whether the test was positive or
negative. A rejection of the null hypothesis would support the alternative hypothesis and is
considered a positive outcome of the test. A failure to reject the null hypothesis would not sup-
port the alternative hypothesis and is considered a negative outcome of the test. However, there
are four logical outcomes from the test based on whether the null hypothesis is actually true
or false. These outcomes are illustrated by the truth table in Figure 18.15 (see Box 5.4 for addi-
tional information). Starting at the bottom left of the truth table, rejecting a null hypothesis
that is false is called a true positive, where rejection of the false null hypothesis correctly sup-
ports the alternative hypothesis. Moving to the top right of the truth table, not rejecting a null
hypothesis that is true is called a true negative, where failure to reject the true null hypothesis
correctly does not support the alternative hypothesis. In the top left of the truth table, incor-
rectly rejecting a null hypothesis that is actually true is called a false positive, where rejection
of the true null hypothesis incorrectly supports the alternative hypothesis. In statistics, a false
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Type II error
(false negative)
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Truth table
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you’re not
pregnant

you’re
pregnant

Figure 18.15 Truth table with descriptions of type I and II errors.

positive is called a type I error, where the result of the test leads one to conclude that a sta-
tistical relationship exists when in fact it does not. The left image in Figure 18.15 illustrates
a type I error when the pregnancy test indicates that the male patient is pregnant. Finally, in
the bottom right of the truth table, a failure to reject a null hypothesis that is actually false is
called a false negative, where failure to the reject the false null hypothesis incorrectly does not
support the alternative hypothesis. In statistics, a false negative is called a type II error, where
the result of the test leads one to conclude that a statistical relationship does not exist when
in fact it does exist. The rightmost image in Figure 18.15 illustrates a type II error when the
pregnancy test indicates that the clearly pregnant female patient is not pregnant.

Statistical Significance

The decision to reject the null hypothesis H0 is not easy to make, especially when one does not
know whether the null hypothesis is true or false. The concept of statistical significance helps
in this decision-making by framing the judgment in terms of how improbable it is to reject a
true null hypothesis, making a type I error. The less likely it is to make a type I error, the more
statistically significant the rejection of the null hypothesis is. Figure 18.16 illustrates statisti-
cal significance in terms of a probability or p value of obtaining at least as extreme a result as
the current null hypothesis H0 when H0 is true. For a given H0, the p value in green is the
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Figure 18.16 Diagram illustrating the relation-
ships between a probability density distribution, p
value, and alpha. Source: Moseley, Hunter (2017):
Relationships between pdf, p value, and alpha.
figshare. doi.org/10.6084/m9.figshare.4994216
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sum of one or two green tails of area under a given probably density function based on the test
statistic t. The specific test statistic and whether one tail or two tails are being summed depends
on the specific test being performed. Alpha, also called the level of significance, is the prob-
ability of rejecting the null hypothesis H0 when H0 is true. The alpha (in blue) is calculated
as the sum of one or two tails starting at the blue critical value lines. The critical value(s) is
simply the test statistic corresponding to a given alpha. The alpha creates the decision point of
whether to accept or reject the null hypothesis H0 based on whether the p value corresponding
to the null hypothesis is less than the alpha. Good statistical practice is to pick alpha before
performing the statistical test in order to prevent confirmation bias or selecting criteria that
help to confirm the desired outcome of an experiment. Typical alphas selected in biological
and biomedical research are 0.001, 0.01, or even 0.05 when sample sizes are small.

Testing the Null Hypothesis with a Two-Sample t-Test

Once a null hypothesis has been developed, one should try to test it. This requires that an
appropriate statistical test or method be found. For null hypotheses involving the compar-
ison of means between two different samples that are approximately normally distributed,
the two-sample (Student’s) t-test is an ideal method. The t-statistic illustrated in step 1 of
Figure 18.17 is a comparison of the two samples’ means divided by the square root of the esti-
mated variance of the mean differences (i.e. the square root of the squared sums of the best
estimate of the standard error of each mean). In other words, the separation of the means is
evaluated with respect to the uncertainty (variance) in the underlying data used to calculate the
means. Instead of using the standard error of each mean as this estimate of uncertainty, a new
estimate of variance 𝜎d

2 is derived from the weighted average of the two samples’ variances,
𝜎a

2 and 𝜎b
2, with the assumption that the two variances are two estimates of the same pop-

ulation(s) variance. The t-statistic follows a probability density distribution called a Student’s
t-distribution. There are actually many t-distributions, as illustrated in step 2 of Figure 18.17,
that are related by the parameter v, which is the number of degrees of freedom in the t-test. In
this case, the degrees of freedom are the sum of the two sample sizes na and nb minus 2. In gen-
eral, degrees of freedom refer to the number of variables affecting the range of possible states of
a system and the probability of each state. In the context of statistics, degrees of freedom refer to
the number of values that are “free” to vary, affecting the range and probability of outcomes for
a given statistic being calculated. In the context of calculating a two-sample t-statistic, degrees
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Figure 18.17 Using a Student’s t-test to test a null hypothesis. Source: Moseley, Hunter (2017): Overview of using a t-test to test a
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of freedom refer to the independently sampled collection of observations – values across both
samples minus the two mean values which are being directly tested since they are derived from
the same two collections of values. Thus, the degrees of freedom dictate the specific Student’s
t-distribution that is relevant for a specific t-statistic that is calculated. William Sealy Gosset
published a description of the Student’s t-distributions and their statistical use in 1908 under
the pen name Student because of corporate restrictions on publishing by his employer, which
is why the Student’s t-distribution and Student’s t-test are named as they are (Student 1908).

Figure 18.17 illustrates the use of the two-sample t-test in testing a null hypothesis. The pro-
cess starts with selecting a level of significance, alpha, before performing the test. Then, in
step 1, the t-statistic and related statistics are calculated. In step 2, the appropriate Student’s
t-distribution is selected based on the degrees of freedom v. In step 3, the p value is calcu-
lated based on the t-statistic and the probability density function of the appropriate Student’s
t-distribution. Finally, in step 4, the decision is made of whether to reject the null hypothesis H0
or not, based on whether the p value is less than or equal to alpha. Normally, all of these steps
are done by a statistical t-test function that can be found in many spreadsheet programs and
almost all general data analysis packages. All one has to do is provide the two samples of values
in the appropriate format, where the two samples are expected to have the same variance and
come from a population(s) that is approximately normally distributed.

To better understand what the two-sample t-test is actually doing, an understanding
of the relationship between the population distribution and the distribution of possible
sample means, created by multiple random samplings of the population, is needed. This is
illustrated in Figure 18.18, with the large lighter blue and red population distributions in
relation to the darker and much smaller sample mean distributions. Because of the central
limit theorem, the smaller sample mean distribution approximates a normal distribution
no matter what the population distribution looks like when the sample size of the random
samplings is sufficiently large. This is because each sample value represents an independent
random variable, which are summed in order to calculate a mean statistic that, by the
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central limit theorem, states that the resulting variable (the mean, in this instance) should
be approximately normally distributed. That said, how well the mean and standard error
of a given sample provide a reasonable estimate of the mean and standard deviation of the
sample mean distribution is dependent on how well the original population distribution
approximates a normal distribution. So, the distribution of the original population does
matter in the context of a two-sample t-test, where the estimates of mean and standard
deviation values of the sample mean distribution are coming from only two samples. Now,
the comparison of two sample means in the t-statistic can be used to compare pairs of means
from the two mean distributions. The resulting probability density distribution of t-statistics
is the representative Student’s t-distribution. This t-distribution can then be used in either a
one-tailed or two-tailed comparison for calculating p values, deciding whether to reject a null
hypothesis H0. The difference in the one-tailed and two-tailed comparison is whether a single
direction of deviation is being tested versus either direction of deviation being tested. For
example, whether a drug produces a positive response in the observations of a case–control
experiment can be tested with a one-tailed t-test. However, a two-tailed test is used if any
significant deviation in either direction between the means of two samples is being tested.
Other considerations for the correct selection of statistical hypothesis test are discussed later
in this chapter in the Common Statistical Tests Used in a Typical Statistical Inference Process
section.

Statistical Power

As previously described, statistical significance focuses on alpha or the probability of type I
errors (false positives). What about the probability of type II errors (false negatives)? The sta-
tistical term “beta” represents the probability of type II errors and one minus beta represents
the concept of statistical power or the probability of correctly rejecting the null hypothesis
H0. Statistically powerful experiments have a high probability of rejecting actual false null
hypotheses – and this is why most reviews of submitted grant proposals for biomedical and
clinical research include an evaluation of the statistical power of the proposed experiments, in
order to assess the likelihood of success of the proposed research. This evaluation of statistical
power requires an estimation of statistical power, and this estimation of statistical power is
derived from an analysis of statistical power based on known or estimated statistics. A power
analysis relates four interdependent factors within the context of a particular statistical test.
These factors are alpha, beta (or 1 – beta), sample size, and effect size. Effect size is the quan-
titative measure of the strength of a phenomenon. Given any three of these factors, the fourth
factor can be derived through a power analysis. In many cases, certain factors – especially effect
size – are not known and can only be estimated, which means that the fourth derived factor is
only an estimate as well. Figure 18.19 illustrates the relationships between these four factors
in a power analysis within the context of a Student’s t-test in an approximate diagram that has
deviations with small sample sizes. As shown in the figure, the effect size is the difference in
the means of the sample mean distributions and is typically estimated from the difference of
two sample means from an equivalent experiment or “reasonably approximated” from a sim-
ilar experiment or pilot experiment. The effect size is evaluated in terms of the variance of the
mean differences that, in turn, is derived from the variance of the two sample mean distribu-
tions. The variances of the sample mean distributions are estimated from the square of the
standard error, which is dependent on the sample sizes. Alpha and beta are related around a
particular t-statistic critical value that is dependent on the variance of the mean differences;
this variance is ultimately dependent on the sample sizes. Therefore, when one of these fac-
tors changes, the other factors change as well. Typically, power analyses are used to estimate
sample size or statistical power. When estimating a minimal required sample size, a desired
statistical power such as 0.9 (90% power) at a given alpha such as 0.01 with a reasonable esti-
mate of effect size are provided. Likewise, when the statistical power of a proposed experiment
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Figure 18.19 An approximate power analysis diagram for a Student’s t-test. Source: Moseley, Hunter
(2017): Approximate power analysis diagram for a Student’s t-test. figshare. doi.org/10.6084/m9.figshare
.4994228.v1.

is estimated, an expected sample size at a given alpha like 0.01 with a reasonable estimate of
effect size are provided.

Correcting for False Discovery due to Multiple Testing

A common and growing issue in bioinformatics is dealing with experiments containing large
numbers of distinct random variables of observations often generated from high-throughput
analytical instrumentation like next generation sequencers. While the resulting datasets have
various logistical issues related to storage and management of the data, they also pose unique
problems for statistical testing and analysis. Probably the most impactful issue comes from
the fact that the testing of a large number of random variables will lead to false discovery
unless steps are taken to reduce false discovery. For example, consider an RNA-seq experiment
involving human cancer cell culture samples that either have or have not been treated with an
anti-cancer drug, where the abundance of 7500 unique transcripts across the statistical sample
of cell cultures has been measured. Data analysts who are familiar with these datasets wisely
explore the data to verify that they behave as expected before moving to the interpretation
stage. They do this by graphing the distribution of representative random variables to verify
that they appear to approximate a log-normal distribution. They then log-transform the raw
gene expression observations and graphs again to see that the resulting distribution is approx-
imately normal. Next, the data analyst selects an alpha of 0.01 and performs a two-sample
t-test on each and every random variable of gene expression using the case and control sam-
ples. From the testing, 150 of the transcripts pass, but there is a problem. Based on an alpha of
0.01 and the 7500 individual tests performed, 75 (0.01× 7500) of the results are expected to be
false positives (type I errors). However, only 150 transcripts passed the test. So, roughly 75/150
(or 50%) of the results are false positives, meaning that the rate of false discovery is 50%. Would
anyone trust results that are estimated to be 50% incorrect? This example illustrates the fun-
damental problem with multiple testing of datasets with large numbers of random variables.

The solution to the multiple testing problem is to correct the resulting p values generated
from the set of tests being performed. This statistical procedure is called multiple testing correc-
tion and its purpose is to limit the false discovery rate, or FDR (see Box 5.4), which is calculated
by the following equation based on false positives (FP) and true positives (TP):

FDR = FP
TP + FP

During the procedure, a q value or FDR-adjusted p value is calculated based on a p value or
group of p values (see Chapter 10). The simplest of the multiple testing correction methods is
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the Bonferroni correction, which multiplies a given p value by the number of tests performed
to generate an adjusted p value. For a small number of tests, the Bonferroni correction is quick
and reasonable, minimizing type I errors. However, the Bonferroni correction method is a very
severe correction that often over-compensates in the prevention of type I errors and the low-
ering of the FDR while severely raising the probability of type II errors (McIntyre et al. 2000).
This is because the Bonferroni correction actually controls what is called the family-wise error
rate (FWER), the probability of making at least one type I error in the family of tests based on
a given alpha. Thus, the Bonferroni adjusted p value is technically not a q value. For many sta-
tistical analyses involving high-dimensional datasets, the Bonferroni correction is not a viable
multiple correction method owing to the large increase in type II errors caused by the correc-
tion of the FWER for hundreds or more tests that can wipe out all statistical significance in
the resulting q values. There are other more sophisticated multiple testing correction methods
which provide a better balance between limiting type I versus type II errors while achieving
a given FDR; however, they are not as easy to use. One of the most popular multiple correc-
tion methods is the Benjamini–Hochberg correction that calculates q values by adjusting each
p value based on a target FDR and the ordered collection of p values generated from a set of
related statistical tests (Hochberg and Benjamini 1990).

The Global Problem with the Use of p Values

Even with multiple testing correction and simply being careful, observant, and conscientious,
there is a global problem with the use of p values. First, p values are poorly understood and
often misrepresented even in the general scientific community. More often than not, p values
are confused with effect size. The measurable strength or size of a phenomenon is not the sta-
tistical significance of the detection of the phenomenon from a statistical test. In many cases,
once the presence of a particular phenomenon is established, the effect size caused by the
detected phenomenon is often more important in evaluating the potential application of the
phenomenon. For example, in large genome-wide association studies (GWAS), many statisti-
cally significant disease-relevant nucleotide variants have been detected with p values below
10−8; however, a majority of these nucleotide variants have a disease risk odds ratio below
1.5 (Ku et al. 2010). In this context, the odds ratio is an effect size representing a relatively
small increase in disease risk, even though the detected disease association is extremely likely
(meaning statistically significant). Likewise, other statistics, such as the E values from BLAST
searches that represent the expected number of search hits of the same level of similarity that
would occur by random chance for a given sequence database are often confused with p val-
ues (see Chapter 3). While p values are consistently calculated, E values are dependent on
the database used in their calculation, limiting their interpretation. Second, misinterpretation
of p value significance pollutes our scientific literature with significant false discovery. Many
published scientific studies have defined “significant” p values in terms of weak alphas (i.e.
0.05). Given the huge number of tests being performed in every scientific laboratory across
the world, the selection of significance based on an alpha of 0.05 generates a lot of published
false discovery across the combined scientific literature. This published false discovery can
be reinforcing when many others try to reproduce the same false discovery they have seen in
the published scientific literature. Solutions to this global p value problem are not easy. One
journal has even taken the policy of banning the use of p values in its published articles (Wool-
ston 2015). Also, certain scientific communities have worked together to establish guidelines
that minimize false discovery. For example, the physics community generally waits to accept
major results until five sigmas of significance are reached. This equates to a two-tailed p value
of 6× 10−7. For human GWAS, p values less than 5× 10−8 is the standard for accepting results,
which is based on a Bonferroni correction of an alpha of 0.05 assuming the presence of 1 mil-
lion testable independent variants in the human genome (Risch and Merikangas 1996). The
field of data science seeks to better understand this phenomenon and model it to create a more
robust measurement of significance that does not limit discovery. A good start is to report q
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values or other adjusted p values that prevent false discovery in published results, especially for
published results involving high-throughput analytical techniques and other experimentation
that generates high-dimensional data.

Common Statistical Tests Used in a Typical Statistical Inference Process

There are several widely used statistical tests that are applicable to a wide range of exper-
imental results. Most statistical tests are divided into two categories: parametric tests and
non-parametric tests. A parametric test assumes that the sample data come from a popula-
tion that follows a probability distribution defined by a fixed set of parameters. The most
common parametric tests assume the population follows or mimics a normal distribution.
A non-parametric test makes no assumptions about the probability distribution of the pop-
ulation or sample. Many of the non-parametric tests like the Wilcoxon–Mann–Whitney test
(Wilcoxon 1945; Mann and Whitney 1947) compare the rank order of the samples in a manner
that makes no assumptions about the underlying distribution of the population or sample.
Table 18.1 provides a list of common parametric tests, their non-parametric equivalents, and
the particular statistical situation for their use on a single continuous random variable. Care
must be taken that the appropriate statistical test is selected for a given statistical inference.
To help in this selection, ask the following four situational questions.

1) Does the population(s) or sample(s) approximately follow a normal distribution?
2) How many samples (collections of observations/values) are being directly compared?
3) Are sample variances or sizes significantly unequal?
4) Are observations/values between samples repeated or linked in some way?

The answer to these four questions will help identify the particular statistical situation and
the appropriate statistical test for a single continuous random variable. With respect to the first
question, if the related population(s) or sample(s) appears normally distributed, then paramet-
ric tests are more appropriate and provide superior statistical power and performance. How-
ever, if the population(s) or sample(s) has significant deviations from a normal distribution,
then a less assuming non-parametric test is most appropriate and provides a better estimate of
significance. Graphing each sample using a histogram, when a sample has 30+ values, is a good
and reasonably quick way to answer this first question. Moreover, if the distribution appears
to be log-normal, then a simple logarithmic transformation of the values may allow the use
of a parametric test, and the assumptions of normality can be verified by graphing the trans-
formed sample data. With respect to the second question, whether one sample, two samples,
or more than two samples are being tested dictates the specific type of statistical test. For nor-
mally distributed data, the t-test and its variants are used when there are one or two samples.
When there are more than two samples, the analysis of variance (ANOVA) tests and its variants
are used to test whether at least one sample is significantly different than the other samples.
Likewise, for significantly non-normally distributed data, the Wilcoxon–Mann–Whitney test
and variants are used for testing one or two samples. The Kruskal–Wallis test (Kruskal and

Table 18.1 Common parametric statistical tests and their non-parametric equivalent.

Statistical situation Parametric Non-parametric

1 sample 1-sample t-test 1-sample Wilcoxon rank sum
2 samples 2-sample t-test Wilcoxon–Mann–Whitney test
2 samples, unequal 𝝈2, n Welch unequal 𝝈2 t-test Wilcoxon–Mann–Whitney test
Matched pair of samples Paired t-test Wilcoxon signed rank test
>2 samples One-way ANOVA Kruskal–Wallis test
>2 samples, unequal 𝝈2, n Welch ANOVA Kruskal–Wallis test
Matched, >2 samples Repeated measures ANOVA Friedman test

The two parametric tests in red are appropriate for repeated measures and matched experimental designs and
provide the strongest statistical power.
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Wallis 1952) is appropriate for testing more than two samples when one of the samples is sig-
nificantly deviated from normality. With respect to the third question, when two samples are
normally distributed but have variances or sizes that differ by more than twofold, the Welch
unequal variance t-test (Welch 1947) is very appropriate (Delacre et al. 2017). This modified
version of the two-sample Student’s t-test compensates for problems caused by disproportion-
ate variances and sample sizes, providing robust statistical performance. The Welch ANOVA
is the Welch equivalent for the ANOVA test when more than two normally distributed sam-
ples are being compared. The fourth question identifies whether specific observations between
samples are linked in a statistically meaningful way. The strongest type of linkage comes from
repeated measures experimental designs, where the same biological units or subjects are used
to measure observations for each sample, including the control sample. The resulting dataset
has linked observations across samples that allows the use of the most powerful statistical tests
that directly test the summative statistics of the differences between the linked observations
and not the differences of summative statistics between samples. From a biological perspective,
the variance between biological units is ignored as only measurements from the same biolog-
ical unit are compared. For example, comparing the physical performance of mice before and
after a treatment allows only the differences between samples of measurements from an indi-
vidual mouse to be tested, reducing the inclusion of biological variance that is inherent when
making comparisons between different mice. When two samples have linked observations,
the paired t-test is most appropriate when samples are normally distributed and the Wilcoxon
signed rank test is most appropriate when at least one of the samples is significantly deviated
from normality. When three or more samples have linked observations, the repeated measures
ANOVA is most appropriate when samples are normally distributed and the Friedman test
is most appropriate when at least one of the samples is significantly deviated from normality.
Besides repeated measurements, less stringent linkage between observations across samples is
sometimes derived from matched experimental designs; however, these types of experimental
designs have statistical issues that must be addressed and have been criticized as being biased.
The related randomized block experimental design is generally accepted as more robust, but
requires that biological units be blocked and randomly measured across blocks based on spe-
cific potential confounding factors such as age, sex, genetic factors, and even environmental
factors like smoking status. These experimental designs generate complex sets of samples that
require more complicated statistical tests like the multiple factor (multi-way) ANOVA. Under
these circumstances, advice from a statistician is often required both in creating a good exper-
imental design and related experimental procedures and in the selection of the appropriate
statistical test(s). This advice should be sought before the experiment is attempted; otherwise,
a lot of time, effort, and resources may be wasted generating datasets that are inadequate for
the questions being asked. Likewise, when discrete or ordinal random variables need to be
statistically tested, consult with a statistician, since there is no general consensus on which
statistical tests are appropriate in a given situation and current published recommendations
require expert knowledge to interpret (Fagerland et al. 2011). Moreover, multivariate statistical
analysis methods are required to simultaneously test multiple random variables. A chi-squared
test is one such method that is used, but assumes that the set of random variables are indepen-
dent and normally distributed. To analyze large numbers of random variables simultaneously,
specialized methods like PCA, discriminant analysis, and newer machine learning methods
are required. Expert knowledge is needed for their appropriate use and interpretation, given
the diverse assumptions about the data each technique makes. Again, seek out advice from sta-
tistical and computational experts before blindly using these methods. Go back for additional
advice when experimental issues arise. Putting the selection of the appropriate statistical test
or method within context, the following steps describe a typical statistical inference process
that uses statistical hypothesis testing.

1) State what is being tested in terms of a testable (rejectable) hypothesis.
• State both the null hypothesis H0 and alternative hypothesis Ha.

2) Derive appropriate descriptive statistics and descriptive visual representations of the sample
data.

3) Evaluate the quality of the data and associated metadata.
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4) Determine which statistical test is appropriate for the sample data.
• Seek advice when the appropriate statistical test is not obvious.

5) Perform the test and determine its significance (p value).
6) If necessary, correct for multiple testing (q value).
7) Carefully interpret the results (infer) with respect to the population(s) being studied.

Summary

The modern biological and biomedical research environment has grown data rich and data
intensive, requiring that everyday scientists develop data analysis and statistical skill sets in
order to effectively analyze, utilize, and interpret the data they generate within the context of
global scientific knowledgebases and data repositories. This chapter is meant to be an introduc-
tory primer to these skills with a focus on the most important aspects of data interpretation:
truly seeking to comprehend and understand the datasets being analyzed using descriptive
representations of the data and being methodical and careful in the development, testing, and
interpretation of statistical hypotheses of the data. This chapter should be looked upon as a
starting point for acquiring statistical knowledge and intuition and not an end-goal. The effec-
tive interrogation of data requires both expert knowledge and experience in order to avoid
misinterpretation. It takes time to acquire the combined biological, statistical, and computa-
tional knowledge and associated experience. Likewise, it is important to recognize when a
particular dataset outstrips your current knowledge and expertise and then seek statistical,
computational, or analytical advice with patient communication. Also, become an active par-
ticipant in the collaboration by reading about your colleague’s discipline, in order to improve
the effective communication required for a successful multidisciplinary collaboration.
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and how to create them

www.cqeacademy.com/cqe-body-of-
knowledge/continuous-improvement/quality-
control-tools/histograms

Description of the pros and cons of different
experimental designs

www.simplypsychology.org/experimental-
designs.html

Different graphs with almost identical
descriptive statistics

www.autodeskresearch.com/publications/
samestats

Discussion about boxplots and multimodal
distributions

stats.stackexchange.com/questions/137965/
box-and-whisker-plot-for-multimodal-
distribution/137982#137982
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Grammar of Graphics

pypi.python.org/pypi/ggplot; cran.r-project
.org/web/packages/ggplot2/index.html

plotly – web- and scripting-based platform for
data analysis and visualization

plot.ly

R tutorial for basic statistics and graphing www.statmethods.net
Two-day introduction to R and Bioconductor
for transcriptomics analysis

www.bioconductor.org/help/course-
materials/2016/BiocIntro-May

Website for the R for Data Science book by
Hadley Wickham and Garrett Grolemund
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https://www.simplypsychology.org/experimental-designs.html
https://www.autodeskresearch.com/publications/samestats
https://www.autodeskresearch.com/publications/samestats
https://stats.stackexchange.com/questions/137965/box-and-whisker-plot-for-multimodal-distribution/137982#137982
https://stats.stackexchange.com/questions/137965/box-and-whisker-plot-for-multimodal-distribution/137982#137982
https://stats.stackexchange.com/questions/137965/box-and-whisker-plot-for-multimodal-distribution/137982#137982
https://pypi.python.org/pypi/ggplot;
https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/ggplot2/index.html
https://plot.ly/
http://www.statmethods.net/
https://www.bioconductor.org/help/course-materials/2016/BiocIntro-May/
https://www.bioconductor.org/help/course-materials/2016/BiocIntro-May/
http://r4ds.had.co.nz/
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Appendices

1.1 Example of a Flatfile Header in ENA Format

ID U54469; SV 1; linear; genomic DNA; STD; INV; 2881 BP.
XX
AC U54469;
XX
DT 19-MAY-1996 (Rel. 47, Created)
DT 23-JUN-2017 (Rel. 133, Last updated, Version 5)
XX
DE Drosophila melanogaster eukaryotic initiation factor 4E (eIF4E) gene,
DE complete cds, alternatively spliced.
XX
KW .
XX
OS Drosophila melanogaster (fruit fly)
OC Eukaryota; Metazoa; Ecdysozoa; Arthropoda; Hexapoda; Insecta; Pterygota;
OC Neoptera; Holometabola; Diptera; Brachycera; Muscomorpha; Ephydroidea;
OC Drosophilidae; Drosophila; Sophophora.
XX
RN [1]
RP 1-2881
RX DOI; .1074/jbc.271.27.16393.
RX PUBMED; 8663200.
RA Lavoie C.A., Lachance P.E., Sonenberg N., Lasko P.;
RT "Alternatively spliced transcripts from the Drosophila eIF4E gene produce
RT two different Cap-binding proteins";
RL J Biol Chem 271(27):16393-16398(1996).
XX
RN [2]
RP 1-2881
RA Lasko P.F.;
RT ;
RL Submitted (09-APR-1996) to the INSDC.
RL Paul F. Lasko, Biology, McGill University, 1205 Avenue Docteur Penfield,
RL Montreal, QC H3A 1B1, Canada
XX
DR MD5; 303680f06f3441eb47a0de3a028a8d06.
DR FLYBASE; FBgn0015218; eIF-4E.

1.2 Example of a Flatfile Header in DDBJ/GenBank Format

LOCUS DMU54469 2881 bp DNA linear INV 20-JUN-2017
DEFINITION Drosophila melanogaster eukaryotic initiation factor 4E (eIF4E)

gene, complete cds, alternatively spliced.
ACCESSION U54469
VERSION U54469.1
KEYWORDS .
SOURCE Drosophila melanogaster (fruit fly)

ORGANISM Drosophila melanogaster

Bioinformatics, Fourth Edition. Edited by Andreas D. Baxevanis, Gary D. Bader, and David S. Wishart.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/baxevanis/Bioinformatics_4e

http://www.wiley.com/go/baxevanis/Bioinformatics_4e
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Eukaryota; Metazoa; Ecdysozoa; Arthropoda; Hexapoda; Insecta;
Pterygota; Neoptera; Holometabola; Diptera; Brachycera;
Muscomorpha; Ephydroidea; Drosophilidae; Drosophila; Sophophora.

REFERENCE 1 (bases 1 to 2881)
AUTHORS Lavoie,C.A., Lachance,P.E., Sonenberg,N. and Lasko,P.
TITLE Alternatively spliced transcripts from the Drosophila eIF4E gene

produce two different Cap-binding proteins
JOURNAL J. Biol. Chem. 271 (27), 16393-16398 (1996)
PUBMED 8663200

REFERENCE 2 (bases 1 to 2881)
AUTHORS Lasko,P.F.
TITLE Direct Submission
JOURNAL Submitted (09-APR-1996) Paul F. Lasko, Biology, McGill University,

1205 Avenue Docteur Penfield, Montreal, QC H3A 1B1, Canada

1.3 Example of a Feature Table in ENA Format

FH Key Location/Qualifiers
FH
FT source 1..2881
FT /organism="Drosophila melanogaster"
FT /chromosome="3"
FT /map="67A8-B2"
FT /mol_type="genomic DNA"
FT /db_xref="taxon:7227"
FT gene 80..2881
FT /gene="eIF4E"
FT mRNA join(80..224,892..1458,1550..1920,1986..2085,2317..2404,
FT 2466..2881)
FT /gene="eIF4E"
FT /product="eukaryotic initiation factor 4E-I"
FT mRNA join(80..224,1550..1920,1986..2085,2317..2404,2466..2881)
FT /gene="eIF4E"
FT /product="eukaryotic initiation factor 4E-II"
FT CDS join(201..224,1550..1920,1986..2085,2317..2404,2466..2629)
FT /codon_start=1
FT /gene="eIF4E"
FT /product="eukaryotic initiation factor 4E-II"
FT /note="Method: conceptual translation with partial peptide
FT sequencing"
FT /db_xref="GOA:P48598"
FT /db_xref="InterPro:IPR001040"
FT /db_xref="InterPro:IPR019770"
FT /db_xref="InterPro:IPR023398"
FT /db_xref="PDB:4AXG"
FT /db_xref="PDB:4UE8"
FT /db_xref="PDB:4UE9"
FT /db_xref="PDB:4UEA"
FT /db_xref="PDB:4UEB"
FT /db_xref="PDB:4UEC"
FT /db_xref="PDB:5ABU"
FT /db_xref="PDB:5ABV"
FT /db_xref="PDB:5T47"
FT /db_xref="PDB:5T48"
FT /db_xref="UniProtKB/Swiss-Prot:P48598"
FT /protein_id="AAC03524.1"
FT /translation="MVVLETEKTSAPSTEQGRPEPPTSAAAPAEAKDVKPKEDPQETGE
FT PAGNTATTTAPAGDDAVRTEHLYKHPLMNVWTLWYLENDRSKSWEDMQNEITSFDTVED
FT FWSLYNHIKPPSEIKLGSDYSLFKKNIRPMWEDAANKQGGRWVITLNKSSKTDLDNLWL
FT DVLLCLIGEAFDHSDQICGAVINIRGKSNKISIWTADGNNEEAALEIGHKLRDALRLGR
FT NNSLQYQLHKDTMVKQGSNVKSIYTL"
FT CDS join(1402..1458,1550..1920,1986..2085,2317..2404,
FT 2466..2629)
FT /codon_start=1
FT /gene="eIF4E"
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FT /product="eukaryotic initiation factor 4E-I"
FT /note="Method: conceptual translation with partial peptide
FT sequencing; two alternatively spliced transcripts both
FT encode 4E-I"
FT /db_xref="GOA:P48598"
FT /db_xref="InterPro:IPR001040"
FT /db_xref="InterPro:IPR019770"
FT /db_xref="InterPro:IPR023398"
FT /db_xref="PDB:4AXG"
FT /db_xref="PDB:4UE8"
FT /db_xref="PDB:4UE9"
FT /db_xref="PDB:4UEA"
FT /db_xref="PDB:4UEB"
FT /db_xref="PDB:4UEC"
FT /db_xref="PDB:5ABU"
FT /db_xref="PDB:5ABV"
FT /db_xref="PDB:5T47"
FT /db_xref="PDB:5T48"
FT /db_xref="UniProtKB/Swiss-Prot:P48598"
FT /protein_id="AAC03525.1"
FT /translation="MQSDFHRMKNFANPKSMFKTSAPSTEQGRPEPPTSAAAPAEAKDV
FT KPKEDPQETGEPAGNTATTTAPAGDDAVRTEHLYKHPLMNVWTLWYLENDRSKSWEDMQ
FT NEITSFDTVEDFWSLYNHIKPPSEIKLGSDYSLFKKNIRPMWEDAANKQGGRWVITLNK
FT SSKTDLDNLWLDVLLCLIGEAFDHSDQICGAVINIRGKSNKISIWTADGNNEEAALEIG
FT HKLRDALRLGRNNSLQYQLHKDTMVKQGSNVKSIYTL"

1.4 Example of a Feature Table in GenBank/DDBJ Format

FEATURES Location/Qualifiers
source 1..2881

/organism="Drosophila melanogaster"
/mol_type="genomic DNA"
/db_xref="taxon:7227"
/chromosome="3"
/map="67A8-B2"

gene 80..2881
/gene="eIF4E"

mRNA join(80..224,892..1458,1550..1920,1986..2085,2317..2404,
2466..2881)
/gene="eIF4E"
/product="eukaryotic initiation factor 4E-I"

mRNA join(80..224,1550..1920,1986..2085,2317..2404,2466..2881)
/gene="eIF4E"
/product="eukaryotic initiation factor 4E-II"

CDS join(201..224,1550..1920,1986..2085,2317..2404,2466..2629)
/gene="eIF4E"
/note="Method: conceptual translation with partial peptide
sequencing"
/codon_start=1
/product="eukaryotic initiation factor 4E-II"
/protein_id="AAC03524.1"
/translation="MVVLETEKTSAPSTEQGRPEPPTSAAAPAEAKDVKPKEDPQETG
EPAGNTATTTAPAGDDAVRTEHLYKHPLMNVWTLWYLENDRSKSWEDMQNEITSFDTV
EDFWSLYNHIKPPSEIKLGSDYSLFKKNIRPMWEDAANKQGGRWVITLNKSSKTDLDN
LWLDVLLCLIGEAFDHSDQICGAVINIRGKSNKISIWTADGNNEEAALEIGHKLRDAL
RLGRNNSLQYQLHKDTMVKQGSNVKSIYTL"

CDS join(1402..1458,1550..1920,1986..2085,2317..2404,
2466..2629)
/gene="eIF4E"
/note="Method: conceptual translation with partial peptide
sequencing; two alternatively spliced transcripts both
encode 4E-I"
/codon_start=1
/product="eukaryotic initiation factor 4E-I"
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/protein_id="AAC03525.1"
/translation="MQSDFHRMKNFANPKSMFKTSAPSTEQGRPEPPTSAAAPAEAKD
VKPKEDPQETGEPAGNTATTTAPAGDDAVRTEHLYKHPLMNVWTLWYLENDRSKSWED
MQNEITSFDTVEDFWSLYNHIKPPSEIKLGSDYSLFKKNIRPMWEDAANKQGGRWVIT
LNKSSKTDLDNLWLDVLLCLIGEAFDHSDQICGAVINIRGKSNKISIWTADGNNEEAA
LEIGHKLRDALRLGRNNSLQYQLHKDTMVKQGSNVKSIYTL"

6.1 Dynamic Programming

This appendix describes the basic dynamic programming method for RNA secondary structure
prediction. An in-depth example is provided for prediction of a structure that uses a simplified
energy model, suitable for manual calculation.

The dynamic programming algorithm is divided into two steps. In the first step of the algo-
rithm, called the fill step, the lowest conformational free energy possible for each sub-fragment
of sequence, from nucleotide i to nucleotide j, is calculated. Two arrays are stored, V(i, j) and
W(i,j). In V(i,j), the lowest free energy from nucleotide i to nucleotide j, inclusive, is stored with
the requirement that i base pair to j. Similarly, W(i,j) is the lowest free energy for the same
nucleotide fragment, requiring that W(i,j) will be incorporated into a multibranch loop and
there be at least one base pair. One way to fill the arrays is to start with the shortest sequence
fragments that can fold into a structure (five nucleotides) and then fill the arrays for increas-
ingly longer fragments (6-mers, 7-mers, 8-mers, and so forth).

The V(i,j) and W(i,j) arrays are filled, taking advantage of recursion. For example, the free
energy change of a base pair i and j, stacked on paired nucleotides i + 1 and j − 1, is:

ΔG∘
37 = V(i + 1, j − 1) + ΔG∘

37 (base pair stacking) (6.A.1)

where V(i + 1,j − 1) was calculated previously because it corresponds to a shorter sequence
fragment. Once the arrays are filled, the lowest conformational free energy possible for the
sequence is determined, but the structure is not yet known. The second step of the dynamic
programming algorithm, called traceback, determines the secondary structure that is the low-
est free energy conformation.

As an illustration of dynamic programming for secondary structure prediction, consider the
folding of rGCGGGUACCGAUCGUCGC for which the number of hydrogen bonds in canon-
ical pairs will be maximized. This calculation is simpler than free energy minimization, but
it illustrates the important points of dynamic programming. The following recursions will be
used for 1 ≤ i < j ≤ N, where N is the number of nucleotides in the sequence:

V(i, j) = 0 if i and j cannot pair canonically

= max[Vhairpin[i, j],Vstack∕internal∕bulge[i, j],Vmultibranch[i, j]] if i and j can pair
(6.A.2)

W(i, j) = max[V[i, j],W[i + 1, j],W[i, j − 1],W[i, k] + W[k + 1, j] for i < k < j] (6.A.3)

V(i,j) is the maximum number of hydrogen bonds for the sequence fragment from nucleotides
i to j with i and j paired. So, as shown in Eq. (6.A.2), to fill V(i,j) the possibilities that the pair
of i and j can close a hairpin loop, stack on a previous pair, close an internal loop, close a bulge
loop, or close a multibranch loop all need consideration. This accounts for any type of structure
that the i to j base pair can close. Each term counts the total hydrogen bonds:

Vhairpin = number of hydrogen bonds in pair i and j, if j − i > 3

= 0, if j − i ≤ 3 (6.A.4)

Vstack∕internal∕bulge = (number of hydrogen bonds in pair i and j)

+ max[V(k1, k2) for i < k1 < k2 < j] (6.A.5)

Vmultibranch = (number of hydrogen bonds in pair i and j)

+ max[W(i + 1, k) + W(k + 1, j − 1) for i + 1 < k < j − 1] (6.A.6)
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V(i,j) is zero when i and j cannot form a canonical pair. Furthermore, hairpin loops that enclose
fewer than three unpaired nucleotides are forbidden by assigning those loops 0 hydrogen bonds
(Eq. (6.A.4)). AU and GU pairs have two hydrogen bonds and a GC pair has three hydrogen
bonds. W(i,j) is the maximum number of hydrogen bonds for the fragment of nucleotides i
to j, without the constraint that i and j must be paired. The term W(i,k) + W(k+1,j) in Eq.
(6.A.3) allows any number of helical branches in a multibranch loop by recursion. In other
words, W(i,k), for example, could have previously been composed of two branches. V(i,j) and
W(i,j) are filled by considering all 5-mers, then 6-mers, then 7-mers, etc. of sequence length.
Note that V(i,j) and W(i,j) for sequences shorter than five nucleotides are zero because of the
assumption in Eq. (6.A.4) that the minimum length of a hairpin is three unpaired nucleotides.
Figure 6.A.1 shows the pseudo-computer code for the fill order.

Figures 6.A.2 and 6.A.3 show the filled V(i,j) and W(i,j) arrays, respectively. The values of
some entries are instructive and the conformations with the maximum hydrogen bonds for
those entries are illustrated in Figure 6.A.4. Consider, for example, V(14,18) = 3. This is the
number of hydrogen bonds in the pair of G14 and C18, with G14 and C18 closing a hairpin
loop. V(10,16) = 5 is a stack of G10 and C16 onto the pair of A11 and U15. V(6,14) = 4 is
the pair of U6 and G14 closing a bulge loop, for which a pair between A7 and U12 close the
interior end of the loop. Finally, V(2,17) = 14 is the closure of a multibranch loop by C2 and
G17 with the bifurcation of branches represented by W(3,9) and W(10,16). W(14,18) = 3 is
equal to V(14,18). W(8,18) = 8 is the extension of an unpaired nucleotide on W(9,18) (which

L = 5
i = 1
While (L ≤ N) {

j = i + L–1 
Calculate V(i,j) according to equation 6.A.2
Calculate W(i,j) according to equation 6.A.3
If (j < N) i = i + 1
Else {

i = 1
L = L + 1

}
}

Figure 6.A.1 Pseudo-computer code for the fill order of V (i,j) and W (i,j). This is one representative
scheme for the direction of filling of the two-dimensional arrays. This scheme calculates V (i,j) and W (i,j)
for each 5-mer, then 6-mer, then 7-mer, etc., starting from the 5′ end of the sequence.

V i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
j G C G G G U A C C G A U C G U C G C
18 C 17 0 14 11 11 0 0 0 0 6 0 0 0 3 0 0 0 
17 G 0 14 0 0 0 7 0 8 8 0 0 2 3 0 0 0 
16 C 14 0 10 9 8 0 0 0 0 5 0 0 0 0 0 
15 U 13 0 9 7 6 0 5 0 0 2 2 0 0 0 
14 G 0 11 0 0 0 4 0 3 3 0 0 0 0 
13 C 12 0 8 7 5 0 0 0 0 0 0 0 
12 U 11 0 5 5 4 0 2 0 0 0 0 
11 A 0 0 0 0 0 2 0 0 0 0 
10 G 0 9 0 0 0 2 0 0 0 
9 C 6 0 6 3 3 0 0 0 
8 C 3 0 3 3 0 0 0 
7 A 0 0 0 0 0 0 
6 U 2 0 0 0 0 
5 G 0 0 0 0 
4 G 0 0 0 
3 G 0 0 
2 C 0 
1 G 

Figure 6.A.2 The filled V (i,j) array for sequence GCGGGUACCGAUCGUCGC.
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W i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
j G C G G G U A C C G A U C G U C G C
18 C 17 14 14 11 11 8 8 8 8 6 3 3 3 3 0 0 0 
17 G 14 14 11 11 8 8 8 8 8 5 3 3 3 0 0 0 
16 C 14 11 11 9 8 5 5 5 5 5 2 0 0 0 0 
15 U 13 11 9 7 6 5 5 3 3 2 2 0 0 0 
14 G 12 11 8 7 5 4 3 3 3 0 0 0 0 
13 C 12 9 8 7 5 2 2 0 0 0 0 0 
12 U 11 9 6 5 4 2 2 0 0 0 0 
11 A 9 9 6 3 3 2 0 0 0 0 
10 G 9 9 6 3 3 2 0 0 0 
9 C 6 6 6 3 3 0 0 0 
8 C 3 3 3 3 0 0 0 
7 A 2 0 0 0 0 0 
6 U 2 0 0 0 0 
5 G 0 0 0 0 
4 G 0 0 0 
3 G 0 0 
2 C 0 
1 G 

Figure 6.A.3 The filled W (i,j) array for sequence GCGGGUACCGAUCGUCGC.

Array:  Representation:

V(14,18) = 3 

14 18
V(10,16) = 5 

10
V(6,14) = 4 

6 14

7 12

V(2,17) = 14 

2 17

3
9 10

16

W(8,18) = 8 

8 18

W(4,17) = 11 

4 179

16

9

8

Figure 6.A.4 Illustrations of maximum hydrogen bond
conformations as found by the recursions. Regions in gray
are not required by recursions and the conformation in
those regions is unknown as the arrays are filled recur-
sively. For example, V (10,16) = 5 is a case in which a base
pair stacks on a previous pair, nucleotide 11 base paired
to nucleotide 15. The recursions utilize V (11,15), but the
structure for the region between nucleotides 11 and 15
is unknown as V (10,16) was previously calculated and is
therefore drawn in gray.

is equal to the extension of an unpaired nucleotide on W(8,17)). W(4,17) = 11 is a bifurcation,
i.e. the optimal structure from nucleotides 4 to 17 has more than one branch, and is the sum
of W(4,8) and W(9,17).

At this point, it is clear that the maximum number of hydrogen bonds for this sequence is 17
and is represented by V(1,N). To find the structure that has 17 hydrogen bonds, the traceback
must be performed as illustrated in Figure 6.A.5. Traceback starts by placing 1, N, and the
maximum number of hydrogen bonds on the stack. The stack is a storage device that can
expand to accommodate as many sequence fragments as needed for the structure traceback.
At each step of the main loop, a triple, consisting of i, j, and the number of hydrogen bonds, is
taken from the stack. For this sequence, in the first step through the loop, V(1,18) equals 17,
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Finished

Does V(i,j) = # H-bonds?

Add i – j to base pair list.

Does V(i,j) = Vhairpin (i.j)?

Does V(i,j) = # H-bond in i – j +
 WMB(i + 1,j – 1)     

Find a and b, such that 
V(i,j) = # H-bonds in i – j + V(a,b) 
          with i < a < b < j
Place a, b, and V(a,b) on the stack.

Does W(i,j) = W(i,k) + W(k + 1,j)
    for any i < k < j ?

Put i, k, W(i,k) on the stack.
Put k + 1, j, W(k + 1, j) on the stack.

Does W(i,j) = W(i + 1,j)?

W(i,j) = W(i,j – 1) so
put i, j – 1, W(i,j – 1) on the stack.

Put i + 1, j, W(i + 1,j) on the stack

Start.
 Put 1, N, and W(1,N) on the stack

Is the stack empty?

Take i, j, and # H-bonds from Stack.

No

Yes

Yes

No

No

No

Yes

No

Yes

No

Yes

Yes

Find k, such that 
WMB(i + 1,j – 1) = W(i + 1,k) + W(k + 1,j – 1)
     with i + 3 < k < j – 4, W(i + 1,k) > 0 and
     W(k + 1,j – 1)>0
Place i + 1, k, and W(i+1,k) on the stack.
Place k, j – 1, and W(k + 1,j – 1) on the stack.

Figure 6.A.5 Flowchart for structure traceback. Traceback starts by placing 1, N, and the maximum num-
ber of hydrogen bonds for the sequence onto the stack and proceeds until the stack is empty.

the number of hydrogen bonds. Therefore, nucleotides 1 and 18 are base paired. Following
the flowchart, V(1,18) is not equal to the hairpin term and there is no bifurcation such that
V(1,18) = W(1,k) + W(k+1,18). Instead, V(1,18) = V(2,17) + 3 (the number of hydrogen
bonds in the GC pair), so 2, 17, and V(2,17) = 14 are placed on the stack.

When taking V(2,17) from the stack, again V(2,17) = 14, the number of hydrogen bonds,
so nucleotide 2 is base paired to 17. V(2,17) does not equal V hairpin(2,17). V(2,17) does equal
W(3,9) + W(10,16), so 3, 9, and W(3,9) = 6 are placed on the stack, as are 10, 16, and
W(10,16) = 5.

Now, 10, 16, and 5 are taken from the stack. Again, V(10,16) = 5, so nucleotide 10 is paired
to 16. Following down the flowchart, V(10,16) is found to be V(11,15) + 3, the number of
hydrogen bonds in the base pair of G10 and C16. Therefore, 11, 15, and V(11,15) = 2 are placed
on the stack. Next 11, 15, and 2 are removed from the stack, A11 and U15 are paired, and
V(11,15) = V hairpin(11,15), so nothing is placed on the stack as this branch has been followed
to its termination in a hairpin loop.

G
G

G
G

G G

C

C
C

C

C

A
A

G

UU

U

C

Figure 6.A.6 The sec-
ondary structure of
rGCGGGUACCGAUCGU-
CGC with 17 hydrogen
bonds.

Now, 3, 9, and 6 are taken from the stack. This branch is similar
to the branch starting with nucleotides 10 and 16, in that it has two
base pairs: G3–C9 and G4–C8. After finding those two pairs, the stack
is empty and the structure with 17 hydrogen bonds, as illustrated in
Figure 6.A.6, is determined.

The scaling of RNA secondary structure is limited by multibranch
loop searching, which must be done for every sub-fragment in the
sequence, i.e. from nucleotides i to j with i < j ≤ N. The search looks
for a bifurcation for which the fragment is divided by k into two
segments with stems, so i < k < j. Therefore, three indices are being
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searched over N nucleotides in the worst case step, the fragment that stretches the length of
the sequence, from 1 to N. This is N3 steps. Internal loop searching, which would naturally
require a search over i < i′ < j′ < j, and therefore be O(N4), can be limited in two ways. The
traditional method is to simply limit the size of internal loops so that i′ − i + j − j′ < M, where
M is the maximum loop size. A reasonable limit in practice is M = 30. A second method has
also been devised that does not limit the size of internal loops, but instead takes advantage of
the form of the internal loop nearest neighbor parameters to pre-fill the arrays, splitting the
N4 process into two N3 steps (Lyngsø et al. 1999).

Reference

Lyngsø, R., Zuker, M. & Pederson, C. (1999). Fast evaluation of internal loops in RNA secondary
structure prediction. Bioinformatics. 15, 440–445.
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16S ribosomal RNA gene A gene, found in all prokaryotes, that encodes a key RNA
component of the ribosome. This gene is often present in multiple copies in a genome.

2D gel electrophoresis Two-dimensional polyacrylamide electrophoresis. A technique for
separating large numbers of proteins by loading them onto a gel, applying an electric
current to separate by isoelectric point (pI), and then, in the perpendicular direction,
separating by molecular weight.

ab initio Latin for “from the beginning.” A term frequently used in chemistry and physics to
indicate that the method uses no prior knowledge or that it uses basic truths or
fundamental principles to determine a given result or structure.

accessible surface area (ASA) The surface area of a protein or macromolecule that could
be contacted by water molecules or other solvent/solute molecules, measured in square
ångstroms (Å2). Often used in assessing the quality of protein structures and the strength
of hydrophobic interactions.

admixture Mating between individuals from two different populations. Admixture between
two populations is typically measured by a rate, varying from 0 to 1.

alert A decision support rule or “pop-up” in an electronic health record system, based on a
rule.

algorithm Any sequence of actions (such as computational steps) that are used to perform a
particular task.

alignment Two or more sequences that have been lined up, matching as many identical
residues or conservatively substituted positions as possible.

allele Any of the forms of a gene that may occur at a given locus. In simple Mendelian
inheritance, dominant alleles are expressed more than recessive alleles.

allele frequency spectrum A graph in which allele frequency bins are plotted on the x-axis
and the number (or proportion) of occurrences of each allele frequency is plotted on the
y-axis.

alpha diversity The distribution of taxa (often expressed as number and evenness) in a
given sample.

alpha parameter A value that affects the shape of a gamma distribution. In phylogenetic
analyses, describes whether the rate of change across sites is high or low. The alpha
parameter can result in gamma curves ranging from bell shaped (𝛼 > 1) to L shaped (𝛼 < 1).

alternative splicing The process through which a cell can generate many different protein
products from a single gene. A gene is transcribed into a primary RNA transcript,
containing both exons and introns; these exons (and sometimes introns) can then be
combined into one or more different messenger RNA (mRNA) molecules, each encoding
for a different protein.

analogous In phylogenetics, characters that have descended in a convergent fashion from
unrelated ancestors.

analysis of variance (ANOVA) A statistical method used to test differences between the
means (or averages) of two or more groups. ANOVA is more commonly used when
analyzing three or more groups, while Student’s t-tests are used to analyze two groups only.

Bioinformatics, Fourth Edition. Edited by Andreas D. Baxevanis, Gary D. Bader, and David S. Wishart.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/baxevanis/Bioinformatics_4e
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ancestry The origin, typically geographic, of a person’s ancestors.
annotated spectrum library A curated, non-redundant collection of annotated peptide

spectra used for the identification of proteins through spectral library search (matching)
algorithms.

application programming interface (API) Definitions, protocols, and tools used to build
software applications, including specifications for communications between systems.

ASCII Acronym for American Standard Code for Information Interchange. ASCII codes
represent the text characters that can be typed on a conventional computer or typewriter
keyboard. When someone asks for a file in ASCII format, it means they want plain text
with no formatting such as tabs, bold, or underscoring. ASCII is the raw text format that
any computer can understand.

ASN.1 Acronym for Abstract Syntax Notation One. ASN.1 is a formal language for abstractly
describing messages or information to be exchanged. ASN.1 is used extensively by the
National Center for Biotechnology Information (NCBI) in representing sequence,
structure, interaction, mapping, and bibliographic records.

artificial neural network A machine learning or artificial intelligence technique that
learns patterns through repeated rounds of training. Neural networks are mathematical
constructs designed to mimic the brain with a series of interconnected nodes that grow
stronger or weaker with training.

attachment site A short sequence (or pair of sequences) that are used by bacteriophages to
insert into bacterial chromosomes. Bacteriophage insertion (also known as lysogeny)
requires a phage-encoded integrase that promotes reciprocal strand exchange between
phage and bacterial attachment sites. Most bacterial attachment sites are 15–25 base pairs
long.

average mass The mass of an ion calculated by averaging all common isotope variations.
This quantity is typically used when the resolution of the instrumentation is not adequate
to distinguish individual isotopes.

backbone This refers to the collection of common atoms or angles that constitute the heavy
atoms (C, N, O) that make up every amino acid residue and peptide. Backbone atoms are
equivalent to the four heavy atoms (N, C𝛼, C, and O) found in glycine residues and
therefore exclude the side-chain atoms that make each biogenic amino acid unique.
Backbone atoms and backbone angles define the general shape of the polypeptide,
including its secondary and tertiary structure.

balancing selection A form of natural selection in which multiple alleles at a locus are
maintained at intermediate frequencies, often because the heterozygous genotype has a
selective advantage.

base A chemical ring structure that is part of a nucleotide. Bases form hydrogen bonds with
other bases to form base pairs.

base caller A program used to convert raw sequencer output to an ordered list of base
identities and quality scores.

Bayesian network A method in machine learning used to predict a feature in a dataset
given some known but incomplete information. Based on Bayes’ rule for conditional
probability.

beta diversity The dissimilarity between two samples, often expressed in taxonomic terms.
BLOSUM matrix BLOCKS substitution matrix. Also see PAM matrix.
Bonferroni correction A conservative statistical multiple comparison correction used to

correct the significance threshold (alpha value) of multiple independent statistical tests,
which together may have a greater chance of generating false positives than the individual
test.

Boolean Refers to an expression or variable that can have only a true or false value. Named
after George Boole, a British mathematician who developed the theory of algebraic logic or
Boolean algebra, which is now used in almost all electronic computation.
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bootstrapping The process of randomizing and sampling positions in an alignment in order
to determine the degree of support for a given node within a phylogenetic tree. Bootstrap
values are expressed as a percentage, with higher percentages reflecting the number of
times a particular branching order is recovered and indicating that a node is well
supported.

bottom-up proteomics Another term for shotgun proteomics, referring to the fact that the
analysis begins with the peptide constituents of a sample. Also see shotgun proteomics.

browser Program used to access sites on the World Wide Web. Using hypertext markup
language (HTML), browsers are capable of representing a web page the same way
regardless of computer platform. Also see hypertext markup language.

candidate gene A gene that is implicated in the causation of a gene. The protein product of
a candidate gene may implicate the candidate gene as being the actual disease gene being
sought.

cDNA library A collection of double-stranded DNA sequences that are generated by copying
mRNA molecules. Since these sequences are derived from mRNAs, they contain only
protein-coding DNA.

centimorgan (cM) The genetic distance between two markers that recombine at a
frequency of 1%. In humans, 1 cM is approximately equivalent to one million base pairs.

centromere A specialized DNA sequence located near the center of a eukaryotic
chromosome that links a pair of sister chromatids. Centromeres contain long stretches of
highly repetitive DNA and serve as a site of assembly for the kinetochore, the master
regulator of chromosome segregation.

characters and character states In phylogenetics, characters are homologous features in
different organisms. The exact condition of that feature in a particular individual is the
character state. As an example, the character “hair color” can have the character states
“gold,” “red,” and “yellow.” In molecular biology, the character states can be one of the
four nucleotides (A, C, T, G) or one of the 20 amino acids. Please note that some authors
define character to mean the character state as defined here.

chromatin immunoprecipitation (ChIP) An experimental method that is used to deduce
how proteins interact with specific kinds of DNA binding sites, such as transcription
factors, promoters, or other upstream regulatory elements.

chromatogram A file containing raw data and ancillary information about a single DNA
sample that has been run through an automated DNA sequencing instrument. Also see
base caller.

clade A monophyletic taxon. A group of organisms or genes that includes the most recent
common ancestor of all its members and all of the descendants of that most recent
common ancestor. From the Greek klados, meaning branch.

clade annotation An approach to genome and proteome annotation that is based on the
observation that gene and protein functions and sequences are not globally conserved
across all species but are often locally conserved in separate clades. Clade annotation
assists in getting around the issue of weak sequence conservation in consensus signals.

cladistics A method for hypothesizing relationships among organisms, genes, or proteins
based on shared characteristics.

cladogram A branching diagram showing the relationships between clades.
client A computer, or the software running on a computer, that interacts with another

computer at a remote site (server). Note the difference between client and user.
coalescence The principle that population genetic variation at a locus can ultimately be

traced back to a single ancestor.
coding bias Also codon usage bias. This refers to differences in the frequency of occurrence

of synonymous codons in protein-coding DNA. The frequency of certain codons in
protein-coding DNA (as opposed to non-coding DNA) and in certain organisms is often
biased toward a small set of possible codons for the same amino acid. Codon bias reflects a
balance between mutational biases and natural selection for translational optimization.
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coding sequence (CDS) A segment of genomic DNA or cDNA that codes for a protein. This
abbreviation is used extensively in sequence database records. Also see complementary
DNA.

coding statistics A mathematical function that computes a real number related to the
likelihood that a given DNA sequence codes for a protein. Coding statistics provide
information about codon bias, third-base wobble, the frequency of certain hexamers, the
length of coding regions, and similar types of DNA content measures.

codon The triplet of bases in either a DNA or RNA sequence that ultimately codes for a
specific, single amino acid.

combinatorics A branch of mathematical science that is concerned with the calculation or
enumeration of different combinations of objects or states. It has many applications
ranging from physics and probability theory to biology and computer science.

comparative proteomics The general approach of comparing proteomes from two or more
cellular states, then using mass spectrometry to identify the proteins or peptides that differ
between them.

comparative sequence analysis A method used to determine RNA secondary structure in
which a sequence alignment is used to infer locations of base pairs.

complementary Two sequences that can form an uninterrupted helix of Watson–Crick base
pairs.

complementary DNA (cDNA) Single-stranded DNA that has been synthesized from an
mRNA template by reverse transcriptase.

consensus In alignments, the base or amino acid most likely to occur at any given position;
consensus sequences can be used to characterize protein families.

conservative substitution The replacement of one residue by another residue having
similar properties such as size, charge, and hydrophobicity.

contig Short for contiguous. Refers to a contiguous set of overlapping DNA sequences.
copy number variant Population variation in the number of copies (per individual) of a

series of consecutive DNA base pairs, typically defined as 50 or more base pairs.
copy number variation A gain or loss in genetic material resulting from deletions or

duplications that may be associated with a specific disease state.
core genome The set of genes present in all individuals in a clade.
correlation coefficient A numerical measure of the strength and direction of a linear

relationship between two variables; also a quantitative method for evaluating the
correlation or statistical relationship between two types of measurements, observables, or
variables. Correlation coefficients range between −1 and +1, where +1 indicates the
strongest possible agreement and −1 indicates the strongest possible disagreement. The
Pearson correlation coefficient (r or R) is the most commonly used correlation coefficient
and is defined as the covariance of the variables divided by the product of their standard
deviations. The correlation coefficient is often mistaken for the less useful coefficient of
determination (r2 or R2), which is the square of the correlation coefficient.

cytogenetic map The representation of a chromosome upon staining and examination by
microscopy. Visually distinct light and dark bands give each chromosome a unique
morphological appearance and allow for the visual tracking of cytogenetic abnormalities
such as deletions or inversions.

data-dependent acquisition (DDA) Mode of data collection in tandem mass spectrometry
in which randomly selected precursor ions within a specified mass range are subjected to
molecular fragmentation.

data-independent acquisition (DIA) Mode of data collection by a mass spectrometer in
which all precursor ions within a specified mass range are subjected simultaneously to
fragmentation.

data exchange format A structured, standard way of encoding or writing down data for the
purpose of data exchange between groups of people (or computer systems) that have
agreed upon the format.
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dalton (Da) A unit of molecular mass equal to the mass of a hydrogen atom. On average,
amino acids are ∼110 Da, while DNA/RNA bases are ∼330 Da.

de novo sequencing Technique to derive the peptide sequence from a tandem mass
spectrometry (MS2) spectrum without the use of a sequence database.

deconvolution General term referring to the mathematical process of disentangling
multiple components in a spectrum to identify the base constituents. In mass spectrometry,
it refers to reducing multiple charge-state peaks into a single cognate mass peak.

deisotoping Removal of companion isotope peaks in a convoluted spectrum, to represent
the fundamental ion species as a single data point. Deisotoping is commonly performed to
reduce data complexity, usually in conjunction with charge state deconvolution.

deletion A mutation in which one or more bases is lost from a given region of a
chromosome.

deletion/insertion polymorphism (DIP) Alleles that are represented by one base or more
that are present in one sequence and absent in the other.

descriptor Information about a sequence or set of sequences whose scope depends upon its
placement in a record. Placed on a set of sequences to reduce the need to save multiple
redundant copies of information.

difference gel electrophoresis (DIGE) A type of two-dimensional polyacrylamide gel
electrophoresis in which two samples are run on a single gel.

dihedral angle Also torsion angle. The angle between two intersecting planes. In chemistry,
it is the angle between planes through two sets of three atoms, having two atoms in
common. Main chain dihedral angles are labeled as 𝜙, 𝜓 , and 𝜔 (where 𝜔 corresponds to
the peptide backbone), while side-chain dihedral angles are labeled as 𝜒1, 𝜒2, and so forth.

dN/dS ratio The ratio of synonymous vs. non-synonymous substitutions that is used to
determine whether sequences are undergoing positive or negative selection. If dN/dS∼ 1,
no selection has occurred. If dN/dS< 1, negative (or purifying) selection has occurred,
removing alleles that are deleterious. If dN/dS> 1, positive selection has occurred,
favoring alleles that are advantageous.

domain name Refers to one of the levels of organization of the internet and used to both
classify and identify host machines. Top-level domain names usually indicate the type of
site or the country in which the host is located.

dotplot A visual technique for comparing two sequences with one another, allowing for the
identification of regions of local alignment, direct or inverted repeats, insertions, deletions,
or low-complexity regions.

download The act of transferring a file from a remote host to a local machine via FTP. Also
see file transfer protocol.

dynamic programming A computational technique used to solve complex problems by
decomposing the problem into successively smaller subproblems, then solving them
recursively. The solution of a subproblem of given complexity is dependent on the
solutions already computed for subproblems of lesser complexity.

eigenvector A non-zero vector of which all values change by the same scalar factor when
that transformation is applied to it.

electron impact (or ionization) mass spectrometry (EI-MS) The technique employed
by gas chromatography mass spectrometers (GC–MS). It was one of the first ionization
techniques developed and uses high-energy electrons fired at a specific energy (70 eV) to
fragment and ionize molecules for mass analysis. EI-MS is known as a hard ionization
method, as most molecules are “shattered” to tiny bits. Every molecule breaks apart in a
characteristic pattern that serves as a kind of EI-MS fingerprint.

electronic polymerase chain reaction (e-PCR) A computational method that predicts the
location of sequence tagged sites (STSs) in DNA by searching for sub-sequences that
closely match the PCR primers used to make the STS; these sub-sequences must also have
the correct order, orientation, and spacing such that they could prime the amplification of
a PCR product of the correct molecular weight. Also see sequence tagged sites.
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electrospray ionization (ESI) A method for creating ions in mass spectrometry that
consists of forming a spray of charged droplets containing analyte molecules, then
de-solvating the droplets, leaving charged ions for analysis.

electrospray ionization tandem mass spectrometry (ESI-MS/MS) Electrospray
ionization is a soft ionization method that keeps the parent molecules mostly intact. It
works by spraying the molecules through an electrified nozzle, which gives the molecules
a charge. When the ionized molecules are sent into the tandem mass spectrometer, they
collide with inert gas molecules and are gently broken apart into smaller fragment ions.
Every molecule breaks apart in a characteristic pattern that serves as a kind of ESI-MS/MS
fingerprint. Also see tandem mass spectrometry.

energy minimization A computational method for reducing the calculated covalent and
non-covalent energy of a molecule with a given geometry. Energy minimization uses
highly parameterized Newtonian descriptions of molecular bonds and atomic interactions.
Energy minimization is frequently used to refine or fix protein structures determined from
X-ray, nuclear magnetic resonance (NMR), or homology modeling.

enhancer A short (50–1500 bp) region of DNA that can be preferentially bound by
transcription factor proteins to increase the likelihood that transcription of a nearby gene
will occur.

expressed sequence tags (ESTs) Short (300–500 bp) single reads from mRNA (cDNA)
which are usually produced in large numbers. They represent a snapshot of what is
expressed in a given tissue or at a given developmental stage. They represent tags (some
coding, others not) of expression for a given cDNA library. Also see cDNA library.

exon The part of a gene that remains in a mature mRNA transcript after any introns have
been spliced out; the “expressed region” of a gene.

extensible markup language (XML) A text markup language for interchanging structured
data that play an increasingly important role in the exchange of a wide variety of data on
the web and elsewhere.

family trio DNA samples from mother, father, and child.
feature Annotation on a specific location on a given sequence.
Fast Healthcare Interoperability Resources (FHIR) An API standard for accessing

electronic health record systems. Also see application programming interface.
feature A variable or data field used in predictive analytics for the purposes of clustering or

supervised machine learning approaches.
file transfer protocol (FTP) The method by which files are transferred between hosts.
filtering See masking.
firewall A computer separating a company or organization’s internal network from the

public part, if any, of the same network. Intended to prevent unauthorized access to private
computer systems.

flanking sequence Sequences 5′ or 3′ of a core sequence of interest.
Fourier transform mass spectrometry (FT/MS) Also Fourier transform ion cyclotron

resonance MS (FTICR). A highly accurate ion measurement used especially for large
molecules of up to 1 million daltons or more. Electromagnetic forces are used to cycle ions
in a chamber, which are then measured by the frequency at which they resonate. To
convert from frequency to a mass-charge (m/z) spectrum, a Fourier transform is applied.
Also see mass to charge ratio.

fragmentation The formation of fragment ions arising from the cleavage of a protein or
peptide backbone (or side chains) due to dissociation of energetically unstable molecular
ion states.

frameshift mutation Mutations arising from insertion or deletion of nucleotides whose
length is not evenly divisible by 3; this leads to a change in reading frame, meaning that
protein translation from the point of the mutation onward will be incorrect.
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functional profiling Prediction of functions, pathways, and metabolic modules in the
microbiome by comparing predicted genes from a metagenome sample with a reference
database such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) or Swiss-Prot.

gamma distribution A probability distribution that describes the degree of rate substitution
heterogeneity (the degree of variability of change) across sites.

gap Used to improve alignments between sequences. Gaps theoretically represent insertions
and deletions between sequences being studied.

gene flow The exchange of DNA between two different populations.
gene ontology (GO) A formal system for describing gene function. GO is composed of two

parts, an ontology and a set of annotations. The ontology defines terms that describe gene
function that are organized in a hierarchy from least specific terms at the top to most
specific at the bottom. The ontology covers three aspects of gene function: biological
process (e.g. tricarboxylic acid cycle), cellular component (e.g. cytoplasm), and molecular
function (e.g. kinase activity). Annotations link ontology terms to genes, along with a
description of the evidence used to make the link. Each gene can be linked to multiple
annotations.

gene set Simply, a set of related genes. A pathway gene set includes all genes in a pathway.
Gene sets can be based on various relationships between genes, such as cellular
localization (e.g. nuclear genes) or enzymatic function (e.g. protein kinases). Details such
as protein interactions are not included.

genetic drift Random variation in population allele frequencies through time, arising as a
result of finite population size.

genetic interaction An interaction defined by a change in phenotype caused by a change in
genotype. For instance, if two genes that are genetically altered (e.g. knocked out) do not
lead to a change in phenotype on their own but, when altered together, cause the death of
the organism, then the two genes have a synthetic lethal interaction. This may indicate
that the genes are part of parallel pathways that impinge upon an essential process.

genetic map Gives the relative positions of known genes and/or markers. Markers must
have two or more alleles that can be readily distinguished.

genetic marker A DNA feature whose physical location is known and that can be used to
(indirectly) deduce the mode of inheritance of a gene.

genome All of the DNA found within each of the cells of an organism. Eukaryotic genomes
can be subdivided into their nuclear genome (chromosomes found within the nucleus)
and their mitochondrial genome. Plants also contain chloroplast genomes.

genome-wide association study A method through which genetic markers from
populations of both affected and unaffected individuals are systematically scanned in
order to identify specific mutations or genetic variations associated with a given disease.

genotype [1] The alleles present in a given individual’s DNA for a particular genetic marker
or set of markers. [2] The unique genetic makeup of an organism. Also see phenotype.

graph In phylogenetics, a set of vertices (also called nodes) and a set of edges connecting
those vertices. Can be visualized as a set of points connected by lines.

graph theory A field of computer science and mathematics that focuses on the development
of algorithms and proofs concerning graphs.

graphical user interface (GUI) Refers to software front-ends that rely on pictures and
icons to direct the interaction of users with the application.

haplotype Sets of alleles that are usually inherited together. The haploid sequence inherited
from each parent.

heat map A two-dimensional representation of data (such as expression data) in which data
are represented as a series of colors.

heuristic algorithm An economical strategy for deriving a solution to a problem that is not
guaranteed to find the optimal solution. Required when the algorithm for the optimal
solution is computationally impractical.
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hexamer frequency The frequency of a given six-nucleotide segment compared with the
frequency of the same hexamer as derived from the general base composition of the entire
genome. The frequencies of certain hexamers can differ greatly between coding DNA and
non-coding DNA.

hidden Markov model (HMM) A probabilistic method for the linear analysis of
sequences. HMMs are used in bioinformatics for almost any task that can be described as a
process that analyzes sequences from left to right. Applications of HMMs to biological data
include gene prediction, protein secondary structure prediction, and the detection of
sequence signals such as translation initiation sites.

homologs In phylogenetics, particular features in different individuals that are genetically
descended from the same feature in a common ancestor are termed homologous. Also see
orthologs and paralogs.

homologous (from homolog) Homologous sequences are sequences that serve a similar
function or are genetically related. Homologous nucleotides are nucleotides that serve the
same function in different sequences.

homology modeling Also comparative modeling. A method for predicting the tertiary
structure of a protein by using an existing homologous protein structure as a template.

homoplasy Similarity that has evolved independently and is not indicative of common
phylogenetic origin.

horizontal gene transfer The movement of genetic material from one organism to another,
including by transformation, transduction, or conjugation. Also see vertical gene transfer.

host Any computer on the internet that can be addressed directly through a unique IP
address.

HPO Human Phenotype Ontology.
hypertext Within a web page, text that is differentiated either by color or by underlining

which functions as a hyperlink. Also see uniform resource locator.
hypertext markup language (HTML) The standard, text-based language used to specify

the format of World Wide Web documents. HTML files are translated and rendered
through the use of web browsers.

hyperlink A graphic or text within a web document that can be selected using a mouse.
Clicking on a hyperlink transports the user to another part of the same web page or to
another web page, regardless of location.

identity A quantitative measure of how related two sequences are to one another, assessed
as the total number of exact matches in a pairwise sequence alignment.

InChI key A fixed length (27 character) condensed digital representation of an InChI that is
not human understandable, developed in order to facilitate web searches for chemical
compounds as many full length InChI identifiers are too long for search engines to handle.
Also see IUPAC International Chemical Identifier.

indel Acronym for insertion or deletion. Applied to length-variable regions of a multiple
alignment when it is not specified whether sequence length differences have been created
by insertions or deletions.

insertion A mutation in which one or more bases are inserted into a chromosomal region.
insulator A long-range genetic regulatory element found in eukaryotes that blocks the

interaction between enhancers and promoters. Insulators contain clustered binding sites
for sequence-specific DNA binding proteins and mediate intra- and interchromosomal
interactions.

integrase A viral enzyme that catalyzes the integration of virally derived DNA into the host
cell DNA in the nucleus, forming a provirus that can be activated to produce viral proteins.

interaction Any relationship, physical or otherwise, between biological entities such as
proteins, cells, and amino acids that can be defined experimentally.

interactome The set of all interactions in an organism.
intergenic region A stretch of non-coding DNA located between genes. Some intergenic

DNA segments are known to help in the control of genes, but most intergenic DNA has no
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known function. Intergenic regions constitute about 75% of the human genome, 15% of
bacterial genomes, and 30% of yeast genomes.

internet A system of linked computer networks used for the transmission of files and
messages between hosts. Also see intranet and local area network.

interolog An evolutionarily conserved protein interaction identified between two pairs of
orthologous proteins, such that A and A′ and B and B′ are each orthologs, with A
interacting with B in one organism while A′ interacts with B′ in another organism.

intranet A computer network internal to a company or organization. Intranets are often not
connected to the internet or are protected by a firewall. Also see internet and local area
network.

intron From intragenic region. The part of a primary RNA transcript that is removed by
splicing and, therefore, does not appear in the final RNA product.

IP address The unique, numeric address of a computer host on the internet.
isoelectric point (pI) The pH value at which the net charge of a protein or peptide is

neutral, as determined by isoelectric focusing.
isotope coded affinity tagging (ICAT) A method used to directly compare the quantities

of proteins from two different cellular states by mass spectrometry analysis of a shotgun
digest of a proteome and appropriate isotopic labeling.

isobaric tags for relative and absolute quantification (iTRAQ) Multiplexed isobaric
labeling method used in quantitative proteomics to determine the abundance of peptides
and their cognate proteins across two or more biological samples.

IUPAC International Chemical Identifier (InChI) A text-based identifier for uniquely
and unambiguously tagging or identifying chemical substances, designed to provide a
standard, human-readable way to encode molecular information.

k-mers Collections of DNA “words” of length k observed in a sequence. Often used for rapid
comparisons of large numbers of sequences.

label-free quantification A method used in quantitative proteomics to compare differences
in the ion signal intensity or spectral counts of proteins and peptides between two or more
experimental conditions.

library In sequencing, a collection of insert-containing clones. Sequencing libraries are
created from a sequencing vector (see plasmid) and a set of inserts obtained by
fragmentation of a larger piece of DNA.

linkage Genes or genetic markers that are physically close to one another on a chromosome
and that tend to be inherited together.

linkage disequilibrium A state resulting when alleles at two defined loci are linked more
frequently than would be expected, based on the known allele frequencies and
recombination rate between the two loci. Linkage disequilibrium indicates that the two
alleles being examined are physically close.

liquid chromatography A method for separating sample proteins or peptides in
preparation for mass spectrometry; separations may be based on properties such as
hydrophobicity (reverse phase), surface charge (ion exchange), or diffusion rate (size
exclusion/gel filtration).

local area network (LAN) A network that connects computers in a small, defined area,
such as the offices in a single wing or a group of buildings. Also see internet and intranet.

LOD score Short for log odds, a statistical estimate of the linkage between two loci on the
same chromosome.

logo (or sequence logo) Graphical representation of a motif in DNA/RNA or protein
sequences. Various methods are used but, commonly, the height at any position represents
the information content at that position, and each letter’s height is in proportion to its
probability.

long terminal repeat (LTR) Identical sequences of DNA that repeat hundreds or
thousands of times found at either end of retrotransposons or proviral DNA formed by
reverse transcription of retroviral DNA. LTRs are used by viruses to insert their genetic
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material into host genomes. LTRs resemble mobile gene-remodeling platforms that supply
promoters and first exons for many eukaryotic genes.

low-complexity region Regions of biased composition, usually homopolymeric runs,
short-period repeats, or the subtle over-representation of several residues in a sequence.

machine learning A branch of computer science that uses statistical techniques to give
computers the ability to learn specific tasks, identify patterns, or make predictions using
data without being explicitly programmed to do so. Machine learning allows scientists to
produce reliable and repeatable decisions or results and uncover hidden insights by
extracting trends within datasets.

marker genes Genes (including RNA genes) that can be used to distinguish taxonomic
groups in a sample.

masking The technique by which low-complexity regions are removed from protein
sequences, or LINE, SINE, Alu, and similar sequences are removed from nucleotide
sequences prior to database searches.

mass accuracy Closeness of agreement between the result of a measurement and the true
value (exact mass).

mass precision Closeness of agreement between independent mass measurement results.
mass range Minimum and maximum mass to charge ratio of ions that can be determined

using a mass spectrometer. Also see mass to charge ratio.
mass resolution Ability of the mass spectrometer to differentiate between ions with close

mass to charge ratios. Mass spectrometers with high resolution are capable of accurately
detecting heavy isotope derivatives and the monoisotopic mass of a molecular ion. Also see
mass to charge ratio.

mass spectrometry A collection of exquisitely sensitive and accurate analytical techniques
that precisely measure molecular masses through a process of ionization and subsequent
mass to charge measurement. Also see mass to charge ratio.

matrix-assisted laser-desorption ionization (MALDI) A common method for
generating ions from analyte molecules for analysis by mass spectrometry.

messenger RNA (mRNA) A molecule in cells that carries codes from the DNA in the
nucleus to the sites of protein synthesis in the cytoplasm (the ribosomes).

metabolite A small molecule that is an intermediate or a product of metabolism. Most
metabolites have a molecular weight of <1500 Da. Primary metabolites are compounds
directly involve in growth or cell division, while secondary metabolites are compounds
that have an ecological, cell signaling, or protective function.

metabolome The collection of small-molecule metabolites found within a given biological
sample (e.g. a cell, tissue, or organ) or within an organism under a particular set of
conditions.

metagenome The set of genetic material isolated from a given habitat.
meta-omics A combination of approaches that can combine DNA sequencing, protein and

metabolite characterization, and other techniques to characterize the microbiome in
multiple and complementary ways.

microbiome The set of microorganisms associated with a given habitat.
microsatellite Regions of DNA containing short tandem repeats of a simple nucleotide

sequence.
missense mutation A point mutation that changes a codon in such a way that a different

amino acid is now encoded by that codon. If the amino acid substitution is
non-conservative, the mutation can have a significant effect on the structure or function of
the encoded protein.

mmu one millimass unit, or thousandth of a dalton.
molecular clock The hypothesis that nucleotide or amino acid substitutions occur at more

or less fixed rate over evolutionary time, like the slow ticking of a clock. It has been
proposed that, given a calibration date and a constant molecular clock, the amount of
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sequence divergence can be used to calculate the time that has elapsed since two
molecules diverged.

molecular complex A stable complex of molecules functioning as a biological unit.
monoisotopic mass The base mass of a protein or peptide containing none of the rarer,

higher mass isotopes in any of its constituent atoms.
monophyletic The set of organisms descended from a common evolutionary ancestor or

ancestral group.
motif Relatively conserved sequences within proteins or DNA that usually correspond to

structural or functional regions. RNA motifs may contain information about the structure.
Motifs are often represented mathematically as position weight matrices and are often
represented graphically by logos.

multiple testing correction A statistical technique for addressing the problem that arises
when repeating the same statistical test many times, such as during pathway enrichment
analysis, where significant p values could appear by chance. Correction reduces the
chance of obtaining false-positive results.

multivariate statistics A branch of statistics that focuses on developing or using statistical
techniques for analyzing two or more variables of interest. Most “omics” data require
multivariate statistics as the number of variables being considered is often in the hundreds
or thousands. Multivariate means multiple variable.

mutation An irreversible modification to a chromosome. Mutations can involve single bases
or entire regions of a chromosome. Mutations can either be neutral (have no effect),
harmful, or beneficial. As such, mutations drive evolutionary change.

mass to charge ratio (m/z ratio) Quantity obtained by dividing the mass of an ion by its
charge.

natural selection An evolutionary process in which genotypes that confer reproductive
success are increased, while those that reduce reproductive success are decreased.

negative selection Natural selection against an allele or genotype, reducing its population
frequency through time.

neutral mass The actual mass, in daltons, of a measured protein or peptide after
deconvolution and subtraction of any associated ion mass. It refers to the neutral
(non-charged) state of the analyzed molecule.

node A bifurcating branch point in a phylogenetic tree.
non-coding DNA A region of DNA that does not code for a protein.
nonsense mutation A point mutation that results in a premature stop codon in a gene,

leading to premature truncation of the encoded protein.
normalization A statistical method that removes sources of variation in a dataset.
nuclear Overhauser effect (NOE) A nuclear magnetic resonance (NMR) phenomenon

that involves the transfer of nuclear magnetism from one atom to another atom across
short distances. NOEs occur through space rather than through bonds. Interatomic
distances measured through NOEs can be used to determine the structure of proteins and
other macromolecules. NOEs are measured through an NMR technique called nuclear
Overhauser effect spectroscopy, or NOESY.

nucleotide The basic component of both DNA and RNA. Nucleotides consist of a base
(adenine, cytosine, guanine, or cytosine), a sugar molecule, and a phosphoric acid
molecule.

oligo Short for oligonucleotide. A short, single-stranded DNA or RNA. Most often used as
probes for the detection of complementary DNA or RNA. Also see complementary DNA.

OnO (or O&O) Short for ordered and oriented. The particular order and direction
(complemented or uncomplemented) of each contig from an assembly is known and
specified.

ontology A structured terminology that describes all the concepts within a domain.
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open reading frame (ORF) A DNA sequence that has the potential to encode a protein
sequence. An ORF begins with a start codon (ATG) and ends with a stop codon (TAA,
TAG, or TGA) in most species. See also codon.

operational taxonomic units (OTUs) Groupings of organisms that are constructed
without a reference taxonomic database. In the context of marker-gene analysis, OTUs
often comprise sets of marker-gene sequences that share a high degree of similarity. Also
see marker genes.

orthologs Homologous sequences are said to be orthologous when they are direct
descendants of a sequence in the common ancestor – that is, without having undergone a
gene duplication event. Also see homologs and paralogs.

outgroup A distantly related sequence (or group of sequences) not belonging to the group or
clade whose evolutionary relationships are being investigated.

PAM matrix PAM (point accepted mutation) and BLOSUM (blocks substitution matrix) are
matrices that define scores for each of the 210 possible amino acid substitutions. The
scores are based on empirical substitution frequencies observed in alignments of database
sequences and in general reflect similar physicochemical properties. For example, a
substitution of leucine for isoleucine (two amino acids of similar hydrophobicity and size)
will score higher than a substitution of leucine for glutamate.

paralogs Homologous sequences that have arisen because of a gene duplication event. Also
see homologs and orthologs.

pathway A set of interactions among biological entities; these interactions may or may not
be linear or ordered in any way. Usually defined by a perturbation to a biological system
whose output can be measured experimentally.

pathway enrichment analysis A statistical technique used to identify pathways that are
significantly represented in a gene list of interest.

pedigree A tree representation of a family (cohort) showing the relationships between
members and the pattern of inheritance of a given trait.

peptide mass fingerprint A protein identification method that works by enzymatically
digesting a protein to produce a distinctive fingerprint of masses. The fingerprint is
matched against putative fingerprints from protein or nucleotide databases to identify the
unknown.

phased sequence data DNA sequence in which haplotypes are determined either by
statistical estimation or by analyzing sequence data from the parents. By contrast, only the
diploid genotype is known in unphased sequence data.

peptide spectrum match (PSM) Number of identified spectra matched to a given protein.
The total spectral count can be higher than the number of peptides identified as peptides
may be repeatedly identified by mass spectrometry.

phenotype The outwardly observable characteristics of an organism. Also see genotype.
phylogenetic profile A profile capturing the existence of orthologs of a gene across

genomes. Genes with similar phylogenetic profiles are hypothesized to physically interact
or at least be linked functionally.

physical map A genome map showing the exact location of genes and markers. The highest
resolution physical map is the DNA sequence itself.

plasmid A circular, self-replicating piece of bacterial DNA. Numerous artificially designed
plasmids contain priming sites, making them suitable for cloning and sequencing
segments of DNA that range from 2000 to 10 000 bases in length.

platform Properly, the operating system running software on a computer, e.g. UNIX or
Windows. More often used to refer to the type of computer, such as a Macintosh or PC.

point mutation Any mutation in which a single base pair is altered. Also see missense
mutation and nonsense mutation.

polymorphism Common differences in DNA sequence among individuals that can be used
as markers for linkage analysis. Typically, this refers to a locus in which the minor (less
frequent) allele has a frequency greater than 1%. Also see linkage.
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polyphyletic Sequences that may share some similarity but are not related by a common
ancestor.

positional cloning Relies on the identification of a gene through pedigree analysis, genetic
and physical mapping, and mutation analysis. Does not require extensive knowledge of the
biochemistry of the disease in order to determine the gene responsible for the disease. The
opposite of functional cloning.

positive selection Natural selection that favors an allele or genotype, increasing its
frequency through time.

post-translational modification (PTM) Covalent modification of proteins after synthesis,
usually involving a specific enzyme adding a chemical group to a specific amino acid (e.g.
phosphorylation of serine, threonine, or tyrosine).

Precision Medicine Initiative (PMI) A U.S. national effort to enroll and track a volunteer
participant cohort of 1 000 000 Americans, called “All of Us.”

predictive analytics Computer-based approaches for making prediction using data.
primary structure The linear sequence of a protein or RNA.
primary transcript The RNA molecule resulting from the transcription of the DNA

sequence encoding a gene. In eukaryotes, it contains both the exons and introns prior to
processing. Also see exon and intron.

primer An oligonucleotide used to initiate polymerase-mediated replication of a strand of
DNA.

principal component analysis A statistical method that portrays a complex,
multidimensional dataset (such as a genetic distance matrix) in a smaller number of
dimensions.

promoter The region upstream of a gene where transcription is initiated.
proteoforms Different molecular forms in which the protein product of a single gene is

found experimentally, encompassing various forms of genetic variation, alternative
splicing of RNA transcripts, and post-translational modifications.

pseudogenes DNA that is similar to a normal, coding gene but that is not functional (may or
may not be expressed). Pseudogenes are incapable of producing functional gene products.
They are regarded as “genetic fossils” or defunct relatives of functional genes.

p value Also known as the probability value. It corresponds to the probability that the
difference between two population or group means is simply due to chance. Hence a p
value of 0.05 means that the two groups being evaluated have a 5% chance of being
different because of random chance. A low p value (<0.05) for any kind of statistical
comparison is usually a strong indication that the difference is significant.

quantitative proteomics A mass spectrometry technique for determining the amount of a
given protein in a sample, generally used to compare differences in protein expression
between two or more samples.

quaternary structure The arrangement or positioning of multiple polypeptide chains (with
defined tertiary structures) in larger protein complexes.

R factor Residual disagreement. Used in X-ray crystallography as a measure of agreement
between the experimentally measured diffraction amplitudes and those calculated using
the protein coordinates. Perfect agreement corresponds to an R factor of 0.0. Total
disagreement corresponds to an R factor of 0.59. Most good quality protein structures have
R factors between 0.15 and 0.20.

Ramachandran plot A scatterplot showing the disposition of backbone 𝜑 (phi) and 𝜓 (psi)
torsion angles for each residue in a protein or set of proteins. Certain combinations of phi
and psi angles are strongly preferred or are repeated over a series of residues, and these
patterns can be easily detected in a Ramachandran plot.

random forests Also random decision forests. Machine learning methods for classification
and regression that operate by constructing thousands of decision trees during training,
then selecting and pruning the best tree(s) for performing the classification task in an
optimal fashion. Random forest approaches are useful in multivariate statistics.
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repetitive DNA DNA sequences of variable length that occur in multiple copies in the
human and other eukaryotic genomes.

resistome The collection of all antibiotic resistance genes and their evolutionary precursors
in both pathogenic and non-pathogenic bacteria.

restriction fingerprint The sizes of the DNA fragments resulting from an endonuclease
digestion of the piece of DNA of interest.

retention time (RT) Measure of the time taken for a particular protein/peptide to pass
through a chromatography column. It is calculated as the time from injection through to
detection via mass spectrometry.

retrotransposon A transposon whose sequence shows homology with that of a retrovirus.
Retrotransposons are a class of transposons that contain long terminal repeats and use an
RNA intermediate for transposition. About 40% of the DNA in most mammalian genomes
comprises retrotransposons. Also see long terminal repeat.

ribosomal RNA (rRNA) The RNA component of the ribosome, accounting for 60% of the
ribosomal mass. Ribosomes are the engines for protein synthesis and are essential for all
living organisms. Ribosomal RNAs are very abundant and constitute 80–90% of total
cellular RNA.

ribozyme A catalytic RNA sequence.
RNA interference (RNAi) Also RNA-mediated interference. A cellular process in which

double-stranded RNAs interfere with the expression of homologous genes through the
degradation of complementary mRNA molecules. A technique commonly used to
selectively suppress the expression of individual genes.

root mean square deviation (RMSD) An archaic term for standard deviation. RMSD is
still used in the quantification of the atomic position differences between protein
structures. Very similar structures have RMSD values between 0 and 1.5 Å; moderately
similar structures have RMSD values between 1.5 and 3.0 Å.

scaffold See supercontig.
secondary structure In proteins, the local, regular backbone structures found in folded

proteins (alpha helices and beta strands). In RNA, secondary structure is the set of
canonical base pairs.

selective sweep The increase of allele frequency from low to high, owing to the effects of
natural selection.

sequence In RNA, a sequence is an ordered arrangement of nucleotides. Sequences have
directionality defined by the phosphodiester backbone and are customarily written from
the 5′ to 3′ direction.

sequence polymorphisms Differences in DNA sequences that occur naturally among
individuals. Also see single nucleotide polymorphism.

sequenced tagged site (STS) An operationally unique sequence that identifies the
combination of primer pairs used in a polymerase chain reaction (PCR) assay, generating a
reagent that maps to a single position within the genome. STSs are usually of the order of
200–500 bases in length.

server A computer that processes requests issued from remote locations by client machines.
shotgun proteomics An approach to proteome analysis where all components of a sample

are first enzymatically digested into peptides, then separated by liquid chromatography,
and finally analyzed by tandem mass spectrometry (MS/MS) to identify them. Also see
tandem mass spectrometry.

silencer A DNA sequence capable of binding transcription regulation factors called
repressors. Silencers prevent genes from being expressed as proteins. In other words, a
silencer is a sequence-specific element that induces a negative effect on the transcription
of an associated gene. Most silencers are found 20–2000 bp upstream of a gene.

silent mutation Point mutations that do not result in a change in the sequence of a protein.
similarity A quantitative measure of how related two sequences are to one another, usually

assessed as the total number of identities and conservative substitutions in a pairwise
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sequence alignment. Similarity does not automatically imply homology. Also see
alignment and conservative substitution.

simplified molecular-input line-entry system (SMILES) A form of line notation for
describing the structure of chemical species using short ASCII strings (i.e. alphanumeric
characters that can be typed on a keyboard). Also see ASCII.

single amino acid variant (SAV) See missense mutation.
single nucleotide polymorphism (SNP) Alleles that are represented by single base

changes in DNA sequence.
single nucleotide variant (SNV) A nucleotide position at which the base pair composition

varies among individuals in a population.
single reaction monitoring (SRM) A tandem mass spectrometry method in which a single

precursor ion of a specific mass is selected for the second round of fragmentation. Also see
tandem mass spectrometry.

site An individual column of residues in an amino acid or nucleotide alignment. The
residues at a site are presumed to be homologous.

spam Postings to newsgroups or mail broadcast to a large number of e-mail accounts which
are usually wholly irrelevant or not of interest to the recipients. Analogous to postal junk
mail.

stable isotope labeling of amino acids in a cell culture (SILAC) An in vivo metabolic
isotope labeling technique that incorporates heavy and light isotopic forms of amino acids
into newly synthesized proteins.

subcellular localization The cellular compartment to which a protein is transported and
where it performs its intended function.

supercontig A stretch of DNA sequence composed of one or more contigs with known order
and orientation.

support vector machine (SVM) A supervised machine learning method that can be used
for both classification and regression tasks. SVM methods find an optimal hyperplane in
hyperdimensional space to separate or classify objects that are described by many
variables. SVMs are useful in multivariate statistics.

synapomorphy A characteristic present in an ancestral species and shared exclusively by its
evolutionary descendants.

synteny In comparative mapping, the observation that the order of loci in a chromosomal
region of one organism is conserved in a chromosomal region of a second organism. From
the Greek for “on the same ribbon” (𝜎�́�𝜈, with+ 𝜏𝛼𝜄𝜈𝜄𝛼, ribbon).

tandem mass spectrometry (MS/MS) A process whereby a first stage of mass
spectrometry is used to select certain components of a sample, which are then broken
down for further analysis by a second stage of mass spectrometry. In some instruments
this can be applied repeatedly to yield MSn separations. Also see mass spectrometry.

taxon Any named group of organisms. They do not need to form a clade.
taxonomic profiling The use of bioinformatic techniques to map DNA sequences to

reference databases with associated taxonomic information in order to get qualitative and
quantitative estimates of the biodiversity in a sample.

telomere A region of repetitive nucleotide sequences at each end of most eukaryotic
chromosomes that protects the ends of the chromosomes from deterioration or from
fusion with neighboring chromosomes. Telomeres compensate for incomplete
semi-conservative DNA replication at chromosomal ends.

tertiary structure The arrangement or positioning of secondary structure elements into
compact, non-overlapping globules or domains. Tertiary structures are the
three-dimensional structures of proteins. In RNA, tertiary structure is the
three-dimensional arrangement of atoms.

terminator A section of DNA that marks the end of a gene or operon during transcription.
This sequence mediates transcriptional termination, providing signals in the newly
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synthesized transcript RNA that trigger processes that release the transcript RNA from the
transcriptional complex.

threading A method for predicting the most likely fold or topology of a protein by assessing
the likelihood that its sequence “fits” into a known three-dimensional fold or a known
arrangement of secondary structure.

Thomson unit (Th) Unit of mass to charge ratio relating to the field of mass spectrometry.
Also see mass to charge ratio.

tiling path format Format indicating the identities and order of sequences to be included in
a targeted region assembly.

time-of-flight mass spectrometer (TOF-MS) A mass spectrometer that measures mass to
charge ratios by the time required to traverse a set distance. Also see mass to charge ratio.

top-down proteomics (TDP) A proteomic method that begins with mass spectrometry
(MS) of intact proteins, followed by subsequent analysis of their constituents via MS
degradation methods or peptide mass fingerprinting. Also see mass spectrometry.

topology The map or plan of a physical system or set of connected objects. The topology of
proteins is generally described by their backbone tertiary (three-dimensional) structure. In
phylogenetics, the branching pattern of a tree. In transmembrane proteins, the sequence of
non-membrane segments on either side of the membrane.

transcription start site (TSS) The location where transcription starts at the 5′ end of a
gene sequence. The TSS is always upstream of the translation initiation site (TIS) and often
includes an RNA polymerase or transcription factor binding site. Knowledge of the exact
position of a 5′ TSS of an RNA molecule is crucial for the identification of the regulatory
regions that immediately flank it. Also see translation initiation site.

transfer RNA (tRNA) An adaptor molecule composed of RNA (typically 76–90 nucleotides
in length) that serves as the physical link between the mRNA and the amino acid sequence
of proteins. tRNAs carry amino acids to the ribosome, acting as molecular “translators”
that match the codon in an mRNA with the amino acid for which it codes.

translation initiation site (TIS) The site on a given mRNA (and its corresponding DNA)
where the ribosome binds to start translation, the conversion of mRNA codons into
proteins. Most TISs begin with an ATG start codon but there are many situations where
this is not the case.

transmembrane protein A protein that contains at least one segment which crosses
through a biological membrane.

transposase An enzyme that binds to the end of a transposon and catalyzes the movement
of the transposon to another part of the genome via a cut-and-paste mechanism.

untranslated region (UTR) A region of an mRNA molecule that is not translated to
protein. There can be two types of UTRs: 5′ UTRs and 3′ UTRs. A 5′ UTR is the
untranslated portion of an mRNA stretching from the 5′ end to the position of the first
codon used in translation. The 3′ UTR is the untranslated portion of an mRNA stretching
from the 3′ end of the mRNA to the position of the last codon used in translation.

user The person using client–server or other types of software.
Variant Call Format (VCF) A standard format for storing genetic data in plain text.
van der Waals volume The spherical space around an atom that cannot be occupied by

another atom. In molecules such as proteins, the van der Waals volumes of multiple atoms
form the van der Waals surface.

vertical gene transfer The movement of genetic material from parents to offspring. Also
see horizontal gene transfer.

Viterbi algorithm A dynamic programming algorithm that allows one to compute the most
probable or optimal path. It is similar to the Needleman–Wunsch algorithm used in
pairwise sequence alignments. More formally, the Viterbi algorithm finds the most likely
sequence of hidden states (called the Viterbi path) that results in a sequence of observed
events.
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wiki A web site that can be used for collaborative or informational purposes, in which any
individual can freely add, edit, or delete information. The term originates from the
Hawaiian word for quick (wikiwiki).

word matching Computer-based search for small segments (“words”) of identical DNA
sequence.

yeast artificial chromosome (YAC) A vector used to clone segments of DNA up to 1
million bases in length.

Z score, Z value This measures the distance of a value from the mean of a normal or
Gaussian distribution in standard deviation units. A Z score of 1 means the value is one
standard deviation away from the mean. A Z score of 4 indicates the value is four standard
deviations away from the mean (indicating the value has <99.9% chance of occurring
randomly). A high Z score typically means a greater level of statistical significance.
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BiomeNet 528
BioPAX 416, 417, 450
Biopolymer Markup Language (BIOML) 347
BioVUk 545, 547
BLAST 21, 52–61, 80, 86, 140, 192, 206, 265,

270, 391, 577
algorithm 52–4, 92, 108, 526
search 53–8
suggested cut-offs 61
understanding the output 58–61

BLAST 2 Sequences 61–2
BLAT 66–70, 80, 81, 96, 135, 144

algorithm 92
search 91–93, 112
submitting a query 70

BLOCKS database 49
BLOSUM (Block Substitution Matrix) 49–50,

262
BMRB 373, 446, 448
BOCTOPUS2 198
Bonferroni correction 299, 577
bootstrapping 259, 294
bottom-up proteomics 329–30
Bowtie 2 283, 523, 525
BRAKER suite of programs 144
BRaunschweig ENzyme DAtabase (BRENDA)

354
Bray–Curtis dissimilarity (BCI) 519
BRENDA 354
browser extensible data (BED) 81, 82
Burrows–Wheeler aligner (BWA) 283, 525
BUSCO 135, 144

c
CAFA 202, 207
CAGI 547, 548
Cancer Genome Anatomy Project (CGAP) 67
Cancer Genome Atlas, The (TCGA) 286
capillary electrophoresis (CE) 344
CASP 177, 195, 201, 206, 207, 331, 382, 385,

547
categorical random variable 557
CATH databases 203, 390–91
CAZy 527
CBLAST 377
CDD 58, 203, 377
cDNA sequencing 280
CEL-Seq 308
central limit theorem 567, 574, 575
centroid 325
CFM-ID database 448
CGView 142
charge state reduction 328

Chemical Entities of Biological Interest
database (ChEBI) 444, 446, 448

Chemical Markup Language (CML) 441
Chemistry Development Kit (CDK) 440
ChemSpider 446–8
Chime 379
chimeric sequences 509
chi-squared test 579
Chorus 352
ChromaTOF 456, 458
chromatography 400
Chromopainter 490
CING 374
clade annotation 136
Cline shift score 230
Clinical Pharmacogenomics Implementation

Consortium (CPIC) 538
Clinical Proteomic Tumor Analysis

Consortium (CPTAC) 545
ClinicalTrials.gov 36
ClinVar database 538, 539
Clustal 232–40, 242–3, 245, 260, 261

ClusterMaker2 Cytoscape app 429
clusters of orthologous groups (COG) 203
CML 441
Cn3D 32, 377, 379
coalescence 487, 488
coarse-graining 177
coding sequences (CDSs) 2
coding statistics 124
coefficient of determination 561
co-evolutionary coupling 385, 386
COGIC 206
collisional fragmentation 319
collisional-activated dissociation (CAD) 319
collision-induced dissociation (CID) 319, 342
COMBAT 290
comparative sequence analysis 162, 163
Competitive Fragmentation Modeling and

Identification (CFM-ID) database 448
composite of multiple signals (CMS) test 495
compositional similarity 510
Comprehensive Antibiotic Resistance Database

527
concordance index 305
conditional rarity 511
confidence interval (CI) 560
CONSENSE program 266
Conserved Domain Database (CDD) 58, 203,

377
CONTRAST 136
ContTest 231
CONVERTF 491
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correlation 561
correlation-based methods 429
COSMIC database 538
COSY 365
coulometric (electrochemical) array systems

439
covariance 561
CPHModels server 382
CPK (Corey, Pauling, and Koltun) model

378
Critical Assessment of (Protein) Structure

Prediction see CASP
Critical Assessment of Function Annotation

(CAFA) 202, 207
Critical Assessment of Genome Interpretation

(CAGI) 547, 548
Crux software suite 346
Cufflinks 133
curated databases 11
Cyc databases 450, 471
Cytoscape 429–31, 443, 473

AutoAnnotate app. 425
CyNI toolkit app 430
network visualization 422

d
DADA2 514–15
Dali 376, 391
Database for Annotation, Visualization and

Integrated Discovery (DAVID) 301
Database of Genomic Structural Variation

(dbVAR) 20
data-dependent acquisition (DDA) procedures

333
data-independent acquisition (DIA) 333
DAVID 301
dbNSFP annotation database 541
dbPTM 355
dbSNP 20, 28, 89, 113
DBS-PSSM 211
dbVAR 20
Database of Single Nucleotide Polymorphisms

(dbSNP) 20, 28, 89, 113
de novo peptide sequencing 341–2, 344
deconvolution 328
DeepLoc 209–210
DeepView 380–2, 389
degrees of freedom 573–4
descriptive statistics 558–61
DESeq 289, 298, 299, 528
Dfam 140
DIALIGN 237–8
DIAMOND 525

Dictionary of Secondary Structure for Proteins
(DSSP) 189, 190, 192, 387

differential analysis 429
differential expression analysis for sequence

count data 289, 298, 299, 529
differential expression testing 296–300, 304–6
diffusion approximations for demographic

inference (dadi) 488
dihedral angles 369
dimensionality reduction 459
dimethyl labeling 332
Dirichlet distribution 120
discovery-based global profiling approaches

333
discriminant analysis 579
DISOPRED 200, 201
disorder prediction performance 201
disordered regions 199–201
DisProt 200
dN/dS ratio 257–8
DNA Databank of Japan (DDBJ) 2–4, 16, 19
DNA methylation 546
DNA sequencing 505, 506
DomCut 205
Dom-Pred 205, 206
DOMpro 205
DomSSEA 205
dotplot 61
DOUBLESCAN 136
DP-Bind 211
DPS 205
Drop-Seq 308
Drug Repurposing Hub (Broad Institute) 545
DrugBank 538
DSSP 189, 190, 192, 387–8
DuplexFold 175
DUST 140
Dynalign 162, 163, 170, 176, 178
dynamic mass range capability 317
dynamic programming 126, 159–60, 586–90
DyNet Cytoscape app 429

e
E. coli Metabolome Database (ECMDB) 450,

451
EasyGene 1.2 131
EasyGene 118, 123
EasyModeller 382
eBURST 268
ECMDB 450, 451
EcoCyc 401, 405, 407, 418
ecological relevance 511
edgeR 298, 299, 528



612 Index

Edinburgh Human Metabolic Network
database 473

Edman protein sequencing 316
effect size 575, 577
EGASP 128
EggNOG database 206
EHH test 494
EIGENSOFT 490, 491
EIGENSTRAT tool 485, 491
electron capture dissociation (ECD) 319
electron microscopy 364–5
electron transfer dissociation (ETD) 319
electron-based fragmentation 319
electrospray ionization (ESI) 316
electronic health records 537–8, 542–3
ethical, legal, and social implications of

translational medicine (ELSI) 549–50
ELM 211
European Nucleotide Archive (ENA) 2
ENCODE 84, 88, 113, 132
ENCODE Genome Annotation Assessment

Project (EGASP) 128
Encyclopedia of DNA Elements see ENCODE
ENDEAVOUR 541
Enrichment Map visualization software

422
Ensembl 112, 144, 341, 354
ENSEMBL Genome Browser 79–82, 85, 92,

96–108, 112, 145
entity relationship (ER) diagrams 419
Entrez 20–32
Environmental microbiomes 505, 506
ESI 316, 317
EST (Expressed Sequence Tag) 4
eThread 385
Euclidean distance 292, 305
Eukaryotic Annotation Pipeline 143
European Bioinformatics Institute (EBI) 2,

80, 450
European Macromolecular Structure Database

(MSD-EBI) 373
European Molecular Biology Laboratory

(EMBL) 1, 2, 16, 19, 145, 373
European Nucleotide Archive (ENA) 2
EVA 195
EVcomplex 211
EVfold 211
EVidenceModeler (EVM) 143
Exome Aggregation Consortium (ExAc)

486
Exonerate 134, 135
expected heterozygosity 483
Expressed Sequence Tags (ESTs) 4

expression analysis 279–310
classification methods 306–8
classifier 302–6
data pre-processing 283–4
data/metadata collection and management

282–3
differential expression analysis 296–300
DNA microarrays 280
experimental design 281–2
exploratory data analysis 291–6
functional enrichment analysis 300–302
normalization and batch effects 287–91
quality control 284–6
single-cell sequencing 308–9
validation of predictive models 306–8

expression matrix 287
ExpressionSet 284
extended haplotype homozygosity (EHH) test

494
ExtensibleMarkup Language see XML
extrinsic (evidence-based) gene finders 132

f
F1 score 129
Falco 309
false discovery rate (FDR) 298, 336, 521, 576
family-wise error rate (FWER) 299, 577
Fast Healthcare Interoperability Resources

(FHIR) 544, 548
FASTA 3, 70–75, 145, 170, 233
FastQC 285, 439
FASTQ-formatted file 509
fastSTRUCTURE 490
FastTree-2 240
FATCAT 376, 389, 391–2
feature table

in ENA Format 584–5
in GenBank/DDBJ Format 585–6

FFPred 206–7
Fiehn Metabolome Database (BinBase) 458
File Chameleon 97
FILM3 211
fineSTRUCTURE 490
Fisher’s exact test 301, 420, 472
FIT 378
Fitch–Margoliash (FM) 263
five-kingdom classification system (Whittaker)

252
fixation index (FST), 483, 484
flatfile 3
flatfile header

in DDBJ/GenBank Format 583–4
in ENA Format 583
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fluorescence resonance energy transfer (FRET)
556

fluorescent in situ hybridization (FISH) 529
FlyBase 341
FOAM 525
FoldAlign 162, 163, 176, 178
Formula Predictor (Shimadzu) 459
Fourier transform infrared spectrometers

(FTIR) 439
Fourier transform ion cyclotron resonance

(FT-ICR) spectrometer 317, 459
fragments per kilobase million (FPKM) 287–8
Frappe 490
free energy minimization 170
Frequency and Probability Distributions

566–8
FRODO 378
F-test 298
functional enrichment analysis 300–302
functional interaction databases 410–14
Functional Ontology Assignments for

Metagenomes (FOAM) 525
FunctionSpace 206
FunFams 207

g
g:Profiler 421, 423
Galaxy-M 460, 468
gamma distribution 258
gap penalties 51–2
gaps 51–2
gas chromatography (GC) systems 439
Gaussian filtering 325
Gaussian fit 325
Gaussian subtype classification models 306
GC-MS-Based Compound Identification

456–8
gel-based separation techniques 400
gel-eluted liquid fraction entrapment

(GELFrEE) 344
gelML 352
GenBank 1–4, 16, 19, 20, 30, 31, 38, 50, 79,

131, 145, 254, 373, 444, 450
GENCODE 80, 84–8, 113, 141
gene annotation and evidence generation

finding/removing pseudogenes in eukaryotes
141

prophage finding in prokaryotes 137–8
repetitive sequence finding/masking in

eukaryotes 138–41
tRNA and rRNA gene finding 136–7
using comparative gene prediction 135–41
using protein sequence databases 134–5

using RNA-seq data 133–4
gene co-expression analysis 402
gene duplication 255
Gene Expression Omnibus (GEO) 280
gene-finding programs 118
gene flow 482
gene fusion method 402
gene neighborhood 402, 412
Gene Ontology (GO) 14, 283, 301, 425, 527,

543
prediction of 201–2

Gene Ontology annotation (GOA) 9
gene prediction, ab initio 118

evaluation 127–30
in eukaryotic genomes 123–4, 131–3
in prokaryotic genomes 118–23, 131

Gene Set Enrichment Analysis (GSEA) 283,
302, 421, 424, 473

GeneID 132, 134, 136
Geneious 265
GeneMANIA 414–15, 414, 431, 542
GeneMark 118, 123, 131, 132, 144, 525
Generic Model Organism Database (GMOD)

project 111
genetic drift 482, 493
GeneWise 134, 135
GeneZilla 132
GenGIS 270
GENIE 126
Genome Aggregation Database (gnomAD)

486
genome annotation 117–46

evidence generation for 133–5
genome annotation pipelines 141–5

eukaryotic 142–4
prokaryotic 142
visualization and quality control 145

Genome Reference Consortium (GRC) 80–2,
84

GenomeScan 132, 134
GenomeThreader 135
GenomeView 145
genome-wide association studies (GWAS)

485, 545, 577
genomic data, file types 82–4
Genotype-Tissue Expression (GTEx) project

91, 92
GENSCAN 118, 126, 132, 136, 141
Gibbs free energy 157–8
GiniClust/GiniClust2 309
GLIMMER 118, 123, 131
global alignment 255
global NMR data center (BMRB) 373
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Global Proteome Machine (GPM) 343, 353–4,
358

global sequence alignment 46
GlobalAncova 472
GLOBETROTTER 490
GMAP 144
Gnomon gene-finding program 144
Goldberg–Hogness box 124
Golm Metabolome Database 446, 448
GOR 187
graph theory 425–6
graphical interfaces 9
Greengenes 515
GSEAlm 302
GSNAP 133
GSS (Genome Survey Sequences) 4
guide tree 228, 260, 261
guilt-by-association (“guilt-by-correlation”)

356, 427, 541
GutenTag 341

h
HAMAP 203
hard masking programs 140
hard sweep 493
Hardy–Weinberg equilibrium (HWE) 483,

489
Health Insurance Portability and

Accountability Act of 1996 (HIPAA)
549–50

heat map 291–2, 293
Henderson, Richard 367
heterozygosity 483
heterozygote advantage 493
heuristics 228
HHblits 188, 193
HHpred 382, 384
HHsearch 202
hidden Markov models see HMMs
hierarchical clustering 291–4
higher energy collisional activation

dissociation (HCD) 319
high-performance liquid chromatography

(HPLC) 322
histogram 562
histone marks 89, 104–5
HMDB 444, 458, 459, 470
HMMER 135, 202, 234, 240
HMMs 64, 121, 122, 125, 187–9, 197, 233, 234,

525, 527
HMQC 365
hole filling 401
homology 45, 46

homology modeling 382–3
Homology-derived Secondary Structure of

Proteins (HSSP) database 190
HomPPI 211
HomPRIP 211
Homstrad structure alignment database 230
horizontal (or lateral) gene transfer 255
hot spots 210
HTML5 Molecular Editor 443
Human and Vertebrate Analysis and

Annotation (HAVANA) group 85
Human Gene Mutation Database (HGMD)

538
Human Genome Project 19, 66
Human Metabolome Database (HMDB) 444,

446, 450–51, 448
human microbiome 505–6
Human Microbiome Project 506
Human Phenotype Ontology (HPO) 543, 544
Human Proteome Organization (HUPO) 348
hybrid search 343
hydrophobic liquid interaction

chromatography (HLIC) 344
hydrophobicity 196
hypergeometric test see Fisher’s exact test
hypothesis-driven directed approaches 333

i
iCn3D 32, 377, 379
ID line 4
IDEAL 200
immobilized metal ion affinity chromatography

(IMAC) 324
InChI strings (International Chemical

Identifier) 440
Inferred Biomolecular Interactions Server

(IBIS) 211, 377
infrared multi-photon dissociation (IRMPD)

319
Ingenuity Pathway Analysis 450
InsPecT 341
IntAct 407, 412
integrated haplotype score (iHS) 494, 499
Integrated Metabolomic and Expression

Analysis (INMEX) 473
integrative analysis 430
International Classification of Diseases (ICD)

543
International Nucleotide Sequence Database

Collaboration (INSDC) 2, 12
International Society for Biocuration 11
International Union of Pure and Applied

Chemistry (IUPAC) 439
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InterPro 8, 202, 390
InterProScan 202
interquartile range (IQR) 562
intrinsically disordered proteins (IDPs) 199
intrinsically disordered regions (IDRs) 199
intrinsically unstructured proteins 199
Invitae 540
ion trap mass analyzer 322
IPfam 211
iProX 352
iRefIndex 414
isoelectric focusing (IEF) 344
isotope-coded affinity tagging (ICAT) 331
isotopic dilution analysis 459
I-TASSER 385
IUPAC nomenclature rules 439

j
Jaccard index 519
jack-knife technique 294
Jalview 231, 232, 243
JavaScript viewers 374
JBRowse 81, 110–12, 145
JC69 model 262
JCAMP-DX 441, 443
JChemPaint 443
J-couplings 365
JDXview 443
jfpred 207
JIGSAW 143
JME 443
Jmol 389, 392, 443, 444
jPOST 352
JSME Molecule Editor 443
JSmol 374, 376, 443
JSpectraViewer 444, 445
JSpecView 443
JuiceScreener 456

k
K80 model 262
Kalign 237, 238
Kallisto 283, 309
Karlin–Altschul equation 54
KEGG 302, 354, 406, 408, 444, 446, 450, 471,

473, 525, 527
KGML (KEGG Markup Language) 450
Kingdon trap 318
Kiosk Viewer 374, 379
k-mer decomposition 516, 526
KNApSAcK 446, 448
k-nearest neighbors model 306
KnowItAll Academic 443

knowledge 555–7
Kolmogorov–Smirnov test 302
Kozak consensus sequence 124
Kraken 526
Kruskal–Wallis test 578
Kyoto Encyclopedia of Genes and Genomes see

KEGG

l
ladder of nature (scala naturae) 252
Lagrangian multipliers 389
last universal common ancestor (LUCA) 251
leaderless transcription 121
LEfSe 521, 522
level of significance 573, 574
LIGAND 406
Ligand Explorer 374, 379
Limma 298
linear algebra 426
linear discriminant analysis 306
linear splines 325
LIPID MAPS 444, 446–8
liquid chromatography (LC) 439
liquid chromatography-mass spectrometry

(LC-MS) 439, 458–9
Livebench 195
local sequence alignment 46, 255
LocARNA 163, 176, 178
LocTree3 209
Loess derivative filters 325
log likelihood scoring matrix 121
log odds ratio (lod score) 48
logistic regression 211, 306
log-normal distribution 567
LOMETS (Local Meta-Threading Server) 385
long branch attraction problem 259
loop initiation energies 159
LOOPP 385
LTR_FINDER 140
LTRharvest 140

m
machine learning approaches 521
Macromolecular Transmission Format

(MMTF) 375
MAFFT 229, 234, 237–40
MAKER2 143, 144
Manhattan plot 495
mapping-first approach 133
marker gene analysis 511–521

associations with metadata 521
calculating and comparing diversity 516–20
general considerations 509–11
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marker gene analysis (contd.)
grouping of similar sequences 513–15
quality control 513
ribosomal RNA genes 512–13
taxonomic assignment 515–16

Markov chain Monte Carlo (MCMC) algorithm
264, 265, 489

Markov cluster (MCL) algorithm 426
Markov models 121–2

codon position-dependent fifth-order
125–6

MarvinSketch 443
MarvinView 444
Mascot 336–8, 341–2, 348–9
mass spectrometry (MS) 315–56, 399, 439 see

also tandem mass spectrometry
ion detectors 321
ionization 317
mass analyzers 317–20
proteomics 132–3, 325–8

Mass Spectrometry Interactive Virtual
Environment (MassIVE) 352

mass spectrum 321
MassBank of North America (MoNA) 446,

448, 449
MassHunter (Agilent) 458, 459
MassIVE 352
MassLynx (Waters) 458
match factor 457
MATLAB 460
matrix diagonalization techniques 389
matrix-assisted laser desorption ionization

(MALDI) techniques 316, 317, 328
Matthews correlation coefficient (MCC; CC)

128, 129
MAVEN 460
Max Planck Bioinformatics Toolkit 232
maximal dependence decomposition 126
maximum expected accuracy method 169,

170
Maximum Likelihood (ML) methods 264
Maximum Parsimony (MP) 264
MaxQuant (Andromeda) 341, 345, 347
mBed algorithm 232
MC-Fold 176
MC-SYM software 176
mean filtering 325
MED 2.0 131
median 560
median filtering 325
medical databases 33–8
medical subject headings (MeSH) 543
MEDLINE layout 26

MEGA 265
MegaBLAST 62–4, 526
MEGAN 527
MeltDB 460
MEMSAT-SVM 197, 198
MetaboAnalyst 460–5, 468, 470–3
metabolic flux balance analysis 473
metabolic reconstructions 473
metabolic simulations 473
MetaboLights 444, 446, 450
metabolite Identification 451–9

GC-MS-based compound identification
456–8

LC-MS-based compound identification
458–9

NMR-based compound identification
454–6

targeted versus untargeted metabolomics
453

metabolite interpretation 470–73
metabolite levels 437
metabolite set enrichment analysis (MSEA)

472
metabolome 437
metabolomics 272, 437–73, 529

chemical compound databases 444–8
chemical representation and exchange

formats 440–41
data formats 439–44
metabolic pathway databases 449–50
meta-metabolomics 508, 529
molecular editors 442–3
organism-specific databases 450–51
spectral databases 448
spectral representation and exchange

formats 441–2
spectral viewers 443–4
targeted versus untargeted 453

Metabolomics Standards Initiative (MSI)
453

Metabolomics Workbench 446, 450
MetaCyc 405, 446
metagene 294–6
MetaGeneMark 525
MEtaGenome ANalyzer (MEGAN) 523
metagenomic and meta-metabolomic,

combined analysis 529
metagenomic data analysis 505, 521–8

assembly 524
functional predictions 527–8
gene annotation and homology searching

524–5
metagenomic workflow 508
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predicting functional information from
marker-gene data 522–3

protocol 523
quality control and merging of paired-end

reads 523–4
statistical associations 528
taxonomic assignment and profiling 525–7

metagenomeSeq 517
metagenomic sequence analysis 505
metagenomics 272, 528–9
MetaMap 544
MetaMapp 473
MetaMapR 473
metAMOS 523
Meta-P server 460
MetaPhlAn 526
metaprdos2 200, 201
metaproteomics 507, 529, 529
metaSPAdes 524
Metastudent 206
metatranscriptomics 507, 529, 530
methyl-seq 285
METLIN 444, 446, 448, 459
MetPA 472
MetScape 473
MFO 207
Mfold 156, 163, 164, 177
mGENE 133, 134
MIAPE-MS 348
MIASSPE 348
microbiome analysis 505–530
Microbiome Helper 523
MicroReact 270
minimum evolution (ME) 263
minimum redundancy maximum relevance

(mRMR) 304, 305
MinPath 528
MITE-Hunter 140
mMass 443–4
MobiDB 203
ModBase 382
mode 559–60
MODELLER 382
ModeRNA program 177
ModWeb server 382
Molecular ACCess System (MACCS 166) 440
molecular clock hypothesis 253–4
molecular cross-linking 401
Molecular Design Limited (MDL) 440

chemical fingerprint 440
Information Systems 378

molecular dynamics (MD) simulations 177
molecular editors 442–3

molecular evolution see phylogenetic analysis
molecular interaction databases 407–10
Molecular Modeling Database (MMDB) 21,

22, 33, 377
Molfile (MOL) 441
MolProbity 373, 387, 388
MoNA 459
Monarch Initiative 542
monoisotopic mass 328
monotonic relationship 561
Monte Carlo (random search) methods 21,

385
mothur 513
Mouse Genome Database (MGD) 11, 39, 41,

43
Mouse Genome Informatics (MGI) resource

39, 40
MOWSE probability algorithm 336
mpileup (Samtools) 486
MrBAYES 265
mRMRe package 305
MS PepSearch (NIST) 343
MSA 202, 232
MS-Align+ 344
MS-DIAL 458–60
MSEA 473
msf 233
MS-GF+ 341, 345
mtDNAprofiler 269
Mugsy-Annotator 136
multidimensional distributions 568
multidimensional scaling 484, 519, 520
Multilign 170, 175, 176, 176
MultiLoc2 209–210

HighRes 209
LowRes 209

multi-locus sequence typing (MLST) 268
multimodal distribution 567–8
multi-omic datasets 529
multiple displacement amplification (MDA)

529
multiple enrichment analysis 424
multiple reaction monitoring (MRM) 354, 459
multiple sequence alignment (MSA) 45, 64,

120, 187–8, 227–46, 255, 385
building 231
profile 135
quality, measuring 228–31
viewing 242–6

multiple sequentially Markovian coalescent
(MSMC) method 486–7, 489, 499

multiple threading servers 385
MultiQC 285
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multivariate statistics 459–60
MUSCLE 229, 230, 236, 238–40, 260–1
MUSTANG 229
MUSTER 385
mutation 481, 493
MutPred 541
MVAPACK 460
Myriad Genetics 540
MySQL database 353
MyVariant.info 538
MzCloud 448
mzData 352
mzIdentML 352
MZmine 458, 459
mzML 348, 441, 443
mzQuantML 352
mzTab 352
mzXML standards 352

n
N50 524
NACCESS 189
naive Bayes (NB) classifier 516
nanopore sequencing 509
National Biomedical Research Foundation

(NBRF) 1
National Center for Biomedical Ontology

(NCBO) 543
National Center for Biotechnology Information

(NCBI) 1, 2, 9, 20, 27, 54, 55, 76, 254,
341, 444 see Entrez

annotation pipeline 144
ASN.1 (Abstract Syntax Notation) format

377
National Drug File (NDF) 543
National Institute of Standards and Technology

(NIST) 343, 448, 458
National Institutes of Health (NIH) 19, 79

All of Us initiative 537, 546–7
natural selection 481–2, 493–7
NChannelSet 284
nearest centroid model 306
nearest neighbor free energy parameters 159
nearest neighbor model 157
Needleman–Wunsch algorithm 126, 260
negative binomial distribution 567
negative selection 493
NEIGHBOR program 266
neighbor-joining (NJ) 263
neighboring concept 21–3
Nematode Genome Annotation Assessment

Project (nGASP) 128
NetMatchStar Cytoscape app 429

network inference 429–30
network smoothing 429
network visualization and analysis 425–6
neural networks 306
next-generation DNA sequencing (NGS) 133
neXtProt 205
NGL Viewer 374, 379
NMR-based compound identification 454–6
nmrML 441–3
NMRShiftDB 446, 448
NMRShiftDB2 448
no free lunch theorem 521
NOESY 365
nominal random variable 557
non-affine (or linear) gap penalty 52
non-metric multidimensional scaling (NMDS)

519, 520
non-negative matrix factorization (NMF) 291,

292, 296
non-parametric tests 578
normalized enrichment score (NES) 422
normalized unscaled standard error (NUSE)

boxplots 284–5
northern blot analysis 287
N-SCAN 136
nuclear magnetic resonance (NMR) 130,

364–6, 386, 400, 439
nuclear Overhauser effects (NOEs) 365
nucleotide scoring matrices 51
nucleotide sequence databases 3
nucleotide sequence flatfiles 3–11

RefSeq 10–11
header 4–6, 583–4
feature table 4, 6–9, 484–5
graphical interfaces 9

null hypothesis 570–71
testing 573–5

NUPACK 175

o
Observational Health Data Sciences and

Informatics (OHDSI) 544
Observational Medical Outcomes Partnership

(OMOP) data model 544
observed heterozygosity 483
odds ratio 577
oligotyping 514
OMIM 33–7
OmniPath 414
OneDep 373, 374
Online Mendelian Inheritance in Man (OMIM)

33–7
OPAL 240
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Open Babel 441
Open Biomedical Ontologies Consortium

(OBO) 543
OpenGL Shading Language (GLSL) 380
Openmolecules.org 439
OpenMS 352
operational taxonomic unit (OTU) 514
OPLS-DA 470
OPSIN web server 439
Orbitrap 317–320, 458, 459
ORGANISM lines (in DDBJ/GenBank) 5
organismal sequence databases 38–42
OrthoDB 135
Orthogonal Projection of Latent

Structures–Discriminant Analysis
(OPLS-DA) 468

orthologs 45, 46, 255, 256
over-dominance 493
OXBench 230
Oxford Nanopore MinION 509

p
p value 572–8
P4 Medicine (Institute of Systems Biology)

547
Pacific Biosciences (PacBio) RS II 509
paired t-test 578, 579
Paired-End reAd mergeR (PEAR) 524
pairwise sequence alignments 4, 260
pairwise sequentially Markovian coalescent

(PSMC) model 488
PAM (Point Accepted Mutation) 262
PAM matrices 48–50
PAM unit 49
PANAV 374
PANTHER 203
paralogs 45, 255, 256
paralogy 46
parameter 558
parametric tests 578
parent ion (or formula) matching 459
parsimony principle 264
partial least-squares 306
partial least-squares discriminant analysis

(PLS-DA) 462, 467–70
partition functions 159
PARTS 163
PASA 143, 144
PASSEL 352
PASTA 234, 235, 237–41
Pathguide link directory 403, 414
PathoLogic algorithm 401
PathVisio 418, 420

pathway analysis
databases 402–31
experiments and predictions 400–2
pathway enrichment analysis 399, 419–21,

423, 424
standard data formats 415–17
topological analysis 471, 472
visualization tools 417–25

Pathway Commons 414, 417
Pathway Tools software 405
Patient-Centered Outcomes Research Institute

data model 544
PATRIC 341
Paul ion trap (quadrupole ion trap) 318
PAUP 265, 267
PBS test 494
PDBeFOLD 391
PDLI 205
PEAKS PTM 341
Pearson correlation coefficient 195, 305, 560,

561
Pearson correlation distance measure 292
Penning trap (FT-ICR) 318
PEPTIDE 354
peptide mass fingerprinting 334–6
peptide sequence tag searching 344
peptide spectral matching 340–1, 345–7
PeptideAtlas 352, 353
PeptideAtlas SRM Experiment Library

(PASSEL) 352
PeptideProphet 345, 353
pepXML 348
Percolator 345
PERMANOVA 521
Perseus 347
Personal Genome Project (PGP) 547
Pfam 202–4, 230, 233, 234, 390
Pfold 162, 178
Phage_Finder 138
Pharmacogenetics Knowledgebase

(PharmGKB) 538
PHAST 138
PHASTER 138, 139
PHDacc 190
PHDsec 190, 191
PhenoPred 541
Phenotypic Quality Ontology (PATO) 543
PheWAS Approach 545
Phobius 197
PhosphositePlus (PSP) 355
photo-activated fragmentation 319
Phred scores 509
PHYLIP 233, 265, 266
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phylogenetic analysis 251–273
data integration 269–72
determining the substitution model 262–3
early classification schemes 252–3
marker-based evolution studies 268–9
multiple sequence alignment and alignment

editing 260–2
phylogenetic inference 263
phylogenetic placement 516
phylogenetic profile methods 402
sequences as molecular clocks 253–4
terminology 254–60
tree building 263–5
tree construction 260–7
tree visualization 265–7

phylogenetic inference 263
Phylogenetic Investigation of Communities by

Reconstruction of Unobserved States
(PICRUSt) 522–3

phylogeography 270
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